1
|
Ali Mohammed S, Elbaramawy A, Hassan Abd-Allah S, Elkholy A, Ibrahim Elsayed N, Hussein S. Therapeutic potentials of mesenchymal stem cells in the treatment of inflammatory bowel disease in rats. J Biochem Mol Toxicol 2024; 38:e23532. [PMID: 37676835 DOI: 10.1002/jbt.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Interleukin-1beta (IL-1β) and interleukin-17A (IL-17A) have strong pro-inflammatory activities that are involved in inflammatory bowel diseases (IBDs). Mesenchymal stem cell (MSC) therapy is considered a promising treatment for IBD. This study was performed to understand the role of rat Nlrp3 inflammasome, Hmgb1, and pro-inflammatory cytokines (IL-1β and IL-17a) in the pathogenesis of IBD. Also, to evaluate the role of human umbilical cord blood-MSCs (hUCB-MSCs) in the management of IBD. The rats were in four groups: normal controls, indomethacin-induced IBD group, indomethacin-induced IBD rats that received phosphate-buffered saline (PBS), and the IBD group that received hUCB-MSCs as a treatment. The messenger RNA (mRNA) expression levels of rat Nlrp3, Hmgb1, IL-1β, and IL-17a were evaluated by quantitative real-time polymerase chain reaction. Histopathological examination of the small intestinal tissues of the studied rats was performed. There was a significant upregulation of the rat Nlrp3, IL-1β, IL-17a mRNA expression (p < 0.001 for the three parameters), and Hmgb1 (p < 0.05) in the untreated IBD group compared to the normal control group. In the MSC-treated group, IL-1β, IL-17a, and rat Nlrp3 mRNA expression significantly decreased compared to both the untreated IBD group and PBS group (p < 0.05 for all). hUCB-MSCs ameliorated IBD in rats by downregulating the pro-inflammatory cytokines (IL-1β and IL-17a) and other inflammatory mediators such as Hmgb1 and rat Nlrp3.
Collapse
Affiliation(s)
- Shuzan Ali Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Azza Elbaramawy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Somia Hassan Abd-Allah
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Adel Elkholy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Nashwa Ibrahim Elsayed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Samia Hussein
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Ma Y, Li Y, Zhang S, Liu Z, Du L, Zhang X, Jia X, Yang Q. Study on the function of Huazhuo Jiedu Decoction in promoting the homing of bone marrow mesenchymal stem cells and contributing to the treatment of ulcerative colitis. Heliyon 2023; 9:e18802. [PMID: 37576246 PMCID: PMC10415889 DOI: 10.1016/j.heliyon.2023.e18802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Objective To study the function of Huazhuo Jiedu Decoction (HZJD) in promoting the homing of bone marrow mesenchymal stem cells (BMSCs) and contributing to the reconstruction of the intestinal mucosal barrier in ulcerative colitis. Methods Bone mesenchymal stem cells derived from mice were isolated and cultured, osteogenic and adipogenic assays to study the differentiation ability of BMSCs, and flow cytometry was used to detect the surface marker of the third generation cells. 30 mice were selected and divided into blank group, model group, HZJD group, BMSCs group, and HZJD combined with BMSCs group. Mouse colon length, body weight, and DAI score were used to assess efficacy. The levels of IL-6, IL-1β, TNF-α, and IFN-γ in serum were measured by ELISA. BMSCs transfected with GFP were used to mark the homing of BMSCs in mice. The BMSCs tagging protein CD90+/CD29+ was detected by immunofluorescence. H&E staining detects damage to the colon and the inflammatory response. The expression levels of claudin-2, claudin-4, occludin, and ZO-1 in colon tissues were detected by Western blot. Results After subculture, the cell grew with adherence. Flow cytometry showed that the cells were CD73+/CD90+/CD29+/CD45-/CD34-, which belonged to bone mesenchymal stem cells. ELISA showed that the treatment with HZJD and BMSCs suppressed the DSS-induced inflammatory response. BMSCs carrying GFP can be detected in intestinal tissues. Immunofluorescence showed that the HZJD combined with the BMSCs group had more BMSCs homing to the colonic tissue. The results of H&E and Western blot showed that DSS-induced intestinal mucosal damage in UC mice was repaired by HZJD and BMSCs, and the abnormal tight junction proteins claudin-2, claudin-4, occludin, and ZO-1 were normalized. Conclusion HZJD has a therapeutic effect on ulcerative colitis by promoting the migration of BMSCs to ulcers of the colon and contributing to the reconstruction of the intestinal mucosal barrier in ulcerative colitis.
Collapse
Affiliation(s)
- Yumei Ma
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| | - Yongzhang Li
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| | - Shuo Zhang
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| | - Zongxiu Liu
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| | - Lipeng Du
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| | - Xiaoyan Zhang
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| | - Xuemei Jia
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| | - Qian Yang
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| |
Collapse
|
3
|
Tian CM, Zhang Y, Yang MF, Xu HM, Zhu MZ, Yao J, Wang LS, Liang YJ, Li DF. Stem Cell Therapy in Inflammatory Bowel Disease: A Review of Achievements and Challenges. J Inflamm Res 2023; 16:2089-2119. [PMID: 37215379 PMCID: PMC10199681 DOI: 10.2147/jir.s400447] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a group of chronic inflammatory diseases of the gastrointestinal tract. Repeated inflammation can lead to complications, such as intestinal fistula, obstruction, perforation, and bleeding. Unfortunately, achieving durable remission and mucosal healing (MH) with current treatments is difficult. Stem cells (SCs) have the potential to modulate immunity, suppress inflammation, and have anti-apoptotic and pro-angiogenic effects, making them an ideal therapeutic strategy to target chronic inflammation and intestinal damage in IBD. In recent years, hematopoietic stem cells (HSCs) and adult mesenchymal stem cells (MSCs) have shown efficacy in treating IBD. In addition, numerous clinical trials have evaluated the efficiency of MSCs in treating the disease. This review summarizes the current research progress on the safety and efficacy of SC-based therapy for IBD in both preclinical models and clinical trials. We discuss potential mechanisms of SC therapy, including tissue repair, paracrine effects, and the promotion of angiogenesis, immune regulation, and anti-inflammatory effects. We also summarize current SC engineering strategies aimed at enhancing the immunosuppressive and regenerative capabilities of SCs for treating intestinal diseases. Additionally, we highlight current limitations and future perspectives of SC-related therapy for IBD.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Estanyol-Torres N, Domenech-Coca C, González-Domínguez R, Miñarro A, Reverter F, Moreno-Muñoz JA, Jiménez J, Martín-Palomas M, Castellano-Escuder P, Mostafa H, García-Vallvé S, Abasolo N, Rodríguez MA, Torrell H, Del Bas JM, Sanchez-Pla A, Caimari A, Mas-Capdevila A, Andres-Lacueva C, Crescenti A. A mixture of four dietary fibres ameliorates adiposity and improves metabolic profile and intestinal health in cafeteria-fed obese rats: an integrative multi-omics approach. J Nutr Biochem 2023; 111:109184. [PMID: 36265688 DOI: 10.1016/j.jnutbio.2022.109184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/17/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022]
Abstract
The aim of this study was to assess the effects of a mixture of four dietary fibers on obese rats. Four groups of male Wistar rats were fed with either standard chow (STD) or cafeteria diet (CAF) and were orally supplemented with either fibre mixture (2 g kg-1 of body weight) (STD+F or CAF+F groups) or vehicle (STD+VH or CAF+VH groups). We studied a wide number of biometric, biochemical, transcriptomic, metagenomic and metabolomic variables and applied an integrative multivariate approach based on multiple factor analysis and Pearson's correlation analysis. A significant reduction in body weight, adiposity, HbA1c and HDL-cholesterol serum levels, and colon MPO activity was observed, whereas cecal weight and small intestine length:weight ratio were significantly increased in F-treated groups compared to control animals. CAF+F rats displayed a significant enhancement in energy expenditure, fat oxidation and fresh stool weight, and a significant reduction in adiponectin and LPS serum levels, compared to control group. Animals in STD+F group showed reduced serum LDL-cholesterol levels and a significant reduction in total cholesterol levels in the liver compared to STF+VH group. The intervention effect was reflected at the metabolomic (i.e., production of short-chain fatty acids, phenolic acids, and amino acids), metagenomic (i.e., modulation of Ruminococcus and Lactobacillus genus) and transcriptomic (i.e., expression of tight junctions and proteolysis) levels. Altogether, our integrative multi-omics approach highlights the potential of supplementation with a mixture of fibers to ameliorate the impairments triggered by obesity in terms of adiposity, metabolic profile, and intestinal health.
Collapse
Affiliation(s)
- Núria Estanyol-Torres
- Biomarkers and Nutrimetabolomics Laboratory, Faculty of Pharmacy and Food Sciences, University of Barcelona, Food Innovation Network (XIA), Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Raúl González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory, Faculty of Pharmacy and Food Sciences, University of Barcelona, Food Innovation Network (XIA), Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Miñarro
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Ferran Reverter
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | | | - Jesús Jiménez
- Laboratorios Ordesa, Scientific Department, Parc Científic Barcelona, Barcelona, Spain
| | - Manel Martín-Palomas
- Laboratorios Ordesa, Scientific Department, Parc Científic Barcelona, Barcelona, Spain
| | - Pol Castellano-Escuder
- Biomarkers and Nutrimetabolomics Laboratory, Faculty of Pharmacy and Food Sciences, University of Barcelona, Food Innovation Network (XIA), Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Hamza Mostafa
- Biomarkers and Nutrimetabolomics Laboratory, Faculty of Pharmacy and Food Sciences, University of Barcelona, Food Innovation Network (XIA), Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Santi García-Vallvé
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Tarragona, Spain
| | - Nerea Abasolo
- Eurecat, Technology Centre of Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Miguel A Rodríguez
- Eurecat, Technology Centre of Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Helena Torrell
- Eurecat, Technology Centre of Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Josep M Del Bas
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, Reus, Spain
| | - Alex Sanchez-Pla
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Antoni Caimari
- Eurecat, Technology Centre of Catalunya, Biotechnology Area and Technological Unit of Nutrition and Health, Reus, Spain
| | - Anna Mas-Capdevila
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, Reus, Spain.
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Faculty of Pharmacy and Food Sciences, University of Barcelona, Food Innovation Network (XIA), Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain.
| | - Anna Crescenti
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, Reus, Spain.
| |
Collapse
|
5
|
Gao JG, Yu MS, Zhang MM, Gu XW, Ren Y, Zhou XX, Chen D, Yan TL, Li YM, Jin X. Adipose-derived mesenchymal stem cells alleviate TNBS-induced colitis in rats by influencing intestinal epithelial cell regeneration, Wnt signaling, and T cell immunity. World J Gastroenterol 2020; 26:3750-3766. [PMID: 32774055 PMCID: PMC7383848 DOI: 10.3748/wjg.v26.i26.3750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Conventional Crohn’s disease (CD) treatments are supportive rather than curative and have serious side effects. Adipose-derived mesenchymal stem cells (ADSCs) have been gradually applied to treat various diseases. The therapeutic effect and underlying mechanism of ADSCs on CD are still not clear.
AIM To investigate the effect of ADSC administration on CD and explore the potential mechanisms.
METHODS Wistar rats were administered with 2,4,6-trinitrobenzene sulfonic acid (TNBS) to establish a rat model of CD, followed by tail injections of green fluorescent protein (GFP)-modified ADSCs. Flow cytometry, qRT-PCR, and Western blot were used to detect changes in the Wnt signaling pathway, T cell subtypes, and their related cytokines.
RESULTS The isolated cells showed the characteristics of ADSCs, including spindle-shaped morphology, high expression of CD29, CD44, and CD90, low expression of CD34 and CD45, and osteogenic/adipogenic ability. ADSC therapy markedly reduced disease activity index and ameliorated colitis severity in the TNBS-induced rat model of CD. Furthermore, serum anti-sacchromyces cerevisiae antibody and p-anti-neutrophil cytoplasmic antibody levels were significantly reduced in ADSC-treated rats. Mechanistically, the GFP-ADSCs were colocalized with intestinal epithelial cells (IECs) in the CD rat model. GFP-ADSC delivery significantly antagonized TNBS-induced increased canonical Wnt pathway expression, decreased noncanonical Wnt signaling pathway expression, and increased apoptosis rates and protein level of cleaved caspase-3 in rats. In addition, ADSCs attenuated TNBS-induced abnormal inflammatory cytokine production, disturbed T cell subtypes, and their related markers in rats.
CONCLUSION Successfully isolated ADSCs show therapeutic effects in CD by regulating IEC proliferation, the Wnt signaling pathway, and T cell immunity.
Collapse
Affiliation(s)
- Jian-Guo Gao
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Mo-Sang Yu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Meng-Meng Zhang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xue-Wei Gu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yue Ren
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xin-Xin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Tian-Lian Yan
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - You-Ming Li
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
6
|
Therapeutic Effects of Mesenchymal Stem Cells Derived From Bone Marrow, Umbilical Cord Blood, and Pluripotent Stem Cells in a Mouse Model of Chemically Induced Inflammatory Bowel Disease. Inflammation 2020; 42:1730-1740. [PMID: 31227956 DOI: 10.1007/s10753-019-01033-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute inflammatory bowel disease (AIBD) is a wide clinical entity including severe gastrointestinal pathologies with common histopathological basis. Epidemiologically increasing diseases, such as necrotizing enterocolitis (NEC), gastrointestinal graft versus host disease (GVHD), and the primary acute phase of chronic inflammatory bowel disease (CIBD), exhibit a high necessity for new therapeutic strategies. Mesenchymal stem cell (MSC) cellular therapy represents a promising option for the treatment of these diseases. In our study, we comparatively assess the efficacy of human MSCs derived from bone marrow (BM), umbilical cord blood (UCB), human embryonic stem cells (ESCs), or human-induced pluripotent stem cells (iPSCs) in a mouse model of chemically induced acute enterocolitis. The laboratory animals were provided ad libitum potable dextrane sulfate sodium solution (DSS) in order to reproduce an AIBD model and then individually exposed intraperitoneally to MSCs derived from BM (BM-MSCs), UCB (UCB-MSCs), ESCs (ESC-MSCs), or iPSCs (iPSC-MSCs). The parameters used to evaluate the cellular treatment efficacy were the animal survival prolongation and the histopathological-macroscopic picture of bowel sections. Although all categories of mesenchymal stem cells led to statistically significant survival prolongation compared to the control group, significant clinical and histopathological improvement was observed only in mice receiving BM-MSCs and UCB-MSCs. Our results demonstrated that the in vivo anti-inflammatory effect of ESC-MSCs and iPSC-MSCs was inferior to that of UCB-MSCs and BM-MSCs. Further investigation will clarify the potential of ESCs and iPSC-derived MSCs in AIBD treatment.
Collapse
|
7
|
Ren K, Yong C, Yuan H, Cao B, Zhao K, Wang J. TNF-α inhibits SCF, ghrelin, and substance P expressions through the NF-κB pathway activation in interstitial cells of Cajal. ACTA ACUST UNITED AC 2018; 51:e7065. [PMID: 29694505 PMCID: PMC5937728 DOI: 10.1590/1414-431x20187065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/30/2018] [Indexed: 12/19/2022]
Abstract
Ulcerative colitis is a chronic inflammatory disease of the colon where intestinal motility is disturbed. Interstitial cells of Cajal (ICC) are required to maintain normal intestinal motility. In the present study, we assessed the effect of tumor necrosis factor-alpha (TNF-α) on viability and apoptosis of ICC, as well as on the expression of stem cell factor (SCF), ghrelin, and substance P. ICC were derived from the small intestines of Swiss albino mice. Cell viability and apoptosis were measured using CCK-8 assay and flow cytometry, respectively. ELISA was used to measure the concentrations of IL-1β, IL-6, ghrelin, substance P, and endothelin-1. Quantitative RT-PCR was used to measure the expression of SCF. Western blotting was used to measure the expression of apoptosis-related proteins, interleukins, SCF, and NF-κB signaling pathway proteins. TNF-α induced inflammatory injury in ICC by decreasing cell viability and increasing apoptosis and levels of IL-1β and IL-6. TNF-α decreased the levels of SCF, ghrelin, and substance P, but had no effect on endothelin-1. TNF-α down-regulated expressions of SCF, ghrelin, and substance P by activating the NF-κB pathway in ICC. In conclusion, TNF-α down-regulated the expressions of SCF, ghrelin, and substance P via the activation of the NF-κB pathway in ICC.
Collapse
Affiliation(s)
- Keyu Ren
- Department of Gastroenterology, Hospital of Qingdao University, Qingdao, China
| | - Chunming Yong
- Department of Emergency Medicine, Hospital of Qingdao University, Qingdao, China
| | - Hao Yuan
- Department of Gastroenterology, Hospital of Qingdao University, Qingdao, China
| | - Bin Cao
- Department of Gastroenterology, Hospital of Qingdao University, Qingdao, China
| | - Kun Zhao
- Department of Gastroenterology, Hospital of Qingdao University, Qingdao, China
| | - Jin Wang
- Department of Pathology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Hou Q, Ye L, Huang L, Yu Q. The Research Progress on Intestinal Stem Cells and Its Relationship with Intestinal Microbiota. Front Immunol 2017; 8:599. [PMID: 28588586 PMCID: PMC5440531 DOI: 10.3389/fimmu.2017.00599] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The intestine is home to trillions of microorganisms, and the vast diversity within this gut microbiota exists in a balanced state to protect the intestinal mucosal barrier. Research into the association of the intestinal microbiota with health and disease (including diet, nutrition, obesity, inflammatory bowel disease, and cancer) continues to expand, with the field advancing at a rapid rate. Intestinal stem cells (ISCs) are the fundamental component of the mucosal barrier; they undergo continuous proliferation to replace the epithelium, which is also intimately involved in intestinal diseases. The intestinal microbiota, such as Lactobacillus, communicates with ISCs both directly and indirectly to regulate the proliferation and differentiation of ISCs. Moreover, Salmonella infection significantly decreased the expression of intestinal stem cell markers Lgr5 and Bmi1. However, the detailed interaction of intestinal microbiota and ISCs are still unclear. This review considers the progress of research on the model and niches of ISCs, as well as the complex interplay between the gut microbiota and ISCs, which will be crucial for explaining the mechanisms of intestinal diseases related to imbalances in the intestinal microbiota and ISCs.
Collapse
Affiliation(s)
- Qihang Hou
- College of veterinary medicine, Nanjing Agricultural University, Nanjing, China
| | - Lulu Ye
- College of veterinary medicine, Nanjing Agricultural University, Nanjing, China
| | - Lulu Huang
- College of veterinary medicine, Nanjing Agricultural University, Nanjing, China
| | - Qinghua Yu
- College of veterinary medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Zhang Y, Meng Q, Zhang Y, Chen X, Wang Y. Adipose-derived mesenchymal stem cells suppress of acute rejection in small bowel transplantation. Saudi J Gastroenterol 2017; 23:323-329. [PMID: 29205184 PMCID: PMC5738793 DOI: 10.4103/sjg.sjg_122_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS Adipose-derived mesenchymal stem cells (ADSCs) possess immunosuppressive activity and hold promise in autologous cell-based therapies. The aim of this study was to determine whether autologous ADSCs can improve outcomes in the rat small bowel transplantation (SBT) model. MATERIALS AND METHODS Allogeneic SBT followed by implantation of autologous ADSCs through the penile vein was conducted in Brown-Norway (BN) donor rats with Lewis (LEW) recipient rats infused with phosphate buffered solution as the control. Allograft and recipient peripheral blood were obtained. We assessed histopathology, apoptosis, cytokines, and regulatory T cells (Tregs). One-way analysis of variance was applied to assess the significance of the data. RESULTS It was found that ADSCs significantly reduced acute rejection and improved the allograft's survival rate. In addition, there were significantly fewer apoptotic cells in allograft mucosae in the ADSC group in comparison with the control group. Furthermore, levels of interleukin (IL)-10 and transforming growth factor-β1 were significantly elevated, whereas those of IL-2 and IL-17 levels were significantly reduced in the ADSC group when compared to the control group. Moreover, flow cytometry analysis revealed that there were significantly more peripheral Tregs after the infusion of ADSCs. CONCLUSIONS These results demonstrate that implanted autologous ADSCs improve allogeneic small bowel allograft outcomes by attenuating the acute rejection and reducing inflammatory responses.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Qinghong Meng
- Department of Clinical Laboratory Medicine, Sino-Singapore Eco-City Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yanyan Zhang
- Institut National de la Santé et de la Recherche Médicale (INSERM), Micronit, France,Institut Gustave Roussy, Univ Paris-Sud, Université Paris Saclay, Villejuif, France
| | - Xiaobo Chen
- Union Stem and Gene Engineering Co., Ltd, Tianjin, People's Republic of China
| | - Yuliang Wang
- Department of Clinical Laboratory Medicine, 2nd Hospital of Tianjin Medical University, Tianjin Institute of Urology, People's Republic of China,Tianjin First Central Hospital, Tianjin, People's Republic of China,Address for correspondence: Dr. Yuliang Wang, Department of Clinical Laboratory Medicine, 2nd Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, People's Republic of China. E-mail:
| |
Collapse
|
10
|
Shatos MA, Hodges RR, Morinaga M, McNay DE, Islam R, Bhattacharya S, Li D, Turpie B, Makarenkova HP, Masli S, Utheim TP, Dartt DA. Alteration in cellular turnover and progenitor cell population in lacrimal glands from thrombospondin 1 -/- mice, a model of dry eye. Exp Eye Res 2016; 153:27-41. [PMID: 27697548 DOI: 10.1016/j.exer.2016.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to investigate the changes that occur in the lacrimal glands (LGs) in female thrombospondin 1 knockout (TSP1-/-) mice, a mouse model of the autoimmune disease Sjogren's syndrome. The LGs of 4, 12, and 24 week-old female TSP1-/- and C57BL/6J (wild type, WT) mice were used. qPCR was performed to measure cytokine expression. To study the architecture, LG sections were stained with hematoxylin and eosin. Cell proliferation was measured using bromo-deoxyuridine and immunohistochemistry. Amount of CD47 and stem cell markers was analyzed by western blot analysis and location by immunofluorescence microscopy. Expression of stem cell transcription factors was performed using Mouse Stem Cell Transcription Factors RT2 Profiler PCR Array. Cytokine levels significantly increased in LGs of 24 week-old TSP1-/- mice while morphological changes were detected at 12 weeks. Proliferation was decreased in 12 week-old TSP1-/- mice. Three transcription factors were overexpressed and eleven underexpressed in TSP1-/- compared to WT LGs. The amount of CD47, Musashi1, and Sox2 was decreased while the amount of ABCG2 was increased in 12 week-old TSP1-/- mice. We conclude that TSP1 is necessary for maintaining normal LG homeostasis. Absence of TSP1 alters cytokine levels and stem cell transcription factors, LG cellular architecture, decreases cell proliferation, and alters amount of stem cell markers.
Collapse
Affiliation(s)
- Marie A Shatos
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States
| | - Masahiro Morinaga
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States
| | - David E McNay
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States
| | - Rakibul Islam
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States
| | - Sumit Bhattacharya
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States
| | - Dayu Li
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States
| | - Bruce Turpie
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Helen P Makarenkova
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Tor P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States.
| |
Collapse
|
11
|
Yang J, Liu XX, Fan H, Tang Q, Shou ZX, Zuo DM, Zou Z, Xu M, Chen QY, Peng Y, Deng SJ, Liu YJ. Extracellular Vesicles Derived from Bone Marrow Mesenchymal Stem Cells Protect against Experimental Colitis via Attenuating Colon Inflammation, Oxidative Stress and Apoptosis. PLoS One 2015; 10:e0140551. [PMID: 26469068 PMCID: PMC4607447 DOI: 10.1371/journal.pone.0140551] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
The administration of bone mesenchymal stem cells (BMSCs) could reverse experimental colitis, and the predominant mechanism in tissue repair seems to be related to their paracrine activity. BMSCs derived extracellular vesicles (BMSC-EVs), including mcirovesicles and exosomes, containing diverse proteins, mRNAs and micro-RNAs, mediating various biological functions, might be a main paracrine mechanism for stem cell to injured cell communication. We aimed to investigate the potential alleviating effects of BMSC-EVs in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model. Intravenous injection of BMSC-EVs attenuated the severity of colitis as evidenced by decrease of disease activity index (DAI) and histological colonic damage. In inflammation response, the BMSC-EVs treatment significantly reduced both the mRNA and protein levels of nuclear factor kappaBp65 (NF-κBp65), tumor necrosis factor-alpha (TNF-α), induciblenitric oxidesynthase (iNOS) and cyclooxygenase-2 (COX-2) in injured colon. Additionally, the BMSC-EVs injection resulted in a markedly decrease in interleukin-1β (IL-1β) and an increase in interleukin-10 (IL-10) expression. Therapeutic effect of BMSC-EVs associated with suppression of oxidative perturbations was manifested by a decrease in the activity of myeloperoxidase (MPO) and Malondialdehyde (MDA), as well as an increase in superoxide dismutase (SOD) and glutathione (GSH). BMSC-EVs also suppressed the apoptosis via reducing the cleavage of caspase-3, caspase-8 and caspase-9 in colitis rats. Data obtained indicated that the beneficial effects of BMSC-EVs were due to the down regulation of pro-inflammatory cytokines levels, inhibition of NF-κBp65 signal transduction pathways, modulation of anti-oxidant/ oxidant balance, and moderation of the occurrence of apoptosis.
Collapse
Affiliation(s)
- Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| | - Qing Tang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Xing Shou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Mei Zuo
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Zou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Xu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian-Yun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Peng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang-Jiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Tanabe S. Signaling involved in stem cell reprogramming and differentiation. World J Stem Cells 2015; 7:992-8. [PMID: 26328015 PMCID: PMC4550631 DOI: 10.4252/wjsc.v7.i7.992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/29/2015] [Accepted: 06/18/2015] [Indexed: 02/06/2023] Open
Abstract
Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review, the molecular interactions and signaling pathways related to stem cell differentiation are discussed.
Collapse
Affiliation(s)
- Shihori Tanabe
- Shihori Tanabe, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|
13
|
Markel TA, Crafts TD, Jensen AR, Hunsberger EB, Yoder MC. Human mesenchymal stromal cells decrease mortality after intestinal ischemia and reperfusion injury. J Surg Res 2015. [PMID: 26219205 DOI: 10.1016/j.jss.2015.06.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cellular therapy is a novel treatment option for intestinal ischemia. Bone marrow-derived mesenchymal stromal cells (BMSCs) have previously been shown to abate the damage caused by intestinal ischemia/reperfusion (I/R) injury. We therefore hypothesized that (1) human BMSCs (hBMSCs) would produce more beneficial growth factors and lower levels of proinflammatory mediators compared to differentiated cells, (2) direct application of hBMSCs to ischemic intestine would decrease mortality after injury, and (3) decreased mortality would be associated with an altered intestinal and hepatic inflammatory response. METHODS Adult hBMSCs and keratinocytes were cultured on polystyrene flasks. For in vitro experiments, cells were exposed to tumor necrosis factor, lipopolysaccharides, or 2% oxygen for 24 h. Supernatants were then analyzed for growth factors and chemokines by multiplex assay. For in vivo experiments, 8- to 12-wk-old male C57Bl6J mice were anesthetized and underwent a midline laparotomy. Experimental groups were exposed to temporary superior mesenteric artery occlusion for 60 min. Immediately after ischemia, 2 × 10(6) hBMSCs or keratinocytes in phosphate-buffered saline were placed into the peritoneal cavity. Animals were then closed and allowed to recover for 6 h (molecular/histologic analysis) or 7 d (survival analysis). After 6-h reperfusion, animals were euthanized. Intestines and livers were harvested and analyzed for inflammatory chemokines, growth factors, and histologic changes. RESULTS hBMSCs expressed higher levels of human interleukin (IL) 6, IL-8, vascular endothelial growth factor (VEGF), and epidermal growth factor and lower levels of IL-1, IL-3, IL-7, and granulocyte-monocyte colony-stimulating factor after stimulation. In vivo, I/R resulted in significant mortality (70% mortality), whereas application of hBMSCs after ischemia decreased mortality to 10% in a dose-dependent fashion (P = 0.004). Keratinocyte therapy offered no improvements in mortality above I/R. Histologic profiles were equivalent between ischemic groups, regardless of the application of hBMSCs or keratinocytes. Cellular therapy yielded significantly decreased murine intestinal levels of soluble activin receptor-like kinase 1, betacellulin, and endothelin, whereas increasing levels of eotaxin, monokine induced by gamma interferon (MIG), monocyte chemoattractant protein 1, IL-6, granulocyte colony-stimulating factor (G-CSF), and interferon gamma-induced protein 10 (IP-10) from ischemia were appreciated. hBMSC therapy yielded significantly higher expression of murine intestinal VEGF and lower levels of intestinal MIG compared to keratinocyte therapy. Application of hBMSCs after ischemia yielded significantly lower murine levels of hepatic MIG, IP-10, and G-CSF compared to keratinocyte therapy. CONCLUSIONS Human BMSCs produce multiple beneficial growth factors. Direct application of hBMSCs to the peritoneal cavity after intestinal I/R decreased mortality by 60%. Improved outcomes with hBMSC therapy were not associated with improved histologic profiles in this model. hBMSC therapy was associated with higher VEGF in intestines and lower levels of proinflammtory MIG, IP-10, and G-CSF in liver tissue after ischemia, suggesting that reperfusion with hBMSC therapy may alter survival by modulating the systemic inflammatory response to ischemia.
Collapse
Affiliation(s)
- Troy A Markel
- Section of Pediatric Surgery, Department of Surgery, Riley Hospital for Children at Indiana University Health, The Indiana University School of Medicine, Indianapolis, Indiana.
| | - Trevor D Crafts
- Section of Pediatric Surgery, Department of Surgery, Riley Hospital for Children at Indiana University Health, The Indiana University School of Medicine, Indianapolis, Indiana
| | - Amanda R Jensen
- Section of Pediatric Surgery, Department of Surgery, Riley Hospital for Children at Indiana University Health, The Indiana University School of Medicine, Indianapolis, Indiana
| | - Erin Bailey Hunsberger
- Section of Pediatric Surgery, Department of Surgery, Riley Hospital for Children at Indiana University Health, The Indiana University School of Medicine, Indianapolis, Indiana
| | - Mervin C Yoder
- Section of Neonatology, Department of Pediatrics, Riley Hospital for Children at Indiana University Health, The Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|