1
|
Bao L, Liu J, Mao T, Zhao L, Wang D, Zhai Y. Nanobiotechnology-mediated regulation of reactive oxygen species homeostasis under heat and drought stress in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1418515. [PMID: 39258292 PMCID: PMC11385006 DOI: 10.3389/fpls.2024.1418515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
Global warming causes heat and drought stress in plants, which affects crop production. In addition to osmotic stress and protein inactivation, reactive oxygen species (ROS) overaccumulation under heat and drought stress is a secondary stress that further impairs plant performance. Chloroplasts, mitochondria, peroxisomes, and apoplasts are the main ROS generation sites in heat- and drought-stressed plants. In this review, we summarize ROS generation and scavenging in heat- and drought-stressed plants and highlight the potential applications of plant nanobiotechnology for enhancing plant tolerance to these stresses.
Collapse
Affiliation(s)
- Linfeng Bao
- College of Agriculture, Tarim University, Alar, China
| | - Jiahao Liu
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Tingyong Mao
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Linbo Zhao
- College of Agriculture, Tarim University, Alar, China
| | - Desheng Wang
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Yunlong Zhai
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| |
Collapse
|
2
|
Somalo-Barranco G, Pagano Zottola AC, Abdulrahman AO, El Zein RM, Cannich A, Muñoz L, Serra C, Oishi A, Marsicano G, Masri B, Bellocchio L, Llebaria A, Jockers R. Mitochondria-targeted melatonin photorelease supports the presence of melatonin MT1 receptors in mitochondria inhibiting respiration. Cell Chem Biol 2023; 30:920-932.e7. [PMID: 37572668 DOI: 10.1016/j.chembiol.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/16/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
The presence of signaling-competent G protein-coupled receptors in intracellular compartments is increasingly recognized. Recently, the presence of Gi/o protein-coupled melatonin MT1 receptors in mitochondria has been revealed, in addition to the plasma membrane. Melatonin is highly cell permeant, activating plasma membrane and mitochondrial receptors equally. Here, we present MCS-1145, a melatonin derivative bearing a triphenylphosphonium cation for specific mitochondrial targeting and a photocleavable o-nitrobenzyl group releasing melatonin upon illumination. MCS-1145 displayed low affinity for MT1 and MT2 but spontaneously accumulated in mitochondria, where it was resistant to washout. Uncaged MCS-1145 and exogenous melatonin recruited β-arrestin 2 to MT1 in mitochondria and inhibited oxygen consumption in mitochondria isolated from HEK293 cells only when expressing MT1 and from mouse cerebellum of WT mice but not from MT1-knockout mice. Overall, we developed the first mitochondria-targeted photoactivatable melatonin ligand and demonstrate that melatonin inhibits mitochondrial respiration through mitochondrial MT1 receptors.
Collapse
Affiliation(s)
- Gloria Somalo-Barranco
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France; MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | | | | | - Rami M El Zein
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Astrid Cannich
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Lourdes Muñoz
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; SIMChem, Synthesis of High Added Value Molecules, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Carme Serra
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; SIMChem, Synthesis of High Added Value Molecules, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Atsuro Oishi
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Bernard Masri
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France.
| |
Collapse
|
3
|
Postigo V, García M, Arroyo T. Study of a First Approach to the Controlled Fermentation for Lambic Beer Production. Microorganisms 2023; 11:1681. [PMID: 37512854 PMCID: PMC10384975 DOI: 10.3390/microorganisms11071681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Non-Saccharomyces yeasts represent a great source of biodiversity for the production of new beer styles, since they can be used in different industrial areas, as pure culture starters, in co-fermentation with Saccharomyces, and in spontaneous fermentation (lambic and gueuze production, with the main contribution of Brettanomyces yeast). The fermentation process of lambic beer is characterized by different phases with a characteristic predominance of different microorganisms in each of them. As it is a spontaneous process, fermentation usually lasts from 10 months to 3 years. In this work, an attempt was made to perform a fermentation similar to the one that occurred in this process with lactic bacteria, Saccharomyces yeast and Brettanomyces yeast, but controlling their inoculation and therefore decreasing the time necessary for their action. For this purpose, after the first screening in 100 mL where eight Brettanomyces yeast strains from D.O. "Ribeira Sacra" (Galicia) were tested, one Brettanomyces bruxellensis strain was finally selected (B6) for fermentation in 1 L together with commercial strains of Saccharomyces cerevisiae S-04 yeast and Lactobacillus brevis lactic acid bacteria in different sequences. The combinations that showed the best fermentative capacity were tested in 14 L. Volatile compounds, lactic acid, acetic acid, colour, bitterness, residual sugars, ethanol, melatonin and antioxidant capacity were analysed at different maturation times of 1, 2, 6 and 12 months. Beers inoculated with Brettanomyces yeast independently of the other microorganisms showed pronounced aromas characteristic of the Brettanomyces yeast. Maturation after 12 months showed balanced beers with "Brett" aromas, as well as an increase in the antioxidant capacity of the beers.
Collapse
Affiliation(s)
- Vanesa Postigo
- Department of Agri-Food, Madrid Institute for Rural, Agriculture and Food Research and Development (IMIDRA), El Encín, A-2, Km 38.2, 28805 Alcalá de Henares, Spain
- Brewery La Cibeles, Petróleo 34, 28918 Leganés, Spain
| | - Margarita García
- Department of Agri-Food, Madrid Institute for Rural, Agriculture and Food Research and Development (IMIDRA), El Encín, A-2, Km 38.2, 28805 Alcalá de Henares, Spain
| | - Teresa Arroyo
- Department of Agri-Food, Madrid Institute for Rural, Agriculture and Food Research and Development (IMIDRA), El Encín, A-2, Km 38.2, 28805 Alcalá de Henares, Spain
| |
Collapse
|
4
|
Lachancea thermotolerans, an Innovative Alternative for Sour Beer Production. BEVERAGES 2023. [DOI: 10.3390/beverages9010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The interest in and growth of craft beer has led to an intense search for new beers and styles. The revival of traditional styles has sometimes been hampered by the use of microorganisms such as lactic acid bacteria. Therefore, studies on alternative yeasts for the production of this style of beer have increased. In this work and together with previous studies carried out with yeasts isolated from Madrid agriculture (from grapes, must, wine, vineyards and wineries), the capacity of 10 yeast strains, belonging to the genus Lachancea thermotolerans, for the production of sour beer has been determined. For this purpose, different fermentation scale-ups (100 mL, 1 L and 100 L) have been performed and their fermentation capacity, aroma compound production (33 volatile compounds by GC), organoleptic profile (trained tasting panel and consumers), melatonin production (HPLC) and antioxidant capacity have been studied. Beer fermented with yeast strain CLI 1232 showed a balanced acidity with a fruity aromatic profile and honey notes. On the other hand, the beer fermented with strain 1-8B also showed a balanced acidity, but less fruity and citric flavour than CLI 1232 strain. Finally, the yeast strain selected by the consumers (CLI 1232) was used for beer production at industrial scale and the market launch of a sour beer.
Collapse
|
5
|
Postigo V, Sanz P, García M, Arroyo T. Impact of Non- Saccharomyces Wine Yeast Strains on Improving Healthy Characteristics and the Sensory Profile of Beer in Sequential Fermentation. Foods 2022; 11:2029. [PMID: 35885271 PMCID: PMC9318315 DOI: 10.3390/foods11142029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
The use of non-Saccharomyces yeasts in brewing is a useful tool for developing new products to meet the growing consumer demand for innovative products. Non-Saccharomyces yeasts can be used both in single and in mixed fermentations with Saccharomyces cerevisiae, as they are able to improve the sensory profile of beers, and they can be used to obtain functional beers (with a low ethanol content and melatonin production). The aim of this study was to evaluate this capacity in eight non-Saccharomyces strains isolated from Madrid agriculture. For this purpose, single fermentations were carried out with non-Saccharomyces strains and sequential fermentations with non-Saccharomyces and the commercial strain SafAle S-04. The Wickerhamomyces anomalus strain CLI 1028 was selected in pure culture for brewing beer with a low ethanol content (1.25% (v/v)) for its fruity and phenolic flavours and the absence of wort flavours. The best-evaluated strains in sequential fermentation were CLI 3 (Hanseniaspora vineae) and CLI 457 (Metschnikowia pulcherrima), due to their fruity notes as well as their superior bitterness, body, and balance. Volatile compounds and melatonin production were analysed by GC and HPLC, respectively. The beers were sensory-analysed by a trained panel. The results of the study show the potential of non-Saccharomyces strains in the production of low-alcohol beers, and as a flavour enhancement in sequential fermentation.
Collapse
Affiliation(s)
- Vanesa Postigo
- Department of Agri-Food, Madrid Institute for Rural, Food and Agriculture Research and Development (IMIDRA), El Encín, A-2, km 38.2, 28805 Alcala de Henares, Spain; (P.S.); (M.G.); (T.A.)
- Brewery La Cibeles, Petróleo 34, 28918 Leganes, Spain
| | - Paula Sanz
- Department of Agri-Food, Madrid Institute for Rural, Food and Agriculture Research and Development (IMIDRA), El Encín, A-2, km 38.2, 28805 Alcala de Henares, Spain; (P.S.); (M.G.); (T.A.)
| | - Margarita García
- Department of Agri-Food, Madrid Institute for Rural, Food and Agriculture Research and Development (IMIDRA), El Encín, A-2, km 38.2, 28805 Alcala de Henares, Spain; (P.S.); (M.G.); (T.A.)
| | - Teresa Arroyo
- Department of Agri-Food, Madrid Institute for Rural, Food and Agriculture Research and Development (IMIDRA), El Encín, A-2, km 38.2, 28805 Alcala de Henares, Spain; (P.S.); (M.G.); (T.A.)
| |
Collapse
|
6
|
Abstract
Non-Saccharomyces yeasts represent a very attractive alternative for the production of beers with superior sensory quality since they are able to enhance the flavour of beer. Furthermore, they can produce beers with low ethanol content due to the weak fermentative capacity of a large percentage of non-Saccharomyces species. The objective of this study was to evaluate the ability of 34 non-Saccharomyces yeast strains isolated from Madrilenian agriculture to produce a novel ale beer. The non-Saccharomyces yeast strains were screened at two scales in the laboratory. In the first screening, those with undesirable aromas were discarded and the selected strains were analysed. Thirty-three volatile compounds were analysed by GC, as well as melatonin production by HPLC, for the selected strains. Thirteen strains were then fermented at a higher scale in the laboratory for sensory evaluation. Only yeast strains of the species Schizosaccharomyces pombe and Lachancea thermotolerans were able to complete fermentation. Species such as Torulaspora delbrueckii, Metschnikowia pulcherrima, Wickerhamomyces anomalus, Hanseniaspora vineae, and Hanseniaspora guilliermondii could be used both for production of low ethanol beers and co-fermentation with a Saccharomyces yeast to improve the organoleptic characteristics of the beer. In addition, for these strains, the levels of melatonin obtained were higher than the concentrations found for Saccharomyces strains subjected to the same study conditions. The selected strains can be used in future trials to further determine their viability under different conditions and for different purposes.
Collapse
|
7
|
Usefulness of Melatonin and Other Compounds as Antioxidants and Epidrugs in the Treatment of Head and Neck Cancer. Antioxidants (Basel) 2021; 11:antiox11010035. [PMID: 35052539 PMCID: PMC8773331 DOI: 10.3390/antiox11010035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Along with genetic mutations, aberrant epigenetic alterations are the initiators of head and neck cancer carcinogenesis. Currently, several drugs are being developed to correct these epigenetic alterations, known as epidrugs. Some compounds with an antioxidant effect have been shown to be effective in preventing these malignant lesions and in minimizing the complications derived from cytotoxic treatment. Furthermore, in vitro and in vivo studies show a promising role in the treatment of head and neck squamous cell carcinoma (HNSCC). This is the case of supplements with DNA methylation inhibitory function (DNMTi), such as epigallocatechin gallate, sulforaphane, and folic acid; histone deacetylase inhibitors (HDACi), such as sodium butyrate and melatonin or histone acetyltransferase inhibitors (HATi), such as curcumin. The objective of this review is to describe the role of some antioxidants and their epigenetic mechanism of action, with special emphasis on melatonin and butyric acid given their organic production, in the prevention and treatment of HNSCC.
Collapse
|
8
|
Abstract
Multiple studies in recent years have shown the potential of Saccharomyces wild yeasts to produce craft beers with new flavour profiles and other desirable properties. Yeasts isolated from food (wine, bread, kombucha…) have shown potential promise for application in brewing. The aim of this study is to evaluate the ability of 141 Saccharomyces yeast strains isolated from the Madrilenian agriculture (from grapes, must, wine, vineyard, and cellars) to produce a novel ale beer. Fermentation activity of the strains was compared against the commercial strain Saccharomyces cerevisiae Safale S-04. In addition to the other aspects such as melatonin production, thirty-three volatile compounds belonging to higher alcohols, esters, aldehydes/cetones, acids, lactones and phenolic groups, were analysed by GC for selection of the strains. Ten strains were finally chosen, among which the most relevant was the strain G 520 showing a higher production of esters, higher alcohols and acids compared with S-04. The apparent attenuation for this strain was lower than commercial strain, which translates into more residual sugars. Furthermore, G 520 was more capable of producing significantly higher amounts of melatonin studied by HPLC, as well as showing a higher antioxidant capacity. Consumer study showed that G 520 strain could be used to produce a potential beer that has a place in the current market.
Collapse
|
9
|
Perceiving numerosity does not cause automatic shifts of spatial attention. Exp Brain Res 2021; 239:3023-3034. [PMID: 34355249 PMCID: PMC8536601 DOI: 10.1007/s00221-021-06185-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/25/2021] [Indexed: 02/07/2023]
Abstract
It is debated whether the representation of numbers is endowed with a directional-spatial component so that perceiving small-magnitude numbers triggers leftward shifts of attention and perceiving large-magnitude numbers rightward shifts. Contrary to initial findings, recent investigations have demonstrated that centrally presented small-magnitude and large-magnitude Arabic numbers do not cause leftward and rightward shifts of attention, respectively. Here we verified whether perceiving small or large non-symbolic numerosities (i.e., clouds of dots) drives attention to the left or the right side of space, respectively. In experiment 1, participants were presented with central small (1, 2) vs large-numerosity (8, 9) clouds of dots followed by an imperative target in the left or right side of space. In experiment 2, a central cloud of dots (i.e., five dots) was followed by the simultaneous presentation of two identical dot-clouds, one on the left and one on the right side of space. Lateral clouds were both lower (1, 2) or higher in numerosity (8, 9) than the central cloud. After a variable delay, one of the two lateral clouds turned red and participants had to signal the colour change through a unimanual response. We found that (a) in Experiment 1, the small vs large numerosity of the central cloud of dots did not speed up the detection of left vs right targets, respectively, (b) in Experiment 2, the detection of colour change was not faster in the left side of space when lateral clouds were smaller in numerosity than the central reference and in the right side when clouds were larger in numerosity. These findings show that perceiving non-symbolic numerosity does not cause automatic shifts of spatial attention and suggests no inherent association between the representation of numerosity and that of directional space.
Collapse
|
10
|
Rong K, Zheng H, Yang R, Liu X, Li L, Chen N, Zhao G, Gong C, Deng Y. Melatonin and its metabolite N(1)-acetyl-N(1)-formyl-5-methoxykynuramine improve learning and memory impairment related to Alzheimer's disease in rats. J Biochem Mol Toxicol 2019; 34:e22430. [PMID: 31833155 DOI: 10.1002/jbt.22430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/05/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the effect of melatonin (MT) and its metabolite N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) on Alzheimer-like learning and memory impairment in rats intracerebroventricularly injected with streptozotocin (STZ). The results showed that the escape latency of the STZ group was longer than that of the control (CON), MT, and AFMK groups. Increased levels of hyperphosphorylated tau, neurofilament proteins, and malondialdehyde and decreased superoxide dismutase levels were observed in the brains of the rats from the STZ group compared with the brains of the rats from the CON, MT, AFMK high and low group. These results suggest that exogenous MT and AFMK can improve memory impairment and downregulate AD-like hyperphosphorylation induced by STZ, most likely through their antioxidation function. Meanwhile, we found that an equal dose of AFMK had a stronger effect than that of MT. Our results indicate that MT and its metabolite AFMK represent novel treatment strategies for Alzheimer's disease.
Collapse
Affiliation(s)
- Kai Rong
- Nephrology Department, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hong Zheng
- Nursing School, Tianjin Medical University, Tianjin, China
| | - Ruibo Yang
- Nursing School, Tianjin Medical University, Tianjin, China
| | - Xiaoli Liu
- Pathology Department, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Liya Li
- Nursing School, Tianjin Medical University, Tianjin, China
| | - Ning Chen
- Pathophysiology Department, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, China
| | - Chengxin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Yanqiu Deng
- Pathophysiology Department, Basic Medical College, Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front Endocrinol (Lausanne) 2019; 10:249. [PMID: 31057485 PMCID: PMC6481276 DOI: 10.3389/fendo.2019.00249] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
Collapse
Affiliation(s)
- Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qin Liu
- School of Landscape and Horticulture, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| |
Collapse
|
12
|
Galván AE, Chalón MC, Schurig-Briccio LA, Salomón RA, Minahk CJ, Gennis RB, Bellomio A. Cytochromes bd-I and bo 3 are essential for the bactericidal effect of microcin J25 on Escherichia coli cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:110-118. [PMID: 29107655 DOI: 10.1016/j.bbabio.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/04/2017] [Accepted: 10/27/2017] [Indexed: 02/02/2023]
Abstract
Microcin J25 has two targets in sensitive bacteria, the RNA polymerase, and the respiratory chain through inhibition of cellular respiration. In this work, the effect of microcin J25 in E. coli mutants that lack the terminal oxidases cytochrome bd-I and cytochrome bo3 was analyzed. The mutant strains lacking cytochrome bo3 or cytochrome bd-I were less sensitive to the peptide. In membranes obtained from the strain that only expresses cytochrome bd-I a great ROS overproduction was observed in the presence of microcin J25. Nevertheless, the oxygen consumption was less inhibited in this strain, probably because the oxygen is partially reduced to superoxide. There was no overproduction of ROS in membranes isolated from the mutant strain that only express cytochrome bo3 and the inhibition of the cellular respiration was similar to the wild type. It is concluded that both cytochromes bd-I and bo3 are affected by the peptide. The results establish for the first time a relationship between the terminal oxygen reductases and the mechanism of action of microcin J25.
Collapse
Affiliation(s)
- A E Galván
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - M C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | | | - R A Salomón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - C J Minahk
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - R B Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - A Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina.
| |
Collapse
|
13
|
Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells. Redox Biol 2017; 12:634-647. [PMID: 28391184 PMCID: PMC5385622 DOI: 10.1016/j.redox.2017.03.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that natural bioactive compounds, alone or in combination with traditional chemotherapeutic agents, could be used as potential therapies to fight cancer. In this study, we employed four natural bioactive compounds (curcumin, resveratrol, melatonin, and silibinin) and studied their role in redox control and ability to promote apoptosis in androgen sensitive and insensitive prostate cancer cells. Here is shown that curcumin and resveratrol promote ROS production and induce apoptosis in LNCaP and PC-3. An increase in reactive species is a trigger event in curcumin-induced apoptosis and a consequence of resveratrol effects on other pathways within these cells. Moreover, here we demonstrated that these four compounds affect differently one of the main intracellular redox regulator, the thioredoxin system. Exposure to curcumin and resveratrol promoted TRX1 oxidation and altered its subcellular location. Furthermore, resveratrol diminished TRX1 levels in PC-3 cells and increased the expression of its inhibitor TXNIP. Conversly, melatonin and silibinin only worked as cytostatic agents, reducing ROS levels and showing preventive effects against TRX oxidation. All together, this work explores the effect of compounds currently tested as chemo-preventive agents in prostate cancer therapy, on the TRX1 redox state and function. Our work shows the importance that the TRX system might have within the differences found in their mechanisms of action. These bioactive compounds trigger different responses and affect ROS production and redox systems in prostate cancer cells, suggesting the key role that redox-related pathways might play in processes like differentiation or survival in prostate cancer. Resveratrol decreases TRX1 by increasing TXNIP while curcumin induces TRX1 oxidation. Antioxidants decrease TRX1 oxidation and nuclear translocation to prevent cell death. TRX1 oxidation and nuclear translocation play a key role in apoptosis. Differences in the apoptosis induction of bioactive compounds relay on TRX1 oxidation.
Collapse
|
14
|
|
15
|
Ramos AS, Souza ROS, Boleti APDA, Bruginski ERD, Lima ES, Campos FR, Machado MB. Chemical characterization and antioxidant capacity of the araçá-pera (Psidium acutangulum): An exotic Amazon fruit. Food Res Int 2015; 75:315-327. [PMID: 28454962 DOI: 10.1016/j.foodres.2015.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 11/25/2022]
Abstract
The "araçá-pera" (Psidium acutangulum DC) is an exotic guava consumed by the Brazilian Amazon population. This paper describes 22 compounds from this fruit by UHPLC-HRMS and NMR methods, being one disaccharide, five monosaccharides, two organic acids, one trihydroxycinnamic acid glucopyranosyl, one tannine digalloyl glucopyranosyl, five triterpenoid acids, and six fatty acids. It also quantifies the level of ascorbic acid (AA) by HPLC-MS (74.32±1.23mg/100g of fresh fruit), and defines the chemical antioxidant activities by DPPH and ABTS+ assays (24.96±0.75, 90.57±0.63mg of vitamin C/100g fresh fruit, respectively), and a cell-based assays (76-100%). These results have shown that this exotic guava can be consumed as a nutraceutical ingredient, as well as be used in the production of functional foods in the Amazonian diet to prevent chronic and oxidative diseases.
Collapse
Affiliation(s)
- Andrezza S Ramos
- Departamento de Química, Universidade Federal do Amazonas, 69077-000, Manaus, AM, Brazil
| | - Rodrigo O S Souza
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, 69077-000, Manaus, AM, Brazil
| | - Ana Paula de A Boleti
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, 69077-000, Manaus, AM, Brazil
| | - Estevan R D Bruginski
- Departamento de Farmácia, Universidade Federal do Paraná, 80210-170, Curitiba, PR, Brazil
| | - Emerson S Lima
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, 69077-000, Manaus, AM, Brazil
| | - Francinete R Campos
- Departamento de Farmácia, Universidade Federal do Paraná, 80210-170, Curitiba, PR, Brazil
| | - Marcos B Machado
- Departamento de Química, Universidade Federal do Amazonas, 69077-000, Manaus, AM, Brazil.
| |
Collapse
|