1
|
Bottasso-Arias N, Mohanakrishnan M, Trovillion S, Burra K, Russell NX, Wu Y, Xu Y, Sinner D. Wnt5a and Notum Influence the Temporal Dynamics of Cartilaginous Mesenchymal Condensations in Developing Trachea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610014. [PMID: 39282283 PMCID: PMC11398369 DOI: 10.1101/2024.09.02.610014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The trachea is essential for proper airflow to the lungs for gas exchange. Frequent congenital tracheal malformations affect the cartilage, causing the collapse of the central airway during the respiratory cycle. We have shown that Notum, a Wnt ligand de-acylase that attenuates the canonical branch of the Wnt signaling pathway, is necessary for cartilaginous mesenchymal condensations. In Notum deficient tracheas, chondrogenesis is delayed, and the tracheal lumen is narrowed. It is unknown if Notum attenuates non-canonical Wnt signaling. We observed premature tracheal chondrogenesis after mesenchymal deletion of the non-canonical Wnt5a ligand. We hypothesize that Notum and Wnt5a are required to mediate the timely formation of mesenchymal condensations, giving rise to the tracheal cartilage. Ex vivo culture of tracheal tissue shows that chemical inhibition of the Wnt non-canonical pathway promotes earlier condensations, while Notum inhibition presents delayed condensations. Furthermore, non-canonical Wnt induction prevents the formation of cartilaginous mesenchymal condensations. On the other hand, cell-cell interactions among chondroblasts increase in the absence of mesenchymal Wnt5a. By performing an unbiased analysis of the gene expression in Wnt5a and Notum deficient tracheas, we detect that by E11.5, mRNA of genes essential for chondrogenesis and extracellular matrix formation are upregulated in Wnt5a mutants. The expression profile supports the premature and delayed chondrogenesis observed in Wnt5a and Notum deficient tracheas, respectively. We conclude that Notum and Wnt5a are necessary for proper tracheal cartilage patterning by coordinating timely chondrogenesis. Thus, these studies shed light on molecular mechanisms underlying congenital anomalies of the trachea.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology, Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program. Current affiliation University of Cincinnati, College of Medicine
| | - Sarah Trovillion
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: Nationwide Children’s Hospital Columbus OH
| | - Nicholas X. Russell
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program
| | - Yixin Wu
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: Washington University in St. Louis, Division of Biology & Biomedical Sciences
| | - Yan Xu
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati, College of Medicine
| |
Collapse
|
2
|
Al Asafen H, Beseli A, Chen HY, Hiremath S, Williams CM, Reeves GT. Dynamics of BMP signaling and stable gene expression in the early Drosophila embryo. Biol Open 2024; 13:bio061646. [PMID: 39207258 PMCID: PMC11381920 DOI: 10.1242/bio.061646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
In developing tissues, morphogen gradients are thought to initialize gene expression patterns. However, the relationship between the dynamics of morphogen-encoded signals and gene expression decisions is largely unknown. Here we examine the dynamics of the Bone Morphogenetic Protein (BMP) pathway in Drosophila blastoderm-stage embryos. In this tissue, the BMP pathway is highly dynamic: it begins as a broad and weak signal on the dorsal half of the embryo, then 20-30 min later refines into a narrow, intense peak centered on the dorsal midline. This dynamical progression of the BMP signal raises questions of how it stably activates target genes. Therefore, we performed live imaging of the BMP signal and found that dorsal-lateral cells experience only a short transient in BMP signaling, after which the signal is lost completely. Moreover, we measured the transcriptional response of the BMP target gene pannier in live embryos and found it to remain activated in dorsal-lateral cells, even after the BMP signal is lost. Our findings may suggest that the BMP pathway activates a memory, or 'ratchet' mechanism that may sustain gene expression.
Collapse
Affiliation(s)
- Hadel Al Asafen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Aydin Beseli
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Hung-Yuan Chen
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843,USA
| | - Sharva Hiremath
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695,USA
- North Carolina Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695,USA
| | - Cranos M. Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695,USA
- North Carolina Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695,USA
| | - Gregory T. Reeves
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843,USA
- Interdisciplinary Graduate Program in Genetics, Texas A&M University, College Station, TX 77843,USA
| |
Collapse
|
3
|
Nguyen N, Carpenter KA, Ensing J, Gilliland C, Rudisel EJ, Mu EM, Thurlow KE, Triche TJ, Grainger S. EGFR-dependent endocytosis of Wnt9a and Fzd9b promotes β-catenin signaling during hematopoietic stem cell development in zebrafish. Sci Signal 2024; 17:eadf4299. [PMID: 38626007 PMCID: PMC11103623 DOI: 10.1126/scisignal.adf4299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
Cell-to-cell communication through secreted Wnt ligands that bind to members of the Frizzled (Fzd) family of transmembrane receptors is critical for development and homeostasis. Wnt9a signals through Fzd9b, the co-receptor LRP5 or LRP6 (LRP5/6), and the epidermal growth factor receptor (EGFR) to promote early proliferation of zebrafish and human hematopoietic stem cells during development. Here, we developed fluorescently labeled, biologically active Wnt9a and Fzd9b fusion proteins to demonstrate that EGFR-dependent endocytosis of the ligand-receptor complex was required for signaling. In human cells, the Wnt9a-Fzd9b complex was rapidly endocytosed and trafficked through early and late endosomes, lysosomes, and the endoplasmic reticulum. Using small-molecule inhibitors and genetic and knockdown approaches, we found that Wnt9a-Fzd9b endocytosis required EGFR-mediated phosphorylation of the Fzd9b tail, caveolin, and the scaffolding protein EGFR protein substrate 15 (EPS15). LRP5/6 and the downstream signaling component AXIN were required for Wnt9a-Fzd9b signaling but not for endocytosis. Knockdown or loss of EPS15 impaired hematopoietic stem cell development in zebrafish. Other Wnt ligands do not require endocytosis for signaling activity, implying that specific modes of endocytosis and trafficking may represent a method by which Wnt-Fzd specificity is established.
Collapse
Affiliation(s)
- Nicole Nguyen
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Kelsey A. Carpenter
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Jessica Ensing
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Carla Gilliland
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Emma J. Rudisel
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Emily M. Mu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Kate E. Thurlow
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
- Van Andel Institute Graduate School, Grand Rapids, Michigan, 49503, USA
| | - Timothy J. Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, 49503, USA
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| |
Collapse
|
4
|
Zhang C, Brunt L, Ono Y, Rogers S, Scholpp S. Cytoneme-mediated transport of active Wnt5b-Ror2 complexes in zebrafish. Nature 2024; 625:126-133. [PMID: 38123680 PMCID: PMC10764289 DOI: 10.1038/s41586-023-06850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
Chemical signalling is the primary means by which cells communicate in the embryo. The underlying principle refers to a group of ligand-producing cells and a group of cells that respond to this signal because they express the appropriate receptors1,2. In the zebrafish embryo, Wnt5b binds to the receptor Ror2 to trigger the Wnt-planar cell polarity (PCP) signalling pathway to regulate tissue polarity and cell migration3,4. However, it remains unclear how this lipophilic ligand is transported from the source cells through the aqueous extracellular space to the target tissue. In this study, we provide evidence that Wnt5b, together with Ror2, is loaded on long protrusions called cytonemes. Our data further suggest that the active Wnt5b-Ror2 complexes form in the producing cell and are handed over from these cytonemes to the receiving cell. Then, the receiving cell has the capacity to initiate Wnt-PCP signalling, irrespective of its functional Ror2 receptor status. On the tissue level, we further show that cytoneme-dependent spreading of active Wnt5b-Ror2 affects convergence and extension in the zebrafish gastrula. We suggest that cytoneme-mediated transfer of ligand-receptor complexes is a vital mechanism for paracrine signalling. This may prompt a reevaluation of the conventional concept of characterizing responsive and non-responsive tissues solely on the basis of the expression of receptors.
Collapse
Affiliation(s)
- Chengting Zhang
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lucy Brunt
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Yosuke Ono
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Sally Rogers
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
5
|
Seo HS, Yu D, Popov I, Tao J, Angermeier A, Sha B, Axelrod JD, Chang C, Wang J. Prickle and Ror modulate Dishevelled-Vangl interaction to regulate non-canonical Wnt signaling during convergent extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555374. [PMID: 37693429 PMCID: PMC10491138 DOI: 10.1101/2023.08.29.555374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Convergent extension (CE) is a fundamental morphogenetic process where oriented cell behaviors lead to polarized extension of diverse tissues. In vertebrates, regulation of CE requires both non-canonical Wnt, its co-receptor Ror, and "core members" of the planar cell polarity (PCP) pathway. PCP was originally identified as a mechanism to coordinate the cellular polarity in the plane of static epithelium, where core proteins Frizzled (Fz)/ Dishevelled (Dvl) and Van Gogh-like (Vangl)/ Prickel (Pk) partition to opposing cell cortex. But how core PCP proteins interact with each other to mediate non-canonical Wnt/ Ror signaling during CE is not clear. We found previously that during CE, Vangl cell-autonomously recruits Dvl to the plasma membrane but simultaneously keeps Dvl inactive. In this study, we show that non-canonical Wnt induces Dvl to transition from Vangl to Fz. PK inhibits the transition, and functionally synergize with Vangl to suppress Dvl during CE. Conversely, Ror is required for the transition, and functionally antagonizes Vangl. Biochemically, Vangl interacts directly with both Ror and Dvl. Ror and Dvl do not bind directly, but can be cofractionated with Vangl. We propose that Pk assists Vangl to function as an unconventional adaptor that brings Dvl and Ror into a complex to serves two functions: 1) simultaneously preventing both Dvl and Ror from ectopically activating non-canonical Wnt signaling; and 2) relaying Dvl to Fz for signaling activation upon non-canonical Wnt induced dimerization of Fz and Ror.
Collapse
|
6
|
Stoletov K, Sanchez S, Gorroño I, Rabano M, Vivanco MDM, Kypta R, Lewis JD. Intravital imaging of Wnt/β-catenin and ATF2-dependent signalling pathways during tumour cell invasion and metastasis. J Cell Sci 2023; 136:286293. [PMID: 36621522 PMCID: PMC10022745 DOI: 10.1242/jcs.260285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Wnt signalling has been implicated as a driver of tumour cell metastasis, but less is known about which branches of Wnt signalling are involved and when they act in the metastatic cascade. Here, using a unique intravital imaging platform and fluorescent reporters, we visualised β-catenin/TCF-dependent and ATF2-dependent signalling activities during human cancer cell invasion, intravasation and metastatic lesion formation in the chick embryo host. We found that cancer cells readily shifted between states of low and high canonical Wnt activity. Cancer cells that displayed low Wnt canonical activity showed higher invasion and intravasation potential in primary tumours and in metastatic lesions. In contrast, cancer cells showing low ATF2-dependent activity were significantly less invasive both at the front of primary tumours and in metastatic lesions. Simultaneous visualisation of both these reporters using a double-reporter cell line confirmed their complementary activities in primary tumours and metastatic lesions. These findings might inform the development of therapies that target different branches of Wnt signalling at specific stages of metastasis.
Collapse
Affiliation(s)
- Konstantin Stoletov
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Saray Sanchez
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Irantzu Gorroño
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Miriam Rabano
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Maria D M Vivanco
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Robert Kypta
- Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.,Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
7
|
Differential expression profiling of onco and tumor-suppressor genes from major-signaling pathways in Wilms' tumor. Pediatr Surg Int 2022; 38:1601-1617. [PMID: 36107237 DOI: 10.1007/s00383-022-05202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Wilms' tumor is the most-frequent malignant-kidney tumor in children under 3-4 years of age and is caused by genetic alterations of oncogenes (OG) and tumor-suppressor genes (TG). Wilms' tumor has been linked to many OG-&-TG. However, only WT1 has a proven role in the development of this embryonic-tumor. METHODS The study investigates the level of mRNA expression of 16 OGs and 20 TGs involved in key-signaling pathways, including chromatin modification; RAS; APC; Cell Cycle/Apoptosis; Transcriptional Regulation; PI3K; NOTCH-&-HH; PI3K & RAS of 24-fresh Wilms'-tumor cases by capture-and-reporter probe Code-Sets chemistry, as CNVs in these pathway genes have been reported. RESULTS Upon extensively investigating, MEN1, MLL2, MLL3, PBRM1, PRDM1, SMARCB1, SETD2, WT1, PTPN11, KRAS, HRAS, NF1, APC, RB1, FUBP1, BCOR, U2AF1, PIK3CA, PTEN, EBXW7, SMO, ALK, CBL, EP300-and-GATA1 were found to be significantly up-regulated in 58.34, 62.5, 79.17, 91.67, 58, 66.66,54, 58.34, 66.67, 75, 62.5, 62.5, 58, 79.17, 79.17, 75, 70.84, 50, 50, 75, 66.66, 62.50, 61.66, 58.34-and-62.50% of cases respectively, whereas BRAF, NF2, CDH1, BCL2, FGFR3, ERBB2, MET, RET, EGFR-and-GATA2 were significantly down regulated in 58, 87.50, 79.16, 54.16, 79.17, 91.66, 66.66, 58.33, 91.66-and-62.50% of cases, respectively. Interestingly, the WT1 gene was five-fold down regulated in 41.66% of cases only. CONCLUSION Hence, extensive profiling of OGs and TGs association of major-signaling pathways in Wilms' tumor cases may aid in disease diagnosis. PBRM1 (up-regulated in 91.67% of cases), ERBB2 and EGFR (down-regulated in 91.66 and 91.66% of cases, respectively) could be marker genes. However, validation of all relevant results in a larger number of samples is required.
Collapse
|
8
|
Thorup AS, Strachan D, Caxaria S, Poulet B, Thomas BL, Eldridge SE, Nalesso G, Whiteford JR, Pitzalis C, Aigner T, Corder R, Bertrand J, Dell'Accio F. ROR2 blockade as a therapy for osteoarthritis. Sci Transl Med 2021; 12:12/561/eaax3063. [PMID: 32938794 DOI: 10.1126/scitranslmed.aax3063] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/20/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Osteoarthritis is characterized by the loss of the articular cartilage, bone remodeling, pain, and disability. No pharmacological intervention can currently halt progression of osteoarthritis. Here, we show that blocking receptor tyrosine kinase-like orphan receptor 2 (ROR2) improves cartilage integrity and pain in osteoarthritis models by inhibiting yes-associated protein (YAP) signaling. ROR2 was up-regulated in the cartilage in response to inflammatory cytokines and mechanical stress. The main ligand for ROR2, WNT5A, and the targets YAP and connective tissue growth factor were up-regulated in osteoarthritis in humans. In vitro, ROR2 overexpression inhibited chondrocytic differentiation. Conversely, ROR2 blockade triggered chondrogenic differentiation of C3H10T1/2 cells and suppressed the expression of the cartilage-degrading enzymes a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5. The chondrogenic effect of ROR2 blockade in the cartilage was independent of WNT signaling and was mediated by down-regulation of YAP signaling. ROR2 signaling induced G protein and Rho-dependent nuclear accumulation of YAP, and YAP inhibition was required but not sufficient for ROR2 blockade-induced chondrogenesis. ROR2 silencing protected mice from instability-induced osteoarthritis with improved structural outcomes, sustained pain relief, and without apparent side effects or organ toxicity. Last, ROR2 silencing in human articular chondrocytes transplanted in nude mice led to the formation of cartilage organoids with more and better differentiated extracellular matrix, suggesting that the anabolic effect of ROR2 blockade is conserved in humans. Thus, ROR2 blockade is efficacious and well tolerated in preclinical animal models of osteoarthritis.
Collapse
Affiliation(s)
- Anne-Sophie Thorup
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Danielle Strachan
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Blandine Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Bethan L Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Suzanne E Eldridge
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Giovanna Nalesso
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - James R Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Thomas Aigner
- Institute of Pathology, Medical Center Coburg, Ketschendorferstrasse 33, 96450 Coburg, Germany
| | - Roger Corder
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Francesco Dell'Accio
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
9
|
Wesslowski J, Kozielewicz P, Wang X, Cui H, Schihada H, Kranz D, Karuna M P, Levkin P, Gross JC, Boutros M, Schulte G, Davidson G. eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled. J Biol Chem 2020; 295:8759-8774. [PMID: 32381507 PMCID: PMC7324525 DOI: 10.1074/jbc.ra120.012892] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis, and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics, and selectivity of 19 mammalian WNTs to their receptors of the class Frizzled (FZD1–10) remain obscure. Attempts to investigate Wnt-FZD interactions are hampered by the difficulties in working with Wnt proteins and their recalcitrance to epitope tagging. Here, we used a fluorescently tagged version of mouse Wnt-3a for studying Wnt-FZD interactions. We observed that the enhanced GFP (eGFP)-tagged Wnt-3a maintains properties akin to wild-type (WT) Wnt-3a in several biologically relevant contexts. The eGFP-tagged Wnt-3a was secreted in an evenness interrupted (EVI)/Wntless-dependent manner, activated Wnt/β-catenin signaling in 2D and 3D cell culture experiments, promoted axis duplication in Xenopus embryos, stimulated low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation in cells, and associated with exosomes. Further, we used conditioned medium containing eGFP-Wnt-3a to visualize its binding to FZD and to quantify Wnt-FZD interactions in real time in live cells, utilizing a recently established NanoBRET-based ligand binding assay. In summary, the development of a biologically active, fluorescent Wnt-3a reported here opens up the technical possibilities to unravel the intricate biology of Wnt signaling and Wnt-receptor selectivity.
Collapse
Affiliation(s)
- Janine Wesslowski
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Pawel Kozielewicz
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xianxian Wang
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Haijun Cui
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Hannes Schihada
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Dominique Kranz
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Pradhipa Karuna M
- Hematology and Oncology/Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Pavel Levkin
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Julia Christina Gross
- Hematology and Oncology/Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Gunnar Schulte
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Gary Davidson
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
10
|
Puzik K, Tonnier V, Opper I, Eckert A, Zhou L, Kratzer MC, Noble FL, Nienhaus GU, Gradl D. Lef1 regulates caveolin expression and caveolin dependent endocytosis, a process necessary for Wnt5a/Ror2 signaling during Xenopus gastrulation. Sci Rep 2019; 9:15645. [PMID: 31666627 PMCID: PMC6821757 DOI: 10.1038/s41598-019-52218-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/10/2019] [Indexed: 11/09/2022] Open
Abstract
The activation of distinct branches of the Wnt signaling network is essential for regulating early vertebrate development. Activation of the canonical Wnt/β-catenin pathway stimulates expression of β-catenin-Lef/Tcf regulated Wnt target genes and a regulatory network giving rise to the formation of the Spemann organizer. Non-canonical pathways, by contrast, mainly regulate cell polarization and migration, in particular convergent extension movements of the trunk mesoderm during gastrulation. By transcriptome analyses, we found caveolin1, caveolin3 and cavin1 to be regulated by Lef1 in the involuting mesoderm of Xenopus embryos at gastrula stages. We show that caveolins and caveolin dependent endocytosis are necessary for proper gastrulation, most likely by interfering with Wnt5a/Ror2 signaling. Wnt5a regulates the subcellular localization of receptor complexes, including Ror2 homodimers, Ror2/Fzd7 and Ror2/dsh heterodimers in an endocytosis dependent manner. Live-cell imaging revealed endocytosis of Ror2/caveolin1 complexes. In Xenopus explants, in the presence of Wnt5a, these receptor clusters remain stable exclusively at the basolateral side, suggesting that endocytosis of non-canonical Wnt/receptor complexes preferentially takes place at the apical membrane. In support of this blocking endocytosis with inhibitors prevents the effects of Wnt5a. Thus, target genes of Lef1 interfere with Wnt5a/Ror2 signaling to coordinate gastrulation movements.
Collapse
Affiliation(s)
- Katharina Puzik
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Veronika Tonnier
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Isabell Opper
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Antonia Eckert
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Lu Zhou
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Marie-Claire Kratzer
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Dietmar Gradl
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany.
| |
Collapse
|
11
|
Mattes B, Dang Y, Greicius G, Kaufmann LT, Prunsche B, Rosenbauer J, Stegmaier J, Mikut R, Özbek S, Nienhaus GU, Schug A, Virshup DM, Scholpp S. Wnt/PCP controls spreading of Wnt/β-catenin signals by cytonemes in vertebrates. eLife 2018; 7:36953. [PMID: 30060804 PMCID: PMC6086664 DOI: 10.7554/elife.36953] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Signaling filopodia, termed cytonemes, are dynamic actin-based membrane structures that regulate the exchange of signaling molecules and their receptors within tissues. However, how cytoneme formation is regulated remains unclear. Here, we show that Wnt/planar cell polarity (PCP) autocrine signaling controls the emergence of cytonemes, and that cytonemes subsequently control paracrine Wnt/β-catenin signal activation. Upon binding of the Wnt family member Wnt8a, the receptor tyrosine kinase Ror2 becomes activated. Ror2/PCP signaling leads to the induction of cytonemes, which mediate the transport of Wnt8a to neighboring cells. In the Wnt-receiving cells, Wnt8a on cytonemes triggers Wnt/β-catenin-dependent gene transcription and proliferation. We show that cytoneme-based Wnt transport operates in diverse processes, including zebrafish development, murine intestinal crypt and human cancer organoids, demonstrating that Wnt transport by cytonemes and its control via the Ror2 pathway is highly conserved in vertebrates. Communication helps the cells that make up tissues and organs to work together as a team. One way that cells share information with each other as tissues grow and develop is by exchanging signaling proteins. These interact with receptors on the surface of other cells; this causes the cell to change how it behaves. The Wnt family of signaling proteins orchestrate organ development. Wnt proteins influence which types of cells develop, how fast they divide, and how and when they move. Relatively few cells, or small groups of cells, in developing tissues produce Wnt proteins, while larger groups nearby respond to the signals. We do not fully understand how Wnt proteins travel between cells, but recent work revealed an unexpected mechanism – cells seem to hand-deliver their messages. Finger-like structures called cytonemes grow out of the cell membrane and carry Wnt proteins to their destination. If the cytonemes do not form properly the target cells do not behave correctly, which can lead to severe tissue malformation. Mattes et al. have now investigated how cytonemes form using a combination of state-of-the-art genetic and high-resolution imaging techniques. In initial experiments involving zebrafish cells that were grown in the laboratory, Mattes et al. found that the Wnt proteins kick start their own transport; before they travel to their destination, they act on the cells that made them. A Wnt protein called Wnt8a activates the receptor Ror2 on the surface of the signal-producing cell. Ror2 then triggers signals inside the cell that begin the assembly of the cytonemes. The more Ror2 is activated, the more cytonemes the cell makes, and the more Wnt signals it can send out. This mechanism operates in various tissues: Ror2 also controls the cytoneme transport process in living zebrafish embryos, the mouse intestine and human stomach tumors. This knowledge will help researchers to develop new ways to control Wnt signaling, which could help to produce new treatments for diseases ranging from cancers (for example in the stomach and bowel) to degenerative diseases such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Benjamin Mattes
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Yonglong Dang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gediminas Greicius
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Benedikt Prunsche
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jakob Rosenbauer
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Jülich, Germany
| | - Johannes Stegmaier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Suat Özbek
- Centre of Organismal Studies, University of Heidelberg, Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Jülich, Germany.,Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
12
|
Gerhardt B, Leesman L, Burra K, Snowball J, Rosenzweig R, Guzman N, Ambalavanan M, Sinner D. Notum attenuates Wnt/β-catenin signaling to promote tracheal cartilage patterning. Dev Biol 2018; 436:14-27. [PMID: 29428562 DOI: 10.1016/j.ydbio.2018.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
Tracheobronchomalacia (TBM) is a common congenital disorder in which the cartilaginous rings of the trachea are weakened or missing. Despite the high prevalence and clinical issues associated with TBM, the etiology is largely unknown. Our previous studies demonstrated that Wntless (Wls) and its associated Wnt pathways are critical for patterning of the upper airways. Deletion of Wls in respiratory endoderm caused TBM and ectopic trachealis muscle. To understand mechanisms by which Wls mediates tracheal patterning, we performed RNA sequencing in prechondrogenic tracheal tissue of Wlsf/f;ShhCre/wt embryos. Chondrogenic Bmp4, and Sox9 were decreased, while expression of myogenic genes was increased. We identified Notum, a deacylase that inactivates Wnt ligands, as a target of Wls induced Wnt signaling. Notum's mesenchymal ventral expression in prechondrogenic trachea overlaps with expression of Axin2, a Wnt/β-catenin target and inhibitor. Notum is induced by Wnt/β-catenin in developing trachea. Deletion of Notum activated mesenchymal Wnt/β-catenin and caused tracheal mispatterning of trachealis muscle and cartilage as well as tracheal stenosis. Notum is required for tracheal morphogenesis, influencing mesenchymal condensations critical for patterning of tracheal cartilage and muscle. We propose that Notum influences mesenchymal cell differentiation by generating a barrier for Wnt ligands produced and secreted by airway epithelial cells to attenuate Wnt signaling.
Collapse
Affiliation(s)
- Bradley Gerhardt
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| | - Lauren Leesman
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| | - Kaulini Burra
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| | - John Snowball
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| | - Rachel Rosenzweig
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| | - Natalie Guzman
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| | - Manoj Ambalavanan
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| | - Debora Sinner
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| |
Collapse
|
13
|
Berger H, Breuer M, Peradziryi H, Podleschny M, Jacob R, Borchers A. PTK7 localization and protein stability is affected by canonical Wnt ligands. J Cell Sci 2017; 130:1890-1903. [PMID: 28420671 DOI: 10.1242/jcs.198580] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/07/2017] [Indexed: 01/03/2023] Open
Abstract
Protein tyrosine kinase 7 (PTK7) is an evolutionarily conserved transmembrane receptor with important roles in embryonic development and disease. Originally identified as a gene upregulated in colon cancer, it was later shown to regulate planar cell polarity (PCP) and directional cell movement. PTK7 is a Wnt co-receptor; however, its role in Wnt signaling remains controversial. Here, we find evidence that places PTK7 at the intersection of canonical and non-canonical Wnt signaling pathways. In presence of canonical Wnt ligands PTK7 is subject to caveolin-mediated endocytosis, while it is unaffected by non-canonical Wnt ligands. PTK7 endocytosis is dependent on the presence of the PTK7 co-receptor Fz7 (also known as Fzd7) and results in lysosomal degradation of PTK7. As we previously observed that PTK7 activates non-canonical PCP Wnt signaling but inhibits canonical Wnt signaling, our data suggest a mutual inhibition of canonical and PTK7 Wnt signaling. PTK7 likely suppresses canonical Wnt signaling by binding canonical Wnt ligands thereby preventing their interaction with Wnt receptors that would otherwise support canonical Wnt signaling. Conversely, if canonical Wnt proteins interact with the PTK7 receptor, they induce its internalization and degradation.
Collapse
Affiliation(s)
- Hanna Berger
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Marlen Breuer
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Hanna Peradziryi
- Institute for Clinical Research, Georg-August Universität Göttingen, Göttingen 37075, Germany
| | - Martina Podleschny
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg 35037, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany .,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
14
|
Pearl E, Morrow S, Noble A, Lerebours A, Horb M, Guille M. An optimized method for cryogenic storage of Xenopus sperm to maximise the effectiveness of research using genetically altered frogs. Theriogenology 2017; 92:149-155. [PMID: 28237331 PMCID: PMC5340284 DOI: 10.1016/j.theriogenology.2017.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/26/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
Cryogenic storage of sperm from genetically altered Xenopus improves cost effectiveness and animal welfare associated with their use in research; currently it is routine for X. tropicalis but not reliable for X. laevis. Here we compare directly the three published protocols for Xenopus sperm freeze-thaw and determine whether sperm storage temperature, method of testes maceration and delays in the freezing protocols affect successful fertilisation and embryo development in X. laevis. We conclude that the protocol is robust and that the variability observed in fertilisation rates is due to differences between individuals. We show that the embryos made from the frozen-thawed sperm are normal and that the adults they develop into are reproductively indistinguishable from others in the colony. This opens the way for using cryopreserved sperm to distribute dominant genetically altered (GA) lines, potentially saving travel-induced stress to the male frogs, reducing their numbers used and making Xenopus experiments more cost effective. Xenopus cryopreservation is robust using an optimized method. Success is dependent on the quality of animals from which the sperm are taken. Frozen sperm may now be used to distribute lines and wild-type male gametes around the world.
Collapse
Affiliation(s)
- Esther Pearl
- National Xenopus Resource, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Sean Morrow
- European Xenopus Resource Centre, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Anna Noble
- European Xenopus Resource Centre, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Adelaide Lerebours
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Marko Horb
- National Xenopus Resource, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Matthew Guille
- European Xenopus Resource Centre, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK; School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK.
| |
Collapse
|
15
|
Wallkamm V, Rahm K, Schmoll J, Kaufmann LT, Brinkmann E, Schunk J, Kraft B, Wedlich D, Gradl D. Regulation of distinct branches of the non-canonical Wnt-signaling network in Xenopus dorsal marginal zone explants. BMC Biol 2016; 14:55. [PMID: 27380628 PMCID: PMC4932719 DOI: 10.1186/s12915-016-0278-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/21/2016] [Indexed: 11/10/2022] Open
Abstract
Background A tight regulation of the Wnt-signaling network, activated by 19 Wnt molecules and numerous receptors and co-receptors, is required for the establishment of a complex organism. Different branches of this Wnt-signaling network, including the canonical Wnt/β-catenin and the non-canonical Wnt/PCP, Wnt/Ror2 and Wnt/Ca2+ pathways, are assigned to distinct developmental processes and are triggered by certain ligand/receptor complexes. The Wnt-signaling molecules are closely related and it is still on debate whether the information for activating a specific branch is encoded by specific sequence motifs within a particular Wnt protein. The model organism Xenopus offers tools to distinguish between Wnt-signaling molecules activating distinct branches of the network. Results We created chimeric Wnt8a/Wnt11 molecules and could demonstrate that the C-terminal part (containing the BS2) of Wnt8a is responsible for secondary axis formation. Chimeric Wnt11/Wnt5a molecules revealed that the N-terminus with the elements PS3-1 and PS3-2 defines Wnt11 specificity, while elements PS3-1, PS3-2 and PS3-3 are required for Wnt5a specificity. Furthermore, we used Xenopus dorsal marginal zone explants to identify non-canonical Wnt target genes regulated by the Wnt5a branch and the Wnt11 branch. We found that pbk was specifically regulated by Wnt5a and rab11fip5 by Wnt11. Overexpression of these target genes phenocopied the overexpression of their regulators, confirming the distinct roles of Wnt11 and Wnt5a triggered signaling pathways. Furthermore, knock-down of pbk was able to restore convergent extension movements in Wnt5a morphants. Conclusions The N-terminal part of non-canonical Wnt proteins decides whether the Wnt5a or the Wnt11 branch of the Wnt-signaling network gets activated. The different non-canonical Wnt branches not only regulate cellular behavior, but, surprisingly, also regulate the expression of different target genes. One of these target genes, pbk, seems to be the relevant target gene executing Wnt5a-mediated regulation of convergent extension movements. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0278-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Veronika Wallkamm
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Karolin Rahm
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jana Schmoll
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Lilian T Kaufmann
- Section Developmental Genetics, Institute for Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Eva Brinkmann
- Section Developmental Genetics, Institute for Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Jessica Schunk
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Bianca Kraft
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Medicine V, University of Heidelberg, 69120, Heidelberg, Germany
| | - Doris Wedlich
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Dietmar Gradl
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| |
Collapse
|
16
|
Carboxypeptidase E (CPE) inhibits the secretion and activity of Wnt3a. Oncogene 2016; 35:6416-6428. [DOI: 10.1038/onc.2016.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/26/2016] [Accepted: 04/08/2016] [Indexed: 12/19/2022]
|
17
|
ROR1 is essential for proper innervation of auditory hair cells and hearing in humans and mice. Proc Natl Acad Sci U S A 2016; 113:5993-8. [PMID: 27162350 DOI: 10.1073/pnas.1522512113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hair cells of the inner ear, the mechanosensory receptors, convert sound waves into neural signals that are passed to the brain via the auditory nerve. Little is known about the molecular mechanisms that govern the development of hair cell-neuronal connections. We ascertained a family with autosomal recessive deafness associated with a common cavity inner ear malformation and auditory neuropathy. Via whole-exome sequencing, we identified a variant (c.2207G>C, p.R736T) in ROR1 (receptor tyrosine kinase-like orphan receptor 1), cosegregating with deafness in the family and absent in ethnicity-matched controls. ROR1 is a tyrosine kinase-like receptor localized at the plasma membrane. At the cellular level, the mutation prevents the protein from reaching the cellular membrane. In the presence of WNT5A, a known ROR1 ligand, the mutated ROR1 fails to activate NF-κB. Ror1 is expressed in the inner ear during development at embryonic and postnatal stages. We demonstrate that Ror1 mutant mice are severely deaf, with preserved otoacoustic emissions. Anatomically, mutant mice display malformed cochleae. Axons of spiral ganglion neurons show fasciculation defects. Type I neurons show impaired synapses with inner hair cells, and type II neurons display aberrant projections through the cochlear sensory epithelium. We conclude that Ror1 is crucial for spiral ganglion neurons to innervate auditory hair cells. Impairment of ROR1 function largely affects development of the inner ear and hearing in humans and mice.
Collapse
|
18
|
Brinkmann EM, Mattes B, Kumar R, Hagemann AIH, Gradl D, Scholpp S, Steinbeisser H, Kaufmann LT, Özbek S. Secreted Frizzled-related Protein 2 (sFRP2) Redirects Non-canonical Wnt Signaling from Fz7 to Ror2 during Vertebrate Gastrulation. J Biol Chem 2016; 291:13730-42. [PMID: 27129770 DOI: 10.1074/jbc.m116.733766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 02/04/2023] Open
Abstract
Convergent extension movements during vertebrate gastrulation require a balanced activity of non-canonical Wnt signaling pathways, but the factors regulating this interplay on the molecular level are poorly characterized. Here we show that sFRP2, a member of the secreted frizzled-related protein (sFRP) family, is required for morphogenesis and papc expression during Xenopus gastrulation. We further provide evidence that sFRP2 redirects non-canonical Wnt signaling from Frizzled 7 (Fz7) to the receptor tyrosine kinase-like orphan receptor 2 (Ror2). During this process, sFRP2 promotes Ror2 signal transduction by stabilizing Wnt5a-Ror2 complexes at the membrane, whereas it inhibits Fz7 signaling, probably by blocking Fz7 receptor endocytosis. The cysteine-rich domain of sFRP2 is sufficient for Ror2 activation, and related sFRPs can substitute for this function. Notably, direct interaction of the two receptors via their cysteine-rich domains also promotes Ror2-mediated papc expression but inhibits Fz7 signaling. We propose that sFRPs can act as a molecular switch, channeling the signal input for different non-canonical Wnt pathways during vertebrate gastrulation.
Collapse
Affiliation(s)
- Eva-Maria Brinkmann
- From the Institute of Human Genetics, Department of Developmental Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Benjamin Mattes
- the Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, 76344 Karlsruhe, Germany
| | - Rahul Kumar
- From the Institute of Human Genetics, Department of Developmental Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Anja I H Hagemann
- the Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, 76344 Karlsruhe, Germany
| | - Dietmar Gradl
- the Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany, and
| | - Steffen Scholpp
- the Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, 76344 Karlsruhe, Germany
| | - Herbert Steinbeisser
- From the Institute of Human Genetics, Department of Developmental Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Lilian T Kaufmann
- From the Institute of Human Genetics, Department of Developmental Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany,
| | - Suat Özbek
- the Centre of Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Dual-color dual-focus line-scanning FCS for quantitative analysis of receptor-ligand interactions in living specimens. Sci Rep 2015; 5:10149. [PMID: 25951521 PMCID: PMC4423563 DOI: 10.1038/srep10149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/31/2015] [Indexed: 01/27/2023] Open
Abstract
Cellular communication in multi-cellular organisms is mediated to a large extent by a multitude of cell-surface receptors that bind specific ligands. An in-depth understanding of cell signaling networks requires quantitative information on ligand-receptor interactions within living systems. In principle, fluorescence correlation spectroscopy (FCS) based methods can provide such data, but live-cell applications have proven extremely challenging. Here, we have developed an integrated dual-color dual-focus line-scanning fluorescence correlation spectroscopy (2c2f lsFCS) technique that greatly facilitates live-cell and tissue experiments. Absolute ligand and receptor concentrations and their diffusion coefficients within the cell membrane can be quantified without the need to perform additional calibration experiments. We also determine the concentration of ligands diffusing in the medium outside the cell within the same experiment by using a raster image correlation spectroscopy (RICS) based analysis. We have applied this robust technique to study the interactions of two Wnt antagonists, Dickkopf1 and Dickkopf2 (Dkk1/2), to their cognate receptor, low-density-lipoprotein-receptor related protein 6 (LRP6), in the plasma membrane of living HEK293T cells. We obtained significantly lower affinities than previously reported using in vitro studies, underscoring the need to measure such data on living cells or tissues.
Collapse
|