1
|
Campos Farias BJ, Makoto Kayano A, Barros Luiz M, Maciel DE Lima A, Suelen da Silva Morais M, Moreira Mendes L, Mota Santana H, Reis Prado ND, Andrade Roberto S, Martins Soares A, Pavan Zuliani J, Pereira SDS, Celedonio Fernandes CF. Expanding anti-venom strategies: Camelid polyclonal antibodies with high capacity to recognize snake venom. Toxicon 2024; 247:107837. [PMID: 38945216 DOI: 10.1016/j.toxicon.2024.107837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Camelid immunoglobulins represent a unique facet of antibody biology, challenging conventional understandings of antibody diversification. IgG2 and IgG3 in particular are composed solely of heavy chains and exhibit a reduced molecular weight (90 kDa); their elongated complementarity determining region (CDR) loops play a pivotal role in their functioning, delving deep into enzyme active sites with precision. Serum therapy stands as the primary venom-specific treatment for snakebite envenomation, harnessing purified antibodies available in diverse forms such as whole IgG, monovalent fragment antibody (Fab), or divalent fragment antibody F (ab')2. This investigation looks into the intricacies of IgGs derived from camelid serum previously immunized with crotamine and crotoxin, toxins predominantly in Crotalus durissus venom, exploring their recognition capacity, specificity, and cross-reactivity to snake venoms and its toxins. Initially, IgG purification employed affinity chromatography via protein A and G columns to segregate conventional antibodies (IgG1) from heavy chain antibodies (IgG2 and IgG3) of camelid isotypes sourced from Lama glama serum. Subsequent electrophoretic analysis (SDS-PAGE) revealed distinct bands corresponding to molecular weight profiles of IgG's fractions representing isotypes in Lama glama serum. ELISA cross-reactivity assays demonstrated all three IgG isotypes' ability to recognize the tested venoms. Notably, IgG1 exhibited the lowest interactivity in analyses involving bothropic and crotalic venoms. However, IgG2 and IgG3 displayed notable cross-reactivity, particularly with crotalic venoms and toxins, albeit with exceptions such as PLA2-CB, showing reduced reactivity, and C. atrox, where IgGs exhibited insignificant reactivity. In Western blot assays, IgG2 and IgG3 exhibited recognition of proteins within molecular weight (≈15 kDa) of C. d. collilineatus to C. d. terrificus, with some interaction observed even with bothropic proteins despite lower reactivity. These findings underscore the potential of camelid heavy-chain antibodies, suggesting Lama glama IgGs as prospective candidates for a novel class of serum therapies. However, further investigations are imperative to ascertain their suitability for serum therapy applications.
Collapse
Affiliation(s)
- Braz Junior Campos Farias
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Anderson Makoto Kayano
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - Marcos Barros Luiz
- Instituto Federal de Educação, Ciência e Tecnologia de Rondônia, IFRO, Porto Velho-RO, Brazil
| | - Anderson Maciel DE Lima
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | | | - Laryssa Moreira Mendes
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - Hallison Mota Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Nidiane Dantas Reis Prado
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - Sibele Andrade Roberto
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Andreimar Martins Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - Juliana Pavan Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Carla Freire Celedonio Fernandes
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Ceará, Eusébio-CE, Brazil; Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil.
| |
Collapse
|
2
|
Tohidi E, Ghaemi M, Golvajouei MS. A review on camelid nanobodies with potential application in veterinary medicine. Vet Res Commun 2024; 48:2051-2068. [PMID: 38869749 DOI: 10.1007/s11259-024-10432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The single variable domains of camelid heavy-chain only antibodies, known as nanobodies, have taken a long journey since their discovery in 1989 until the first nanobody-based drug's entrance to the market in 2022. On account of their unique properties, nanobodies have been successfully used for diagnosis and therapy against various diseases or conditions. Although research on the application of recombinant antibodies has focused on human medicine, the development of nanobodies has paved the way for incorporating recombinant antibody production in favour of veterinary medicine. Currently, despite many efforts in developing these biomolecules with diversified applications, significant opportunities exist for exploiting these highly versatile and cost-effective antibodies in veterinary medicine. The present study attempts to identify existing gaps and shed light on paths for future research by presenting an updated review on camelid nanobodies with potential applications in veterinary medicine.
Collapse
Affiliation(s)
- Emadodin Tohidi
- Biotechnology Division, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Mehran Ghaemi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Sadegh Golvajouei
- Biotechnology Division, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Bastos-Soares EA, da Silva Morais MS, Funes-Huacca M, Sousa RMO, Brilhante-Da-Silva N, Roberto SA, Prado NDR, Dos Santos CND, Marinho ACM, Soares AM, Stabeli RG, Pereira SDS, Fernandes CFC. Single-Domain Antibody-Gold Nanoparticle Bioconjugates as Immunosensors for the Detection of Hantaviruses. Mol Diagn Ther 2024; 28:479-494. [PMID: 38796660 DOI: 10.1007/s40291-024-00713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Hantavirus, a zoonotic pathogen, causes severe syndromes like hemorrhagic fever with renal syndrome (HFRS), sometimes fatal in humans. Considering the importance of detecting the hantavirus antigen, the construction of an immunosensor is essential. The structural and functional characteristics of camelid nanobodies (VHHs) encourage their application in the areas of nanobiotechnology, therapeutics, diagnostics, and basic research. Therefore, this study aimed to standardize stable bioconjugates using gold nanoparticles (AuNPs) and VHHs, in order to develop immunobiosensors for the diagnosis of hantavirus infection. METHODS Immobilized metal affinity chromatography (IMAC) was performed to obtain purified recombinant anti-hantavirus nucleocapsid nanobodies (anti-prNΔ85 VHH), while AuNPs were synthesized for bioconjugation. UV-visible spectrophotometry and transmission electron microscopy (TEM) analysis were employed to characterize AuNPs. RESULTS The bioconjugation stability parameters (VHH-AuNPs), analyzed by spectrophotometry, showed that the ideal pH value and VHH concentration were obtained at 7.4 and 50 μg/mL, respectively, after addition of 1 M NaCl, which induces AuNP aggregation. TEM performed before and after bioconjugation showed uniform, homogeneous, well-dispersed, and spherical AuNPs with an average diameter of ~ 14 ± 0.57 nm. Furthermore, high-resolution images revealed a thin white halo on the surface of the AuNPs, indicating the coating of the AuNPs with protein. A biosensor simulation test (dot blot-like [DB-like]) was performed in stationary phase to verify the binding and detection limits of the recombinant nucleocapsid protein from the Araucária hantavirus strain (prN∆85). DISCUSSION Using AuNPs/VHH bioconjugates, a specific interaction was detected between 5 and 10 min of reaction in a dose-dependent manner. It was observed that this test was sensitive enough to detect prNΔ85 at concentrations up to 25 ng/μL. Considering that nanostructured biological systems such as antibodies conjugated with AuNPs are useful tools for the development of chemical and biological sensors, the stability of the bioconjugate indicates proficiency in detecting antigens. The experimental results obtained will be used in a future immunospot assay or lateral flow immunochromatography analysis for hantavirus detection.
Collapse
Affiliation(s)
- Erika A Bastos-Soares
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Michelle Suelen da Silva Morais
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Maribel Funes-Huacca
- Departamento de Química, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Rosa Maria O Sousa
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
| | | | - Sibele Andrade Roberto
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | | | | | - Anna C M Marinho
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Ceará, Eusébio, CE, Brazil
| | - Andreimar M Soares
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Centro Universitário São Lucas, UniSL, Porto Velho, RO, Brazil
- Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Rodrigo G Stabeli
- Fundação Oswaldo Cruz, FIOCRUZ, Plataforma Bi-institucional de Medicina Translacional, Ribeirão Preto, SP, Brazil
| | - Soraya Dos Santos Pereira
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | | |
Collapse
|
4
|
Wang X, Chang W, Khosraviani M, Phung W, Peng L, Cohen S, Andrews BT, Sun Y, Davies CW, Koerber JT, Yang J, Song A. Application of N-Terminal Site-Specific Biotin and Digoxigenin Conjugates to Clinical Anti-drug Antibody Assay Development. Bioconjug Chem 2024; 35:174-186. [PMID: 38050929 DOI: 10.1021/acs.bioconjchem.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Biotin- and digoxigenin (DIG)-conjugated therapeutic drugs are critical reagents used for the development of anti-drug antibody (ADA) assays for the assessment of immunogenicity. The current practice of generating biotin and DIG conjugates is to label a therapeutic antibody with biotin or DIG via primary amine groups on lysine or N-terminal residues. This approach modifies lysine residues nonselectively, which can impact the ability of an ADA assay to detect those ADAs that recognize epitopes located at or near the modified lysine residue(s). The impact of the lysine modification is considered greater for therapeutic antibodies that have a limited number of lysine residues, such as the variable heavy domain of heavy chain (VHH) antibodies. In this paper, for the first time, we report the application of site-specifically conjugated biotin- and DIG-VHH reagents to clinical ADA assay development using a model molecule, VHHA. The site-specific conjugation of biotin or DIG to VHHA was achieved by using an optimized reductive alkylation approach, which enabled the majority of VHHA molecules labeled with biotin or DIG at the desirable N-terminus, thereby minimizing modification of the protein after labeling and reducing the possibility of missing detection of ADAs. Head-to-head comparison of biophysical characterization data revealed that the site-specific biotin and DIG conjugates demonstrated overall superior quality to biotin- and DIG-VHHA prepared using the conventional amine coupling method, and the performance of the ADA assay developed using site-specific biotin and DIG conjugates met all acceptance criteria. The approach described here can be applied to the production of other therapeutic-protein- or antibody-based critical reagents that are used to support ligand binding assays.
Collapse
Affiliation(s)
- Xiangdan Wang
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Wenping Chang
- Department of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Mehraban Khosraviani
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Wilson Phung
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, California 94080, United States
| | - Lingling Peng
- Department of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Sivan Cohen
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Benjamin T Andrews
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Yonglian Sun
- Antibody Engineering, Genentech, South San Francisco, California 94080, United States
| | - Christopher W Davies
- Antibody Engineering, Genentech, South San Francisco, California 94080, United States
| | - James T Koerber
- Antibody Engineering, Genentech, South San Francisco, California 94080, United States
| | - Jihong Yang
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Aimin Song
- Department of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| |
Collapse
|
5
|
Guliy OI, Evstigneeva SS, Khanadeev VA, Dykman LA. Antibody Phage Display Technology for Sensor-Based Virus Detection: Current Status and Future Prospects. BIOSENSORS 2023; 13:640. [PMID: 37367005 DOI: 10.3390/bios13060640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Viruses are widespread in the environment, and many of them are major pathogens of serious plant, animal, and human diseases. The risk of pathogenicity, together with the capacity for constant mutation, emphasizes the need for measures to rapidly detect viruses. The need for highly sensitive bioanalytical methods to diagnose and monitor socially significant viral diseases has increased in the past few years. This is due, on the one hand, to the increased incidence of viral diseases in general (including the unprecedented spread of a new coronavirus infection, SARS-CoV-2), and, on the other hand, to the need to overcome the limitations of modern biomedical diagnostic methods. Phage display technology antibodies as nano-bio-engineered macromolecules can be used for sensor-based virus detection. This review analyzes the commonly used virus detection methods and approaches and shows the prospects for the use of antibodies prepared by phage display technology as sensing elements for sensor-based virus detection.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Vitaly A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| |
Collapse
|
6
|
Silva MCS, Pereira SS, Gouveia MP, Luiz MB, Sousa RMO, Kayano AM, Francisco AF, Prado NDR, Dill LSM, Fontes MRM, Zanchi FB, Stabeli RG, Soares AM, Zuliani JP, Fernandes CFC. Anti-Metalloprotease P-I Single-Domain Antibodies: Tools for Next-Generation Snakebite Antivenoms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2748962. [PMID: 35909472 PMCID: PMC9325618 DOI: 10.1155/2022/2748962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
In order to address the global antivenom crisis, novel antivenoms need to present high therapeutic efficacy, broad neutralization ability against systemic and local damage, sufficient safety, and cost-effectiveness. Due to biological characteristics of camelid single-domain antibodies (VHH) such as high affinity, their ability to penetrate dense tissues, and facility for genetic manipulation, their application in antivenoms has expanded considerably. VHHs that are active against the metalloprotease BjussuMP-II from the snake Bothrops jararacussu were selected. After isolation of BjussuMP-II, a camelid was immunized with the purified toxin in order to construct the recombinant phage library. Following a round of biopanning, 52% of the selected clones were able to recognize BjussuMP-II in an ELISA assay. After sequencing, seven sequence profiles were identified. One selected clone (VHH61) showed cross-reactivity to B. brazili venom, but did not recognize the Crotalus and Lachesis genera, indicating specificity for the Bothrops genus. Through in vitro tests, the capacity to neutralize the toxicity triggered by BjussuMP-II was observed. Circular dichroism spectroscopy indicated a robust secondary structure for VHH61, and the calculated melting temperature (T M) for the clone was 56.4°C. In silico analysis, through molecular docking of anti-BjussuMP-II VHHs with metalloprotease, revealed their potential interaction with amino acids present in regions critical for the toxin's conformation and stability. The findings suggest that anti-BjussuMP-II VHHs may be beneficial in the development of next-generation antivenoms.
Collapse
Affiliation(s)
- Marcela C. S. Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
- Centro de Pesquisa em Medicina Tropical, Porto Velho, 76812-329 Rondônia, Brazil
| | - Soraya S. Pereira
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Marilia P. Gouveia
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Marcos B. Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Rosa M. O. Sousa
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Anderson M. Kayano
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Aleff F. Francisco
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, UNESP, Botucatu, 18618-689 São Paulo, Brazil
| | - Nidiane D. R. Prado
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Leandro S. M. Dill
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Marcos R. M. Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, UNESP, Botucatu, 18618-689 São Paulo, Brazil
| | - Fernando B. Zanchi
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
| | - Rodrigo G. Stabeli
- Plataforma Bi-Institucional Fiocruz-USP, Ribeirão Preto, 14040-030 São Paulo, Brazil
| | - Andreimar M. Soares
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Brazil
| | - Juliana P. Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, 76812-245 Rondônia, Brazil
- Universidade Federal de Rondônia, UNIR, Porto Velho, 76801-974 Rondônia, Brazil
| | | |
Collapse
|
7
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
8
|
Brilhante-da-Silva N, de Oliveira Sousa RM, Arruda A, Dos Santos EL, Marinho ACM, Stabeli RG, Fernandes CFC, Pereira SDS. Camelid Single-Domain Antibodies for the Development of Potent Diagnosis Platforms. Mol Diagn Ther 2021; 25:439-456. [PMID: 34146333 DOI: 10.1007/s40291-021-00533-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
The distinct biophysical and pharmaceutical properties of camelid single-domain antibodies, referred to as VHHs or nanobodies, are associated with their nanometric dimensions, elevated stability, and antigen recognition capacity. These biomolecules can circumvent a number of diagnostic system limitations, especially those related to the size and stability of conventional immunoglobulins currently used in enzyme-linked immunosorbent assays and point-of-care, electrochemical, and imaging assays. In these formats, VHHs are directionally conjugated to different molecules, such as metallic nanoparticles, small peptides, and radioisotopes, which demonstrates their comprehensive versatility. Thus, the application of VHHs in diagnostic systems range from the identification of cancer cells to the detection of degenerative disease biomarkers, viral antigens, bacterial toxins, and insecticides. The improvements of sensitivity and specificity are among the central benefits resulting from the use of VHHs, which are indispensable parameters for high-quality diagnostics. Therefore, this review highlights the main biotechnological advances related to camelid single-domain antibodies and their use in in vitro and in vivo diagnostic approaches for human health.
Collapse
Affiliation(s)
- Nairo Brilhante-da-Silva
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Rosa Maria de Oliveira Sousa
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Andrelisse Arruda
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Eliza Lima Dos Santos
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Anna Carolina Machado Marinho
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma Bi-institucional de Medicina Translacional.Fundação Oswaldo Cruz-USP, Ribeirão Preto, São Paulo, Brazil
| | - Carla Freire Celedonio Fernandes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil.
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, Brazil.
| |
Collapse
|
9
|
Fernandes CFC, Pereira SS, Luiz MB, Silva NKRL, Silva MCS, Marinho ACM, Fonseca MHG, Furtado GP, Trevizani R, Nicolete R, Soares AM, Zuliani JP, Stabeli RG. Engineering of single-domain antibodies for next-generation snakebite antivenoms. Int J Biol Macromol 2021; 185:240-250. [PMID: 34118288 DOI: 10.1016/j.ijbiomac.2021.06.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Given the magnitude of the global snakebite crisis, strategies to ensure the quality of antivenom, as well as the availability and sustainability of its supply are under development by several research groups. Recombinant DNA technology has allowed the engineering of monoclonal antibodies and recombinant fragments as alternatives to conventional antivenoms. Besides having higher therapeutic efficacy, with broad neutralization capacity against local and systemic toxicity, novel antivenoms need to be safe and cost-effective. Due to the biological and physical chemical properties of camelid single-domain antibodies, with high volume of distribution to distal tissue, their modular format, and their versatility, their biotechnological application has grown considerably in recent decades. This article presents the most up-to-date developments concerning camelid single-domain-based antibodies against major toxins from snake venoms, the main venomous animals responsible for reported envenoming cases and related human deaths. A brief discussion on the composition, challenges, and perspectives of antivenoms is presented, as well as the road ahead for next-generation antivenoms based on single-domain antibodies.
Collapse
Affiliation(s)
| | - Soraya S Pereira
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Marcos B Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Nauanny K R L Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Marcela Cristina S Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | | | | | | | | | | | - Andreimar M Soares
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Juliana P Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil; Universidade Federal de Rondônia, UNIR, Porto Velho, Rondônia, Brazil
| | - Rodrigo G Stabeli
- Plataforma Bi-Institucional de Medicina Translacional (Fiocruz-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
10
|
Lai JY, Lim TS. Infectious disease antibodies for biomedical applications: A mini review of immune antibody phage library repertoire. Int J Biol Macromol 2020; 163:640-648. [PMID: 32650013 PMCID: PMC7340592 DOI: 10.1016/j.ijbiomac.2020.06.268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Antibody phage display is regarded as a critical tool for the development of monoclonal antibodies for infectious diseases. The different classes of antibody libraries are classified based on the source of repertoire used to generate the libraries. Immune antibody libraries are generated from disease infected host or immunization against an infectious agent. Antibodies derived from immune libraries are distinct from those derived from naïve libraries as the host's in vivo immune mechanisms shape the antibody repertoire to yield high affinity antibodies. As the immune system is constantly evolving in accordance to the health state of an individual, immune libraries can offer more than just infection-specific antibodies but also antibodies derived from the memory B-cells much like naïve libraries. The combinatorial nature of the gene cloning process would give rise to a combination of natural and un-natural antibody gene pairings in the immune library. These factors have a profound impact on the coverage of immune antibody libraries to target both disease-specific and non-disease specific antigens. This review looks at the diverse nature of antibody responses for immune library generation and discusses the extended potential of a disease-specified immune library in the context of phage display.
Collapse
Affiliation(s)
- Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
11
|
Camelid Single-Domain Antibodies (VHHs) against Crotoxin: A Basis for Developing Modular Building Blocks for the Enhancement of Treatment or Diagnosis of Crotalic Envenoming. Toxins (Basel) 2018; 10:toxins10040142. [PMID: 29596324 PMCID: PMC5923308 DOI: 10.3390/toxins10040142] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/11/2018] [Accepted: 03/16/2018] [Indexed: 12/15/2022] Open
Abstract
Toxic effects triggered by crotalic envenoming are mainly related to crotoxin (CTX), composed of a phospholipase A2 (CB) and a subunit with no toxic activity (CA). Camelids produce immunoglobulins G devoid of light chains, in which the antigen recognition domain is called VHH. Given their unique characteristics, VHHs were selected using Phage Display against CTX from Crotalus durissus terrificus. After three rounds of biopanning, four sequence profiles for CB (KF498602, KF498603, KF498604, and KF498605) and one for CA (KF498606) were revealed. All clones presented the VHH hallmark in FR2 and a long CDR3, with the exception of KF498606. After expressing pET22b-VHHs in E. coli, approximately 2 to 6 mg of protein per liter of culture were obtained. When tested for cross-reactivity, VHHs presented specificity for the Crotalus genus and were capable of recognizing CB through Western blot. KF498602 and KF498604 showed thermostability, and displayed affinity constants for CTX in the micro or nanomolar range. They inhibited in vitro CTX PLA2 activity, and CB cytotoxicity. Furthermore, KF498604 inhibited the CTX-induced myotoxicity in mice by 78.8%. Molecular docking revealed that KF498604 interacts with the CA–CB interface of CTX, seeming to block substrate access. Selected VHHs may be alternatives for the crotalic envenoming treatment.
Collapse
|
12
|
Fernandes CFC, Pereira SDS, Luiz MB, Zuliani JP, Furtado GP, Stabeli RG. Camelid Single-Domain Antibodies As an Alternative to Overcome Challenges Related to the Prevention, Detection, and Control of Neglected Tropical Diseases. Front Immunol 2017. [PMID: 28649245 PMCID: PMC5465246 DOI: 10.3389/fimmu.2017.00653] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Due mainly to properties such as high affinity and antigen specificity, antibodies have become important tools for biomedical research, diagnosis, and treatment of several human diseases. When the objective is to administer them for therapy, strategies are used to reduce the heterologous protein immunogenicity and to improve pharmacokinetic and pharmacodynamic characteristics. Size minimization contributes to ameliorate these characteristics, while preserving the antigen-antibody interaction site. Since the discovery that camelids produce functional antibodies devoid of light chains, studies have proposed the use of single domains for biosensors, monitoring and treatment of tumors, therapies for inflammatory and neurodegenerative diseases, drug delivery, or passive immunotherapy. Despite an expected increase in antibody and related products in the pharmaceutical market over the next years, few research initiatives are related to the development of alternatives for helping to manage neglected tropical diseases (NTDs). In this review, we summarize developments of camelid single-domain antibodies (VHH) in the field of NTDs. Particular attention is given to VHH-derived products, i.e., VHHs fused to nanoparticles, constructed for the development of rapid diagnostic kits; fused to oligomeric matrix proteins for viral neutralization; and conjugated with proteins for the treatment of human parasites. Moreover, paratransgenesis technology using VHHs is an interesting approach to control parasite development in vectors. With enormous biotechnological versatility, facility and low cost for heterologous production, and greater ability to recognize different epitopes, VHHs have appeared as an opportunity to overcome challenges related to the prevention, detection, and control of human diseases, especially NTDs.
Collapse
Affiliation(s)
| | | | - Marcos B Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Juliana P Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil.,Departamento de Medicina da Universidade Federal de Rondônia, UNIR, Porto Velho, Rondônia, Brazil
| | | | - Rodrigo G Stabeli
- Departamento de Medicina da Universidade Federal de Rondônia, UNIR, Porto Velho, Rondônia, Brazil.,Plataforma Bi-Institucional de Medicina Translacional (Fiocruz-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Nayak S, Blumenfeld NR, Laksanasopin T, Sia SK. Point-of-Care Diagnostics: Recent Developments in a Connected Age. Anal Chem 2017; 89:102-123. [PMID: 27958710 PMCID: PMC5793870 DOI: 10.1021/acs.analchem.6b04630] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samiksha Nayak
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Nicole R. Blumenfeld
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Tassaneewan Laksanasopin
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
14
|
Ubah O, Palliyil S. Monoclonal Antibodies and Antibody Like Fragments Derived from Immunised Phage Display Libraries. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:99-117. [PMID: 29549637 PMCID: PMC7120432 DOI: 10.1007/978-3-319-72077-7_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Morbidity and mortality associated with infectious diseases are always on the rise, especially in poorer countries and in the aging population. The inevitable, but unpredictable emergence of new infectious diseases has become a global threat. HIV/AIDS, severe acute respiratory syndrome (SARS), and the more recent H1N1 influenza are only a few of the numerous examples of emerging infectious diseases in the modern era. However despite advances in diagnostics, therapeutics and vaccines, there is need for more specific, efficacious, cost-effective and less toxic treatment and preventive drugs. In this chapter, we discuss a powerful combinatorial technology in association with animal immunisation that is capable of generating biologic drugs with high affinity, efficacy and limited off-site toxicity, and diagnostic tools with great precision. Although time consuming, immunisation still remains the preferred route for the isolation of high-affinity antibodies and antibody-like fragments. Phage display is a molecular diversity technology that allows the presentation of large peptide and protein libraries on the surface of filamentous phage. The selection of binding fragments from phage display libraries has proven significant for routine isolation of invaluable peptides, antibodies, and antibody-like domains for diagnostic and therapeutic applications. Here we highlight the many benefits of combining immunisation with phage display in combating infectious diseases, and how our knowledge of antibody engineering has played a crucial role in fully exploiting these platforms in generating therapeutic and diagnostic biologics towards antigenic targets of infectious organisms.
Collapse
Affiliation(s)
- Obinna Ubah
- Scottish Biologics Facility, Elasmogen Ltd, Aberdeen, UK
| | - Soumya Palliyil
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
15
|
Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 2016; 21:1076-113. [DOI: 10.1016/j.drudis.2016.04.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/26/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022]
|
16
|
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 2016; 10:922-948. [PMID: 27198131 PMCID: PMC7168043 DOI: 10.1002/prca.201600002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are valuable molecules for the diagnostic and treatment of diseases caused by pathogens and toxins. Traditionally, these antibodies are generated by hybridoma technology. An alternative to hybridoma technology is the use of antibody phage display to generate recombinant antibodies. This in vitro technology circumvents the limitations of the immune system and allows—in theory—the generation of antibodies against all conceivable molecules. Phage display technology enables obtaining human antibodies from naïve antibody gene libraries when either patients are not available or immunization is not ethically feasible. On the other hand, if patients or immunized/infected animals are available, it is common to construct immune phage display libraries to select in vivo affinity‐matured antibodies. Because the phage packaged DNA sequence encoding the antibodies is directly available, the antibodies can be smoothly engineered according to the requirements of the final application. In this review, an overview of phage display derived recombinant antibodies against bacterial, viral, and eukaryotic pathogens as well as toxins for diagnostics and therapy is given.
Collapse
Affiliation(s)
- Philipp Kuhn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Tobias Unkauf
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
17
|
Böldicke T, Miethe S, Fühner V, Schirrmann T, Frenzel A, Hust M. Generation of Recombinant Antibodies Against Toxins and Viruses by Phage Display for Diagnostics and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:55-76. [PMID: 27236552 PMCID: PMC7121732 DOI: 10.1007/978-3-319-32805-8_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antibody phage display is an in vitro technology to generate recombinant antibodies. In particular for pathogens like viruses or toxins, antibody phage display is an alternative to hybridoma technology, since it circumvents the limitations of the immune system. Phage display allows the generation of human antibodies from naive antibody gene libraries when either immunized patients are not available or immunization is not ethically feasible. This technology also allows the construction of immune libraries to select in vivo affinity matured antibodies if immunized patients or animals are available.In this review, we describe the generation of human and human-like antibodies from naive antibody gene libraries and antibodies from immune antibody gene libraries. Furthermore, we give an overview about phage display derived recombinant antibodies against viruses and toxins for diagnostics and therapy.
Collapse
Affiliation(s)
- Thomas Böldicke
- grid.7490.aRecombinant protein exprsn/Intrabdy unit, Helmholtz-Centre for Infection Rese, Braunschweig, Germany
| | - Sebastian Miethe
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Viola Fühner
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | - André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
18
|
Prado NDR, Pereira SS, da Silva MP, Morais MSS, Kayano AM, Moreira-Dill LS, Luiz MB, Zanchi FB, Fuly AL, E. F. Huacca M, Fernandes CF, Calderon LA, Zuliani JP, Pereira da Silva LH, Soares AM, Stabeli RG, F. C. Fernandes C. Inhibition of the Myotoxicity Induced by Bothrops jararacussu Venom and Isolated Phospholipases A2 by Specific Camelid Single-Domain Antibody Fragments. PLoS One 2016; 11:e0151363. [PMID: 27028872 PMCID: PMC4814101 DOI: 10.1371/journal.pone.0151363] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/27/2016] [Indexed: 02/07/2023] Open
Abstract
Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH) with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II), two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs) and immunoglobulin frameworks (FRs) of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718) were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607) neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I) in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marcos B. Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho-RO, Brazil
| | | | - André L. Fuly
- Universidade Federal Fluminense, UFF, Rio de Janeiro-RJ, Brazil
| | | | | | - Leonardo A. Calderon
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho-RO, Brazil
- Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Juliana P. Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho-RO, Brazil
- Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | | | | | - Rodrigo G. Stabeli
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho-RO, Brazil
- Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Carla F. C. Fernandes
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho-RO, Brazil
- Centro de Pesquisa em Medicina Tropical, CEPEM, Porto Velho-RO, Brazil
| |
Collapse
|