1
|
The Intersection of the Staphylococcus aureus Rex and SrrAB Regulons: an Example of Metabolic Evolution That Maximizes Resistance to Immune Radicals. mBio 2021; 12:e0218821. [PMID: 34781744 PMCID: PMC8593685 DOI: 10.1128/mbio.02188-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is the most pathogenic member of the Staphylococcaceae. While it acquired an arsenal of canonical virulence determinants that mediate pathogenicity, it has also metabolically adapted to thrive at sites of inflammation. Notably, it has evolved to grow in the presence of nitric oxide (NO·). To this end, we note that the Rex regulon, composed of genes encoding dehydrogenases, metabolite transporters, and regulators, is much larger in S. aureus than other Staphylococcus species. Here, we demonstrate that this expanded Rex regulon is necessary and sufficient for NO· resistance. Preventing its expression results in NO· sensitivity, and the closely related species, Staphylococcus simiae, also possesses an expanded Rex regulon and exhibits NO· resistance. We hypothesize that the expanded Rex regulon initially evolved to provide efficient anaerobic metabolism but that S. aureus has co-opted this feature to thrive at sites of inflammation where respiration is limited. One distinguishing feature of the Rex regulon in S. aureus is that it contains the srrAB two-component system. Here, we show that Rex blocks the ability of SrrA to auto-induce the operon, thereby preventing maximal SrrAB expression. This results in NO·-responsive srrAB expression in S. aureus but not in other staphylococci. Consequently, higher expression of cytochromes and NO· detoxification are also observed in S. aureus alone, allowing for continued respiration at NO· concentrations beyond that of S. simiae. We therefore contend that the intersection of the Rex and SrrAB regulons represents an evolutionary event that allowed S. aureus to metabolically adapt to host inflammatory radicals during infection.
Collapse
|
2
|
Microbial Lipopeptide-Producing Strains and Their Metabolic Roles under Anaerobic Conditions. Microorganisms 2021; 9:microorganisms9102030. [PMID: 34683351 PMCID: PMC8540375 DOI: 10.3390/microorganisms9102030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023] Open
Abstract
The lipopeptide produced by microorganisms is one of the representative biosurfactants and is characterized as a series of structural analogues of different families. Thirty-four families covering about 300 lipopeptide compounds have been reported in the last decades, and most of the reported lipopeptides produced by microorganisms were under aerobic conditions. The lipopeptide-producing strains under anaerobic conditions have attracted much attention from both the academic and industrial communities, due to the needs and the challenge of their applications in anaerobic environments, such as in oil reservoirs and in microbial enhanced oil recovery (MEOR). In this review, the fifty-eight reported bacterial strains, mostly isolated from oil reservoirs and dominated by the species Bacillus subtilis, producing lipopeptide biosurfactants, and the species Pseudomonas aeruginosa, producing glycolipid biosurfactants under anaerobic conditions were summarized. The metabolic pathway and the non-ribosomal peptide synthetases (NRPSs) of the strain Bacillus subtilis under anaerobic conditions were analyzed, which is expected to better understand the key mechanisms of the growth and production of lipopeptide biosurfactants of such kind of bacteria under anaerobic conditions, and to expand the industrial application of anaerobic biosurfactant-producing bacteria.
Collapse
|
3
|
Harvey KL, Jarocki VM, Charles IG, Djordjevic SP. The Diverse Functional Roles of Elongation Factor Tu (EF-Tu) in Microbial Pathogenesis. Front Microbiol 2019; 10:2351. [PMID: 31708880 PMCID: PMC6822514 DOI: 10.3389/fmicb.2019.02351] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Elongation factor thermal unstable Tu (EF-Tu) is a G protein that catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome inside living cells. Structural and biochemical studies have described the complex interactions needed to effect canonical function. However, EF-Tu has evolved the capacity to execute diverse functions on the extracellular surface of both eukaryote and prokaryote cells. EF-Tu can traffic to, and is retained on, cell surfaces where can interact with membrane receptors and with extracellular matrix on the surface of plant and animal cells. Our structural studies indicate that short linear motifs (SLiMs) in surface exposed, non-conserved regions of the molecule may play a key role in the moonlighting functions ascribed to this ancient, highly abundant protein. Here we explore the diverse moonlighting functions relating to pathogenesis of EF-Tu in bacteria and examine putative SLiMs on surface-exposed regions of the molecule.
Collapse
Affiliation(s)
- Kate L Harvey
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Veronica M Jarocki
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ian G Charles
- Quadram Institute, Norwich, United Kingdom.,Norwich Medical School, Norwich, United Kingdom
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
4
|
Duport C, Alpha-Bazin B, Armengaud J. Advanced Proteomics as a Powerful Tool for Studying Toxins of Human Bacterial Pathogens. Toxins (Basel) 2019; 11:toxins11100576. [PMID: 31590258 PMCID: PMC6832400 DOI: 10.3390/toxins11100576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Exotoxins contribute to the infectious processes of many bacterial pathogens, mainly by causing host tissue damages. The production of exotoxins varies according to the bacterial species. Recent advances in proteomics revealed that pathogenic bacteria are capable of simultaneously producing more than a dozen exotoxins. Interestingly, these toxins may be subject to post-transcriptional modifications in response to environmental conditions. In this review, we give an outline of different bacterial exotoxins and their mechanism of action. We also report how proteomics contributed to immense progress in the study of toxinogenic potential of pathogenic bacteria over the last two decades.
Collapse
Affiliation(s)
- Catherine Duport
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France
- Correspondence:
| | - Béatrice Alpha-Bazin
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols sur Cèze, France; (B.A.-B.); (J.A.)
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols sur Cèze, France; (B.A.-B.); (J.A.)
| |
Collapse
|
5
|
Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxid Redox Signal 2019; 30:1651-1696. [PMID: 30073850 DOI: 10.1089/ars.2017.7442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Emma Sevilla
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María Teresa Bes
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Andrés González
- 2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.,4 Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Luisa Peleato
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María F Fillat
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
6
|
Zhu H, Wang Y, Ni Y, Zhou J, Han L, Yu Z, Mao A, Wang D, Fan H, He K. The Redox-Sensing Regulator Rex Contributes to the Virulence and Oxidative Stress Response of Streptococcus suis Serotype 2. Front Cell Infect Microbiol 2018; 8:317. [PMID: 30280091 PMCID: PMC6154617 DOI: 10.3389/fcimb.2018.00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen responsible for septicemia and meningitis. The redox-sensing regulator Rex has been reported to play critical roles in the metabolism regulation, oxidative stress response, and virulence of various pathogens. In this study, we identified and characterized a Rex ortholog in the SS2 virulent strain SS2-1 that is involved in bacterial pathogenicity and stress environment susceptibility. Our data show that the Rex-knockout mutant strain Δrex exhibited impaired growth in medium with hydrogen peroxide or a low pH compared with the wildtype strain SS2-1 and the complementary strain CΔrex. In addition, Δrex showed a decreased level of survival in whole blood and in RAW264.7 macrophages. Further analyses revealed that Rex deficiency significantly attenuated bacterial virulence in an animal model. A comparative proteome analysis found that the expression levels of several proteins involved in virulence and oxidative stress were significantly different in Δrex compared with SS2-1. Electrophoretic mobility shift assays revealed that recombinant Rex specifically bound to the promoters of target genes in a manner that was modulated by NADH and NAD+. Taken together, our data suggest that Rex plays critical roles in the virulence and oxidative stress response of SS2.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Yong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, China
| | - Lixiao Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Aihua Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, China
| |
Collapse
|
7
|
Madeira JP, Alpha-Bazin BM, Armengaud J, Duport C. Methionine Residues in Exoproteins and Their Recycling by Methionine Sulfoxide Reductase AB Serve as an Antioxidant Strategy in Bacillus cereus. Front Microbiol 2017; 8:1342. [PMID: 28798727 PMCID: PMC5526929 DOI: 10.3389/fmicb.2017.01342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/03/2017] [Indexed: 11/13/2022] Open
Abstract
During aerobic respiratory growth, Bacillus cereus is exposed to continuously reactive oxidant, produced by partially reduced forms of molecular oxygen, known as reactive oxygen species (ROS). The sulfur-containing amino acid, methionine (Met), is particularly susceptible to ROS. The major oxidation products, methionine sulfoxides, can be readily repaired by methionine sulfoxide reductases, which reduce methionine sulfoxides [Met(O)] back to methionine. Here, we show that methionine sulfoxide reductase AB (MsrAB) regulates the Met(O) content of both the cellular proteome and exoproteome of B. cereus in a growth phase-dependent manner. Disruption of msrAB leads to metabolism changes resulting in enhanced export of Met(O) proteins at the late exponential growth phase and enhanced degradation of exoproteins. This suggests that B. cereus can modulate its capacity and specificity for protein export/secretion through the growth phase-dependent expression of msrAB. Our results also show that cytoplasmic MsrAB recycles Met residues in enterotoxins, which are major virulence factors in B. cereus.
Collapse
Affiliation(s)
- Jean-Paul Madeira
- Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), UMR0408, Avignon Université, Institut National de la Recherche AgronomiqueAvignon, France.,Commissariat à lEnergie Atomique, Direction de la Recherche Fondamentale, Institut des Sciences du vivant Frédéric-Joliot (Joliot), Service de Pharmacologie et Immunoanalyse, Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D)Bagnols-sur-Cèze, France
| | - Béatrice M Alpha-Bazin
- Commissariat à lEnergie Atomique, Direction de la Recherche Fondamentale, Institut des Sciences du vivant Frédéric-Joliot (Joliot), Service de Pharmacologie et Immunoanalyse, Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D)Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Commissariat à lEnergie Atomique, Direction de la Recherche Fondamentale, Institut des Sciences du vivant Frédéric-Joliot (Joliot), Service de Pharmacologie et Immunoanalyse, Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D)Bagnols-sur-Cèze, France
| | - Catherine Duport
- Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), UMR0408, Avignon Université, Institut National de la Recherche AgronomiqueAvignon, France
| |
Collapse
|
8
|
Durand S, Braun F, Helfer AC, Romby P, Condon C. sRNA-mediated activation of gene expression by inhibition of 5'-3' exonucleolytic mRNA degradation. eLife 2017; 6. [PMID: 28436820 PMCID: PMC5419742 DOI: 10.7554/elife.23602] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/23/2017] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional control by small regulatory RNA (sRNA) is critical for rapid adaptive processes. sRNAs can directly modulate mRNA degradation in Proteobacteria without interfering with translation. However, Firmicutes have a fundamentally different set of ribonucleases for mRNA degradation and whether sRNAs can regulate the activity of these enzymes is an open question. We show that Bacillus subtilis RoxS, a major trans-acting sRNA shared with Staphylococus aureus, prevents degradation of the yflS mRNA, encoding a malate transporter. In the presence of malate, RoxS transiently escapes from repression by the NADH-sensitive transcription factor Rex and binds to the extreme 5'-end of yflS mRNA. This impairs the 5'-3' exoribonuclease activity of RNase J1, increasing the half-life of the primary transcript and concomitantly enhancing ribosome binding to increase expression of the transporter. Globally, the different targets regulated by RoxS suggest that it helps readjust the cellular NAD+/NADH balance when perturbed by different stimuli.
Collapse
Affiliation(s)
- Sylvain Durand
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Frédérique Braun
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Anne-Catherine Helfer
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Pascale Romby
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France.,Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Ciarán Condon
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
9
|
Exoproteomics of Pathogens: Analysis of Toxins and Other Virulence Factors by Proteomics. Methods Enzymol 2017; 586:211-227. [PMID: 28137564 DOI: 10.1016/bs.mie.2016.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Pathogens are known to release in their environment a large range of toxins and other virulence factors. Their pathogenicity relies on this arsenal of exoproteins and their orchestrated release upon changing environmental conditions. Exoproteomics aims at describing and quantifying the proteins found outside of the cells, thus takes advantage of the most recent methodologies of next-generation proteomics. This approach has been applied with great success to a variety of pathogens increasing the fundamental knowledge on pathogenicity. In this chapter, we describe how the exoproteome should be prepared and handled for high-throughput identification of exoproteins and their quantitation by label-free shotgun proteomics. We also mentioned some bioinformatics tools for extracting information such as toxin similarity search.
Collapse
|
10
|
Duport C, Jobin M, Schmitt P. Adaptation in Bacillus cereus: From Stress to Disease. Front Microbiol 2016; 7:1550. [PMID: 27757102 PMCID: PMC5047918 DOI: 10.3389/fmicb.2016.01550] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022] Open
Abstract
Bacillus cereus is a food-borne pathogen that causes diarrheal disease in humans. After ingestion, B. cereus experiences in the human gastro-intestinal tract abiotic physical variables encountered in food, such as acidic pH in the stomach and changing oxygen conditions in the human intestine. B. cereus responds to environmental changing conditions (stress) by reversibly adjusting its physiology to maximize resource utilization while maintaining structural and genetic integrity by repairing and minimizing damage to cellular infrastructure. As reviewed in this article, B. cereus adapts to acidic pH and changing oxygen conditions through diverse regulatory mechanisms and then exploits its metabolic flexibility to grow and produce enterotoxins. We then focus on the intricate link between metabolism, redox homeostasis, and enterotoxins, which are recognized as important contributors of food-borne disease.
Collapse
Affiliation(s)
- Catherine Duport
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Michel Jobin
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Philippe Schmitt
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| |
Collapse
|
11
|
Wallace N, Zani A, Abrams E, Sun Y. The Impact of Oxygen on Bacterial Enteric Pathogens. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:179-204. [PMID: 27261784 DOI: 10.1016/bs.aambs.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial enteric pathogens are responsible for a tremendous amount of foodborne illnesses every year through the consumption of contaminated food products. During their transit from contaminated food sources to the host gastrointestinal tract, these pathogens are exposed and must adapt to fluctuating oxygen levels to successfully colonize the host and cause diseases. However, the majority of enteric infection research has been conducted under aerobic conditions. To raise awareness of the importance in understanding the impact of oxygen, or lack of oxygen, on enteric pathogenesis, we describe in this review the metabolic and physiological responses of nine bacterial enteric pathogens exposed to environments with different oxygen levels. We further discuss the effects of oxygen levels on virulence regulation to establish potential connections between metabolic adaptations and bacterial pathogenesis. While not providing an exhaustive list of all bacterial pathogens, we highlight key differences and similarities among nine facultative anaerobic and microaerobic pathogens in this review to argue for a more in-depth understanding of the diverse impact oxygen levels have on enteric pathogenesis.
Collapse
Affiliation(s)
- N Wallace
- University of Dayton, Dayton, OH, United States
| | - A Zani
- University of Dayton, Dayton, OH, United States
| | - E Abrams
- University of Dayton, Dayton, OH, United States
| | - Y Sun
- University of Dayton, Dayton, OH, United States
| |
Collapse
|
12
|
Kilcullen K, Teunis A, Popova TG, Popov SG. Cytotoxic Potential of Bacillus cereus Strains ATCC 11778 and 14579 Against Human Lung Epithelial Cells Under Microaerobic Growth Conditions. Front Microbiol 2016; 7:69. [PMID: 26870026 PMCID: PMC4735842 DOI: 10.3389/fmicb.2016.00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/14/2016] [Indexed: 12/28/2022] Open
Abstract
Bacillus cereus, a food poisoning bacterium closely related to Bacillus anthracis, secretes a multitude of virulence factors including enterotoxins, hemolysins, and phospholipases. However, the majority of the in vitro experiments evaluating the cytotoxic potential of B. cereus were carried out in the conditions of aeration, and the impact of the oxygen limitation in conditions encountered by the microbe in natural environment such as gastrointestinal tract remains poorly understood. This research reports comparative analysis of ATCC strains 11778 (BC1) and 14579 (BC2) in aerobic and microaerobic (static) cultures with regard to their toxicity for human lung epithelial cells. We showed that BC1 increased its toxicity upon oxygen limitation while BC2 was highly cytotoxic in both growth conditions. The combined effect of the pore-forming, cholesterol-dependent hemolysin, cereolysin O (CLO), and metabolic product(s) such as succinate produced in microaerobic conditions provided substantial contribution to the toxicity of BC1 but not BC2 which relied mainly on other toxins. This mechanism is shared between CB1 and B. anthracis. It involves the permeabilization of the cell membrane which facilitates transport of toxic bacterial metabolites into the cell. The toxicity of BC1 was potentiated in the presence of bovine serum albumin which appeared to serve as reservoir for bacteria-derived nitric oxide participating in the downstream production of reactive oxidizing species with the properties of peroxynitrite. In agreement with this the BC1 cultures demonstrated the increased oxidation of the indicator dye Amplex Red catalyzed by peroxidase as well as the increased toxicity in the presence of externally added ascorbic acid.
Collapse
Affiliation(s)
| | - Allison Teunis
- School of Systems Biology, George Mason University Manassas, VA, USA
| | - Taissia G Popova
- School of Systems Biology, George Mason University Manassas, VA, USA
| | - Serguei G Popov
- School of Systems Biology, George Mason University Manassas, VA, USA
| |
Collapse
|
13
|
Omer H, Alpha-Bazin B, Brunet JL, Armengaud J, Duport C. Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors. Front Microbiol 2015; 6:1004. [PMID: 26500610 PMCID: PMC4595770 DOI: 10.3389/fmicb.2015.01004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Bacillus cereus is a Gram-positive pathogen that causes a wide variety of diseases in humans. It secretes into the extracellular milieu proteins that may contribute directly or indirectly to its virulence. EntD is a novel exoprotein identified by proteogenomics of B. cereus ATCC 14579. We constructed a ΔentD mutant and analyzed the impact of entD disruption on the cellular proteome and exoproteome isolated from early, late, and stationary-phase cultures. We identified 308 and 79 proteins regulated by EntD in the cellular proteome and the exoproteome, respectively. The contribution of these proteins to important virulence-associated functions, including central metabolism, cell structure, antioxidative ability, cell motility, and toxin production, are presented. The proteomic data were correlated with the growth defect, cell morphology change, reduced motility, and reduced cytotoxicity of the ΔentD mutant strain. We conclude that EntD is an important player in B. cereus virulence. The function of EntD and the putative EntD-dependent regulatory network are discussed. To our knowledge, this study is the first characterization of an Ent family protein in a species of the B. cereus group.
Collapse
Affiliation(s)
- Hélène Omer
- Université d'Avignon et des Pays de Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic" Bagnols-sur-Cèze, France
| | - Béatrice Alpha-Bazin
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic" Bagnols-sur-Cèze, France
| | | | - Jean Armengaud
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic" Bagnols-sur-Cèze, France
| | - Catherine Duport
- Université d'Avignon et des Pays de Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| |
Collapse
|
14
|
Madeira JP, Alpha-Bazin B, Armengaud J, Duport C. Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation. Front Microbiol 2015; 6:342. [PMID: 25954265 PMCID: PMC4406070 DOI: 10.3389/fmicb.2015.00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/07/2015] [Indexed: 01/18/2023] Open
Abstract
At low density, Bacillus cereus cells release a large variety of proteins into the extracellular medium when cultivated in pH-regulated, glucose-containing minimal medium, either in the presence or absence of oxygen. The majority of these exoproteins are putative virulence factors, including toxin-related proteins. Here, B. cereus exoproteome time courses were monitored by nanoLC-MS/MS under low-oxidoreduction potential (ORP) anaerobiosis, high-ORP anaerobiosis, and aerobiosis, with a specific focus on oxidative-induced post-translational modifications of methionine residues. Principal component analysis (PCA) of the exoproteome dynamics indicated that toxin-related proteins were the most representative of the exoproteome changes, both in terms of protein abundance and their methionine sulfoxide (Met(O)) content. PCA also revealed an interesting interconnection between toxin-, metabolism-, and oxidative stress-related proteins, suggesting that the abundance level of toxin-related proteins, and their Met(O) content in the B. cereus exoproteome, reflected the cellular oxidation under both aerobiosis and anaerobiosis.
Collapse
Affiliation(s)
- Jean-Paul Madeira
- UMR408, Sécurité et Qualité des Produits d'Origine Végétale, Université d'Avignon Avignon, France ; INRA, UMR408, Sécurité et Qualité des Produits d' Origine Végétale Avignon, France ; Commissariat à l'énergie Atomique et aux Énergies Alternatives (CEA), Direction des Sciences du Vivant (DSV), IBEB, Li2D Bagnols sur Cèze, France
| | - Béatrice Alpha-Bazin
- Commissariat à l'énergie Atomique et aux Énergies Alternatives (CEA), Direction des Sciences du Vivant (DSV), IBEB, Li2D Bagnols sur Cèze, France
| | - Jean Armengaud
- Commissariat à l'énergie Atomique et aux Énergies Alternatives (CEA), Direction des Sciences du Vivant (DSV), IBEB, Li2D Bagnols sur Cèze, France
| | - Catherine Duport
- UMR408, Sécurité et Qualité des Produits d'Origine Végétale, Université d'Avignon Avignon, France ; INRA, UMR408, Sécurité et Qualité des Produits d' Origine Végétale Avignon, France
| |
Collapse
|