1
|
Quartey BC, Sapudom J, ElGindi M, Alatoom A, Teo J. Matrix-Bound Hyaluronan Molecular Weight as a Regulator of Dendritic Cell Immune Potency. Adv Healthc Mater 2024; 13:e2303125. [PMID: 38104242 DOI: 10.1002/adhm.202303125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan in the extracellular matrix with immunoregulatory properties depending on its molecular weight (MW). However, the impact of matrix-bound HA on dendritic cells (DCs) remains unclear due to varying distribution of HA MW under different physiological conditions. To investigate DCs in defined biosystems, 3D collagen matrices modified with HA of specific MW with similar microstructure and HA levels are used. It is found that HA MW influences cytokine binding to matrix, suggesting modulation of cytokine availability by the different HA MWs. These studies on DC immune potency reveal that low MW HA (8-15 kDa) enhances immature DC differentiation and antigen uptake, while medium (MMW-HA; 500-750 kDa) and high MW HA (HMW-HA; 1250-1500 kDa) increase cytokine secretion in mature DCs. The effect on DC phenotype and cytokine secretion by different MWs of HA is independent of CD44. However, blocking the CD44 receptor reveals its potential role in regulating acute inflammation through increased secretion of CCL2, CXCL8, and IL-6. Additionally, MMW- and HMW-HA matrices reduce migratory capacity of DCs, dependent on CD44. Overall, these findings provide insights into MW-dependent effects of matrix-bound HA on DCs, opening avenues for the design of DC-modulating materials to enhance DC-based therapy.
Collapse
Affiliation(s)
- Brian Chesney Quartey
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Mechanical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, 11201, USA
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Mechanical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, 11201, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| |
Collapse
|
2
|
Li J, Chen D, Shen M. Tumor Microenvironment Shapes Colorectal Cancer Progression, Metastasis, and Treatment Responses. Front Med (Lausanne) 2022; 9:869010. [PMID: 35402443 PMCID: PMC8984105 DOI: 10.3389/fmed.2022.869010] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most devastating diseases that accounts for numerous deaths worldwide. Tumor cell-autonomous pathways, such as the oncogenic signaling activation, significantly contribute to CRC progression and metastasis. Recent accumulating evidence suggests that the CRC microenvironment also profoundly promotes or represses this process. As the roles of the tumor microenvironment (TME) in CRC progression and metastasis is gradually uncovered, the importance of these non-cell-autonomous signaling pathways is appreciated. However, we are still at the beginning of this TME function exploring process. In this review, we summarize the current understanding of the TME in CRC progression and metastasis by focusing on the gut microbiota and host cellular and non-cellular components. We also briefly discuss TME-remodeling therapies in CRC.
Collapse
Affiliation(s)
- Jun Li
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dawei Chen
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Minhong Shen
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology and Microenvironment Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, United States
- *Correspondence: Minhong Shen,
| |
Collapse
|
3
|
Pires A, Burnell S, Gallimore A. Exploiting ECM remodelling to promote immune-mediated tumour destruction. Curr Opin Immunol 2022; 74:32-38. [PMID: 34627015 DOI: 10.1016/j.coi.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Cancer immunotherapy represents a significant breakthrough in cancer treatment mainly due to the ability to harness the activities of cancer-specific T cells. Despite this, most cancers remain resistant to T cell attack. Many reasons have been proposed to explain this, ranging from a lack of antigenicity through to the immunosuppressive effects of the tumour microenvironment. In this review, we examine the relationship between the immune system and a key component of the tumour microenvironment, namely the extracellular matrix (ECM). Specifically, we explore the reciprocal effects of immune cells and the tumour ECM and how the processes underpinning this relationship act to either promote or restrain tumour progression.
Collapse
Affiliation(s)
- Ana Pires
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Stephanie Burnell
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Awen Gallimore
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
4
|
4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice. Sci Rep 2021; 11:6310. [PMID: 33737571 PMCID: PMC7973733 DOI: 10.1038/s41598-021-85491-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) arises in the setting of advanced liver fibrosis, a dynamic and complex inflammatory disease. The tumor microenvironment (TME) is a mixture of cellular components including cancer cells, cancer stem cells (CSCs), tumor-associated macrophages (TAM), and dendritic cells (DCs), which might drive to tumor progression and resistance to therapies. In this work, we study the effects of 4-methylumbelliferone (4Mu) on TME and how this change could be exploited to promote a potent immune response against HCC. First, we observed that 4Mu therapy induced a switch of hepatic macrophages (Mϕ) towards an M1 type profile, and HCC cells (Hepa129 cells) exposed to conditioned medium (CM) derived from Mϕ treated with 4Mu showed reduced expression of several CSCs markers and aggressiveness. HCC cells incubated with CM derived from Mϕ treated with 4Mu grew in immunosuppressed mice while presented delayed tumor progression in immunocompetent mice. HCC cells treated with 4Mu were more susceptible to phagocytosis by DCs, and when DCs were pulsed with HCC cells previously treated with 4Mu displayed a potent antitumoral effect in therapeutic vaccination protocols. In conclusion, 4Mu has the ability to modulate TME into a less hostile milieu and to potentiate immunotherapeutic strategies against HCC.
Collapse
|
5
|
Salem A, Alotaibi M, Mroueh R, Basheer HA, Afarinkia K. CCR7 as a therapeutic target in Cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188499. [PMID: 33385485 DOI: 10.1016/j.bbcan.2020.188499] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The CCR7 chemokine axis is comprised of chemokine ligand 21 (CCL21) and chemokine ligand 19 (CCL19) acting on chemokine receptor 7 (CCR7). This axis plays two important but apparently opposing roles in cancer. On the one hand, this axis is significantly engaged in the trafficking of a number of effecter cells involved in mounting an immune response to a growing tumour. This suggests therapeutic strategies which involve potentiation of this axis can be used to combat the spread of cancer. On the other hand, the CCR7 axis plays a significant role in controlling the migration of tumour cells towards the lymphatic system and metastasis and can thus contribute to the expansion of cancer. This implies that therapeutic strategies which involve decreasing signaling through the CCR7 axis would have a beneficial effect in preventing dissemination of cancer. This dichotomy has partly been the reason why this axis has not yet been exploited, as other chemokine axes have, as a therapeutic target in cancer. Recent report of a crystal structure for CCR7 provides opportunities to exploit this axis in developing new cancer therapies. However, it remains unclear which of these two strategies, potentiation or antagonism of the CCR7 axis, is more appropriate for cancer therapy. This review brings together the evidence supporting both roles of the CCR7 axis in cancer and examines the future potential of each of the two different therapeutic approaches involving the CCR7 axis in cancer.
Collapse
Affiliation(s)
- Anwar Salem
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Mashael Alotaibi
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Rima Mroueh
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Haneen A Basheer
- Faculty of Pharmacy, Zarqa University, PO Box 132222, Zarqa 13132, Jordan
| | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
6
|
Zhu S, Yang N, Wu J, Wang X, Wang W, Liu YJ, Chen J. Tumor microenvironment-related dendritic cell deficiency: a target to enhance tumor immunotherapy. Pharmacol Res 2020; 159:104980. [PMID: 32504832 DOI: 10.1016/j.phrs.2020.104980] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs), as specialized antigen-presenting cells, are essential for the initiation of specific T cell responses in innate antitumor immunity and, in certain cases, support humoral responses to inhibit tumor development. Mounting evidence suggests that the DC system displays a broad spectrum of dysfunctional status in the tumor microenvironment (TME), which ultimately affects antitumor immune responses. DC-based therapy can restore the function of DCs in the TME, thus showing a promising potential in tumor therapy. In this review, we provide an overview of the DC deficiency caused by various factors in the TME and discuss proposed strategies to reverse DC deficiency and the applications of novel combinatorial DC-based therapy for immune normalization of the tumor.
Collapse
Affiliation(s)
- Shan Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ning Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xue Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Wan Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | | | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
Abstract
The extracellular matrix is part of the microenvironment and its functions are associated with the physical and chemical properties of the tissue. Among the extracellular components, the glycosaminoglycan hyaluronan is a key component, defining both the physical and biochemical characteristics of the healthy matrices. The hyaluronan metabolism is strictly regulated in physiological conditions, but in the tumoral tissues, its expression, size and binding proteins interaction are dysregulated. Hyaluronan from the tumor microenvironment promotes tumor cell proliferation, invasion, immune evasion, stemness alterations as well as drug resistance. This chapter describes data regarding novel concepts of hyaluronan functions in the tumor. Additionally, we discuss potential clinical applications of targeting HA metabolism in cancer therapy.
Collapse
|
8
|
Alvarez C, Monasterio G, Cavalla F, Córdova LA, Hernández M, Heymann D, Garlet GP, Sorsa T, Pärnänen P, Lee HM, Golub LM, Vernal R, Kantarci A. Osteoimmunology of Oral and Maxillofacial Diseases: Translational Applications Based on Biological Mechanisms. Front Immunol 2019; 10:1664. [PMID: 31379856 PMCID: PMC6657671 DOI: 10.3389/fimmu.2019.01664] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
The maxillofacial skeleton is highly dynamic and requires a constant equilibrium between the bone resorption and bone formation. The field of osteoimmunology explores the interactions between bone metabolism and the immune response, providing a context to study the complex cellular and molecular networks involved in oro-maxillofacial osteolytic diseases. In this review, we present a framework for understanding the potential mechanisms underlying the immuno-pathobiology in etiologically-diverse diseases that affect the oral and maxillofacial region and share bone destruction as their common clinical outcome. These otherwise different pathologies share similar inflammatory pathways mediated by central cellular players, such as macrophages, T and B cells, that promote the differentiation and activation of osteoclasts, ineffective or insufficient bone apposition by osteoblasts, and the continuous production of osteoclastogenic signals by immune and local stromal cells. We also present the potential translational applications of this knowledge based on the biological mechanisms involved in the inflammation-induced bone destruction. Such applications can be the development of immune-based therapies that promote bone healing/regeneration, the identification of host-derived inflammatory/collagenolytic biomarkers as diagnostics tools, the assessment of links between oral and systemic diseases; and the characterization of genetic polymorphisms in immune or bone-related genes that will help diagnosis of susceptible individuals.
Collapse
Affiliation(s)
- Carla Alvarez
- Forsyth Institute, Cambridge, MA, United States
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Franco Cavalla
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, San Jose's Hospital and Clínica Las Condes, Universidad de Chile, Santiago, Chile
| | - Marcela Hernández
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Dominique Heymann
- INSERM, UMR 1232, LabCT, CRCINA, Institut de Cancérologie de l'Ouest, Université de Nantes, Université d'Angers, Saint-Herblain, France
| | - Gustavo P. Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Department of Oral Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Lorne M. Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | | |
Collapse
|
9
|
Revisiting the hallmarks of cancer: The role of hyaluronan. Semin Cancer Biol 2019; 62:9-19. [PMID: 31319162 DOI: 10.1016/j.semcancer.2019.07.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 07/14/2019] [Indexed: 12/15/2022]
Abstract
Extracellular matrix (ECM) is a complex network of macromolecules such as proteoglycans (PGs), glycosaminoglycans (GAGs) and fibrous proteins present within all tissues and organs. The main role of ECM is not only to provide an essential mechanical scaffold for the cells but also to mediate crucial biochemical cues that are required for tissue homeostasis. Dysregulations in ECM deposition alter cell microenvironment, triggering the onset or the rapid progression of several diseases, including cancer. Hyaluronan (HA) is a ubiquitous component of ECM considered as one of the main players of cancer initiation and progression. This review discusses how HA participate in and regulate several aspects of tumorigenesis, with particular attention to the hallmarks of cancer proposed by Hanahan and Weinberg such as sustaining of the proliferative signaling, evasion of apoptosis, angiogenesis, activation of invasion and metastases, reprogramming of energy metabolism and evasion of immune response.
Collapse
|
10
|
Wang S, Yu H, He R, Song X, Chen S, Yu N, Li W, Li F, Jiang Q. Exposure to Low-Dose Radiation Enhanced the Antitumor Effect of a Dendritic Cell Vaccine. Dose Response 2019; 17:1559325819832144. [PMID: 30828272 PMCID: PMC6388453 DOI: 10.1177/1559325819832144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/25/2018] [Accepted: 01/22/2019] [Indexed: 01/07/2023] Open
Abstract
The unsatisfactory clinical efficacy of dendritic cell (DC)-based cancer vaccines prepared by conventional methods is partly due to their insufficient capacity for migration. Our previous study showed that exposure to low-dose radiation (LDR) at a dose of 0.2 Gy promoted DC migration in vitro. The present study further investigates whether exposure to LDR at a dose of 0.2 Gy during the DC vaccine preparation could increase the antitumor effect of DC vaccines derived from mouse bone marrow. Our results showed that the migratory capacities of DCs were significantly increased after exposure to LDR. Furthermore, exposure to LDR resulted in an increased ability of DCs to induce T-cell proliferation, and the cytotoxic effect of cytotoxic T lymphocytes (CTLs) primed by the DCs exposed to LDR was significantly enhanced. An in vivo study using a mouse transplanted tumor model showed that subcutaneous injections of a DC vaccine exposed to LDR led to an increased mouse survival rate, infiltration of CTLs into tumor tissue, and apoptosis of tumor cells, which were accompanied by significant upregulation of serum interferon γ and interleukin 12. These results indicate that exposing DCs to LDR during the DC vaccine preparation is an effective approach to enhance its antitumor effect.
Collapse
Affiliation(s)
- Sinian Wang
- Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Huijie Yu
- Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Rui He
- Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Xiujun Song
- Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Shu Chen
- Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, China.,Huangsi Clinic of PLA Strategic Support Force, Beijing, China
| | - Nan Yu
- Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Wei Li
- Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Fengsheng Li
- Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Qisheng Jiang
- Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, China
| |
Collapse
|
11
|
Monasterio G, Guevara J, Ibarra JP, Castillo F, Díaz-Zúñiga J, Alvarez C, Cafferata EA, Vernal R. Immunostimulatory activity of low-molecular-weight hyaluronan on dendritic cells stimulated with Aggregatibacter actinomycetemcomitans or Porphyromonas gingivalis. Clin Oral Investig 2018; 23:1887-1894. [PMID: 30225677 DOI: 10.1007/s00784-018-2641-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Periodontitis is a chronic inflammatory disease characterized by tooth-supporting tissue destruction, which is elicited by the host's immune response triggered against periodonto-pathogen bacteria. During periodontal tissue destruction, extracellular matrix components are metabolized and fragmented. Some extracellular matrix component-derived fragments, such as low-molecular-weight hyaluronan (LMW-HA), have potent immunogenic potential, playing a role as damage-associated molecular patterns (DAMPs) during activation of immune cells. Dendritic cells (DCs) play a central role in the host's immune response displayed during periodontitis; thus, this study aimed to analyze whether LMW-HA has an immunostimulatory activity on DCs when stimulated with periodonto-pathogen bacteria. MATERIALS AND METHODS LMW-HA-treated and non-treated DCs were stimulated with Aggregatibacter actinomycetemcomitans or Porphyromonas gingivalis and the mRNA expression for cytokines tumor necrosis factor-α (TNF-alpha), interleukin-1β (IL-1B), interleukin-6 (IL-6), and interleukin-23 (IL-23A) was quantified by RT-qPCR. In addition, transcription factors interferon regulatory factor 4 (IRF4), interferon regulatory factor 8 (IRF8), neurogenic locus notch homolog protein 2 (NOTCH2), and basic leucine zipper ATF-like transcription factor 3 (BATF3), involved in DC activation, were analyzed. RESULTS Higher expression levels of TNF-alpha, IL-1B, IL-6, and IL-23A were detected in LMW-HA-treated DCs after bacterial infection, as compared with non-treated DCs. When LMW-HA-treated DCs were infected with A. actinomycetemcomitans, higher levels of IRF4, NOTCH2, and BATF3 were detected compared with non-treated cells; whereas against P. gingivalis infection, increased levels of IRF4 and NOTCH2 were detected. CONCLUSION LMW-HA plays an immunostimulatory role on the immune response triggered by DCs during infection with A. actinomycetemcomitans or P. gingivalis. CLINICAL RELEVANCE Detection of extracellular matrix component-derived fragments produced during periodontal tissue destruction, such as LMW-HA, could explain at least partly unsuccessful periodontal treatment and the chronicity of the disease.
Collapse
Affiliation(s)
- Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, 8380492, Independencia, Santiago, Chile
| | - José Guevara
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, 8380492, Independencia, Santiago, Chile
| | - Juan Pablo Ibarra
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, 8380492, Independencia, Santiago, Chile
| | - Francisca Castillo
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, 8380492, Independencia, Santiago, Chile
| | - Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, 8380492, Independencia, Santiago, Chile
| | - Carla Alvarez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, 8380492, Independencia, Santiago, Chile
| | - Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, 8380492, Independencia, Santiago, Chile.,Faculty of Dentistry, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Sergio Livingstone Pohlhammer 943, 8380492, Independencia, Santiago, Chile. .,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Seyfizadeh N, Muthuswamy R, Mitchell DA, Nierkens S, Seyfizadeh N. Migration of dendritic cells to the lymph nodes and its enhancement to drive anti-tumor responses. Crit Rev Oncol Hematol 2016; 107:100-110. [PMID: 27823637 DOI: 10.1016/j.critrevonc.2016.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022] Open
Abstract
Better prognoses associated with increased T cell infiltration of tumors, as seen with chimeric antigen receptor (CAR) T cell therapies and immune checkpoint inhibitors, portray the importance and potential of the immune system in controlling tumors. This has rejuvenated the field of cancer immunotherapy leading to an increasing number of immunotherapies developed for cancer patients. Dendritic Cells (DCs) vaccines represent an appealing option for cancer immunotherapy since DCs have the ability to circumvent tolerance to tumors by its adjuvant properties and to induce memory T cells that can become persistent after initial tumor clearance to engage potential metastatic tumors. In the past, DC-based cancer vaccines have elicited only poor clinical response in cancer patients, which can be attributed to complex and a multitude of issues associated with generation, implementing, delivery of DC vaccine and their potential interaction with effector cells. The current review mainly focuses on migration/trafficking of DCs, as one of the key issues that affect the success of DC-based cancer vaccines, and discusses strategies to enhance it for cancer immunotherapy. Additionally, impact of maturation, route of DC delivery and negative effects of tumor microenvironment (TME) on DC homing to LN are reviewed. Moreover, strategies to increase the expression of genes involved in Lymph node homing, preconditioning of the vaccination site, enhancing lymph node ability to attract and receive DCs, while limiting negative impact of TME on DC migration are discussed.
Collapse
Affiliation(s)
- Narges Seyfizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Duane A Mitchell
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Stefan Nierkens
- Laboratory of Translational Immunology, U-DAIR, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nayer Seyfizadeh
- Umbilical Cord Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Spinelli FM, Vitale DL, Demarchi G, Cristina C, Alaniz L. The immunological effect of hyaluronan in tumor angiogenesis. Clin Transl Immunology 2015; 4:e52. [PMID: 26719798 PMCID: PMC4685440 DOI: 10.1038/cti.2015.35] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022] Open
Abstract
The relationship between the immune system and angiogenesis has been described in several contexts, both in physiological and pathological conditions, as pregnancy and cancer. In fact, different types of immune cells, such as myeloid, macrophages and denditric cells, are able to modulate tumor neovascularization. On the other hand, tumor microenvironment also includes extracellular matrix components like hyaluronan, which has a deregulated synthesis in different tumors. Hyaluronan is a glycosaminoglycan, normally present in the extracellular matrix of tissues in continuous remodeling (embryogenesis or wound healing processes) and acts as an important modulator of cell behavior by different mechanisms, including angiogenesis. In this review, we discuss hyaluronan as a modulator of tumor angiogenesis, focusing in intracellular signaling mediated by its receptors expressed on different immune cells. Recent observations suggest that the immune system is an important component in tumoural angiogenesis. Therefore, immune modulation could have an impact in anti-angiogenic therapy as a new therapeutic strategy, which in turn might improve effectiveness of treatment in cancer patients.
Collapse
Affiliation(s)
- Fiorella M Spinelli
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Tumour Microenvironment, CIBA, Junín, Pcia. Bs. As., Argentina
| | - Daiana L Vitale
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Tumour Microenvironment, CIBA, Junín, Pcia. Bs. As., Argentina
| | - Gianina Demarchi
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Pituitary Physiopathology, CIBA, Junín, Provincia de Buenos Aires, Argentina
| | - Carolina Cristina
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Pituitary Physiopathology, CIBA, Junín, Provincia de Buenos Aires, Argentina
| | - Laura Alaniz
- Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín, Pcia. Bs. As., Argentina
- Laboratory of Tumour Microenvironment, CIBA, Junín, Pcia. Bs. As., Argentina
| |
Collapse
|
14
|
Rajaram A, Schreyer DJ, Chen DX. Use of the polycation polyethyleneimine to improve the physical properties of alginate–hyaluronic acid hydrogel during fabrication of tissue repair scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:433-45. [DOI: 10.1080/09205063.2015.1016383] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|