1
|
Jain S, Voulgaris D, Thongkorn S, Hesen R, Hägg A, Moslem M, Falk A, Herland A. On-Chip Neural Induction Boosts Neural Stem Cell Commitment: Toward a Pipeline for iPSC-Based Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401859. [PMID: 38655836 PMCID: PMC11220685 DOI: 10.1002/advs.202401859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 04/26/2024]
Abstract
The clinical translation of induced pluripotent stem cells (iPSCs) holds great potential for personalized therapeutics. However, one of the main obstacles is that the current workflow to generate iPSCs is expensive, time-consuming, and requires standardization. A simplified and cost-effective microfluidic approach is presented for reprogramming fibroblasts into iPSCs and their subsequent differentiation into neural stem cells (NSCs). This method exploits microphysiological technology, providing a 100-fold reduction in reagents for reprogramming and a ninefold reduction in number of input cells. The iPSCs generated from microfluidic reprogramming of fibroblasts show upregulation of pluripotency markers and downregulation of fibroblast markers, on par with those reprogrammed in standard well-conditions. The NSCs differentiated in microfluidic chips show upregulation of neuroectodermal markers (ZIC1, PAX6, SOX1), highlighting their propensity for nervous system development. Cells obtained on conventional well plates and microfluidic chips are compared for reprogramming and neural induction by bulk RNA sequencing. Pathway enrichment analysis of NSCs from chip showed neural stem cell development enrichment and boosted commitment to neural stem cell lineage in initial phases of neural induction, attributed to a confined environment in a microfluidic chip. This method provides a cost-effective pipeline to reprogram and differentiate iPSCs for therapeutics compliant with current good manufacturing practices.
Collapse
Affiliation(s)
- Saumey Jain
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
- Division of NanobiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
| | - Dimitrios Voulgaris
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
- Division of NanobiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMESCenter for Integrated Medical and Engineering ScienceDepartment of NeuroscienceKarolinska InstitutetSolna171 65Sweden
| | - Surangrat Thongkorn
- Division of NanobiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE)Department of Clinical ChemistryFaculty of Allied Health SciencesChulalongkorn UniversityBangkok10330Thailand
| | - Rick Hesen
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
| | - Alice Hägg
- Neural Stem CellsDepartment of Experimental Medical ScienceLund Stem Cell CenterLund UniversityLund221 84Sweden
| | - Mohsen Moslem
- Department of NeuroscienceKarolinska InstitutetSolna171 65Sweden
| | - Anna Falk
- Neural Stem CellsDepartment of Experimental Medical ScienceLund Stem Cell CenterLund UniversityLund221 84Sweden
- Department of NeuroscienceKarolinska InstitutetSolna171 65Sweden
| | - Anna Herland
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
- Division of NanobiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMESCenter for Integrated Medical and Engineering ScienceDepartment of NeuroscienceKarolinska InstitutetSolna171 65Sweden
- Department of NeuroscienceKarolinska InstitutetSolna171 65Sweden
| |
Collapse
|
2
|
Pereira I, Lopez-Martinez MJ, Villasante A, Introna C, Tornero D, Canals JM, Samitier J. Hyaluronic acid-based bioink improves the differentiation and network formation of neural progenitor cells. Front Bioeng Biotechnol 2023; 11:1110547. [PMID: 36937768 PMCID: PMC10020230 DOI: 10.3389/fbioe.2023.1110547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Three-dimensional (3D) bioprinting is a promising technique for the development of neuronal in vitro models because it controls the deposition of materials and cells. Finding a biomaterial that supports neural differentiation in vitro while ensuring compatibility with the technique of 3D bioprinting of a self-standing construct is a challenge. Methods: In this study, gelatin methacryloyl (GelMA), methacrylated alginate (AlgMA), and hyaluronic acid (HA) were examined by exploiting their biocompatibility and tunable mechanical properties to resemble the extracellular matrix (ECM) and to create a suitable material for printing neural progenitor cells (NPCs), supporting their long-term differentiation. NPCs were printed and differentiated for up to 15 days, and cell viability and neuronal differentiation markers were assessed throughout the culture. Results and Discussion: This composite biomaterial presented the desired physical properties to mimic the ECM of the brain with high water intake, low stiffness, and slow degradation while allowing the printing of defined structures. The viability rates were maintained at approximately 80% at all time points. However, the levels of β-III tubulin marker increased over time, demonstrating the compatibility of this biomaterial with neuronal cell culture and differentiation. Furthermore, these cells showed increased maturation with corresponding functional properties, which was also demonstrated by the formation of a neuronal network that was observed by recording spontaneous activity via Ca2+ imaging.
Collapse
Affiliation(s)
- Inês Pereira
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maria J. Lopez-Martinez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Aranzazu Villasante
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Clelia Introna
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Creatio - Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Research Foundation Clinic Barcelona-August Pi i Sunyer Biomedical Research Institute (FRCB-IDIBAPS), Barcelona, Spain
| | - Daniel Tornero
- Research Foundation Clinic Barcelona-August Pi i Sunyer Biomedical Research Institute (FRCB-IDIBAPS), Barcelona, Spain
- Laboratory of Neuronal Stem Cells and Cerebral Damage, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Creatio - Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Research Foundation Clinic Barcelona-August Pi i Sunyer Biomedical Research Institute (FRCB-IDIBAPS), Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- *Correspondence: Josep Samitier,
| |
Collapse
|
3
|
Habibey R, Rojo Arias JE, Striebel J, Busskamp V. Microfluidics for Neuronal Cell and Circuit Engineering. Chem Rev 2022; 122:14842-14880. [PMID: 36070858 PMCID: PMC9523714 DOI: 10.1021/acs.chemrev.2c00212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 02/07/2023]
Abstract
The widespread adoption of microfluidic devices among the neuroscience and neurobiology communities has enabled addressing a broad range of questions at the molecular, cellular, circuit, and system levels. Here, we review biomedical engineering approaches that harness the power of microfluidics for bottom-up generation of neuronal cell types and for the assembly and analysis of neural circuits. Microfluidics-based approaches are instrumental to generate the knowledge necessary for the derivation of diverse neuronal cell types from human pluripotent stem cells, as they enable the isolation and subsequent examination of individual neurons of interest. Moreover, microfluidic devices allow to engineer neural circuits with specific orientations and directionality by providing control over neuronal cell polarity and permitting the isolation of axons in individual microchannels. Similarly, the use of microfluidic chips enables the construction not only of 2D but also of 3D brain, retinal, and peripheral nervous system model circuits. Such brain-on-a-chip and organoid-on-a-chip technologies are promising platforms for studying these organs as they closely recapitulate some aspects of in vivo biological processes. Microfluidic 3D neuronal models, together with 2D in vitro systems, are widely used in many applications ranging from drug development and toxicology studies to neurological disease modeling and personalized medicine. Altogether, microfluidics provide researchers with powerful systems that complement and partially replace animal models.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Jesús Eduardo Rojo Arias
- Wellcome—MRC
Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge
Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Johannes Striebel
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Volker Busskamp
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| |
Collapse
|
4
|
Three dimensional and microphysiological bone marrow models detect in vivo positive compounds. Sci Rep 2021; 11:21959. [PMID: 34754012 PMCID: PMC8578414 DOI: 10.1038/s41598-021-01400-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Micronucleus (MN) assessment is a valuable tool in safety assessment. However, several compounds are positive in the in vivo bone marrow (BM) MN assay but negative in vitro, reflecting that BM complexity is not recapitulated in vitro. Importantly, these compounds are not genotoxic; rather, drug-driven pharmacological-effects on the BM increase MN, however, without mechanistic understanding, in vivo positives stop drug-progression. Thus, physiologically-relevant BM models are required to bridge the gap between in vitro and in vivo. The current study aimed to investigate the utility of two human 3D BM models (fluidic and static) for MN assessment. MN induction following treatment with etoposide and Poly-ADP Ribose Polymerase inhibitor (PARPi) and prednisolone (negative in vitro, positive in vivo) was determined in 2D L5178Y and human BM cells, and the 3D BM models. Etoposide (0–0.070 µM) and PARPi (0–150 µM) induced MN in both 3D BM models indicating their utility for genotoxicity testing. Interestingly, PARPi treatment induced a MN trend in 3D more comparable to in vivo. Importantly, prednisolone (0–1.7 mM) induced MN in both 3D BM models, suggesting recapitulation of the in vivo microenvironment. These models could provide a valuable tool to follow up, and eventually predict, suspected pharmacological mechanisms, thereby reducing animal studies.
Collapse
|
5
|
Aranda Hernandez J, Heuer C, Bahnemann J, Szita N. Microfluidic Devices as Process Development Tools for Cellular Therapy Manufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 179:101-127. [PMID: 34410457 DOI: 10.1007/10_2021_169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cellular therapies are creating a paradigm shift in the biomanufacturing industry. Particularly for autologous therapies, small-scale processing methods are better suited than the large-scale approaches that are traditionally employed in the industry. Current small-scale methods for manufacturing personalized cell therapies, however, are labour-intensive and involve a number of 'open events'. To overcome these challenges, new cell manufacturing platforms following a GMP-in-a-box concept have recently come on the market (GMP: Good Manufacturing Practice). These are closed automated systems with built-in pumps for fluid handling and sensors for in-process monitoring. At a much smaller scale, microfluidic devices exhibit many of the same features as current GMP-in-a-box systems. They are closed systems, fluids can be processed and manipulated, and sensors integrated for real-time detection of process variables. Fabricated from polymers, they can be made disposable, i.e. single-use. Furthermore, microfluidics offers exquisite spatiotemporal control over the cellular microenvironment, promising both reproducibility and control of outcomes. In this chapter, we consider the challenges in cell manufacturing, highlight recent advances of microfluidic devices for each of the main process steps, and summarize our findings on the current state of the art. As microfluidic cell culture devices have been reported for both adherent and suspension cell cultures, we report on devices for the key process steps, or unit operations, of both stem cell therapies and cell-based immunotherapies.
Collapse
Affiliation(s)
| | - Christopher Heuer
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Nicolas Szita
- Biochemical Engineering Department, University College London (UCL), London, UK.
| |
Collapse
|
6
|
Aghlmandi A, Nikshad A, Safaralizadeh R, Warkiani ME, Aghebati-Maleki L, Yousefi M. Microfluidics as efficient technology for the isolation and characterization of stem cells. EXCLI JOURNAL 2021; 20:426-443. [PMID: 33746671 PMCID: PMC7975637 DOI: 10.17179/excli2020-3028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 01/09/2023]
Abstract
The recent years have been passed with significant progressions in the utilization of microfluidic technologies for cellular investigations. The aim of microfluidics is to mimic small-scale body environment with features like optical transparency. Microfluidics can screen and monitor different cell types during culture and study cell function in response to stimuli in a fully controlled environment. No matter how the microfluidic environment is similar to in vivo environment, it is not possible to fully investigate stem cells behavior in response to stimuli during cell proliferation and differentiation. Researchers have used stem cells in different fields from fundamental researches to clinical applications. Many cells in the body possess particular functions, but stem cells do not have a specific task and can turn into almost any type of cells. Stem cells are undifferentiated cells with the ability of changing into specific cells that can be essential for the body. Researchers and physicians are interested in stem cells to use them in testing the function of the body's systems and solving their complications. This review discusses the recent advances in utilizing microfluidic techniques for the analysis of stem cells, and mentions the advantages and disadvantages of using microfluidic technology for stem cell research.
Collapse
Affiliation(s)
- Afsoon Aghlmandi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Aylin Nikshad
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Majid Ebrahimi Warkiani
- The School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
7
|
Guo Z, Richardson JJ, Kong B, Liang K. Nanobiohybrids: Materials approaches for bioaugmentation. SCIENCE ADVANCES 2020; 6:eaaz0330. [PMID: 32206719 PMCID: PMC7080450 DOI: 10.1126/sciadv.aaz0330] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/20/2019] [Indexed: 05/10/2023]
Abstract
Nanobiohybrids, synthesized by integrating functional nanomaterials with living systems, have emerged as an exciting branch of research at the interface of materials engineering and biological science. Nanobiohybrids use synthetic nanomaterials to impart organisms with emergent properties outside their scope of evolution. Consequently, they endow new or augmented properties that are either innate or exogenous, such as enhanced tolerance against stress, programmed metabolism and proliferation, artificial photosynthesis, or conductivity. Advances in new materials design and processing technologies made it possible to tailor the physicochemical properties of the nanomaterials coupled with the biological systems. To date, many different types of nanomaterials have been integrated with various biological systems from simple biomolecules to complex multicellular organisms. Here, we provide a critical overview of recent developments of nanobiohybrids that enable new or augmented biological functions that show promise in high-tech applications across many disciplines, including energy harvesting, biocatalysis, biosensing, medicine, and robotics.
Collapse
Affiliation(s)
- Ziyi Guo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438 P. R. China
- Corresponding author. (B.K.); (K.L.)
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
- Corresponding author. (B.K.); (K.L.)
| |
Collapse
|
8
|
Mofazzal Jahromi MA, Abdoli A, Rahmanian M, Bardania H, Bayandori M, Moosavi Basri SM, Kalbasi A, Aref AR, Karimi M, Hamblin MR. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. Mol Neurobiol 2019; 56:8489-8512. [PMID: 31264092 PMCID: PMC6842047 DOI: 10.1007/s12035-019-01653-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases (NDDs) include more than 600 types of nervous system disorders in humans that impact tens of millions of people worldwide. Estimates by the World Health Organization (WHO) suggest NDDs will increase by nearly 50% by 2030. Hence, development of advanced models for research on NDDs is needed to explore new therapeutic strategies and explore the pathogenesis of these disorders. Different approaches have been deployed in order to investigate nervous system disorders, including two-and three-dimensional (2D and 3D) cell cultures and animal models. However, these models have limitations, such as lacking cellular tension, fluid shear stress, and compression analysis; thus, studying the biochemical effects of therapeutic molecules on the biophysiological interactions of cells, tissues, and organs is problematic. The microfluidic "organ-on-a-chip" is an inexpensive and rapid analytical technology to create an effective tool for manipulation, monitoring, and assessment of cells, and investigating drug discovery, which enables the culture of various cells in a small amount of fluid (10-9 to 10-18 L). Thus, these chips have the ability to overcome the mentioned restrictions of 2D and 3D cell cultures, as well as animal models. Stem cells (SCs), particularly neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) have the capability to give rise to various neural system cells. Hence, microfluidic organ-on-a-chip and SCs can be used as potential research tools to study the treatment of central nervous system (CNS) and peripheral nervous system (PNS) disorders. Accordingly, in the present review, we discuss the latest progress in microfluidic brain-on-a-chip as a powerful and advanced technology that can be used in basic studies to investigate normal and abnormal functions of the nervous system.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Abdoli
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Rahmanian
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Anesthesiology, Critical Care, and Pain Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrdad Bayandori
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amir Reza Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02215, USA
| | - Mahdi Karimi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Yan J, Goerne T, Zelmer A, Guzman R, Kapfhammer JP, Wellmann S, Zhu X. The RNA-Binding Protein RBM3 Promotes Neural Stem Cell (NSC) Proliferation Under Hypoxia. Front Cell Dev Biol 2019; 7:288. [PMID: 31824945 PMCID: PMC6881237 DOI: 10.3389/fcell.2019.00288] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/04/2019] [Indexed: 01/06/2023] Open
Abstract
Neural stem cells (NSCs) reside physiologically in a hypoxic niche to maintain self-renewal and multipotency. Whereas mild hypoxia is known to promote NSC proliferation, severe hypoxia in pathological conditions exerts the reverse effect. The multi-functional RNA-binding protein RBM3 is abundant in NSCs and can be regulated by hypoxic exposure. Although RBM3 has been shown to accelerate cell growth in many cell types, whether and how it affects NSC proliferation in hypoxic environment remains largely unknown. In this study, we tested how RBM3 regulates cell proliferation under hypoxia in C17.2 mouse NSC cell line and in primary mouse NSCs from both the forebrain of postnatal day 0 (P0) mice and the subgranular zone (SGZ) of adult mice. Our results demonstrated that RBM3 expression was highly sensitive to hypoxia, and NSCs were arrested in G0/G1 phase by 5, 2.5, and 1% O2 treatment. When we overexpressed RBM3, hypoxia-induced cell cycle arrest in G0/G1 phase was relieved and more cell transit into S phase was observed. Furthermore, cell viability under hypoxia was also increased by RBM3. In contrast, in RBM3-depleted primary NSCs, less BrdU-incorporated cells were detected, indicating exacerbated cell cycle arrest in G1 to S phase transition. Instead, overexpressed RBM3 significantly increased proliferation ratio in primary NSCs. Our findings indicate RBM3 as a potential target to maintain the proliferation capacity of NSCs under hypoxia, which can be important in NSC-based therapies of acute brain injury and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Jingyi Yan
- Department of Neonatology, University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Tessa Goerne
- Department of Neonatology, University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Andrea Zelmer
- Department of Neonatology, University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Sven Wellmann
- Department of Neonatology, University Children's Hospital Basel (UKBB), Basel, Switzerland.,Department of Neonatology, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Xinzhou Zhu
- Department of Neonatology, University Children's Hospital Basel (UKBB), Basel, Switzerland
| |
Collapse
|
10
|
Fischer U, Backes C, Fehlmann T, Galata V, Keller A, Meese E. Prospect and challenge of detecting dynamic gene copy number increases in stem cells by whole genome sequencing. J Mol Med (Berl) 2019; 97:1099-1111. [PMID: 31134286 PMCID: PMC6647207 DOI: 10.1007/s00109-019-01792-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/03/2022]
Abstract
Abstract Gene amplification is an evolutionarily well-conserved and highly efficient mechanism to increase the amount of specific proteins. In humans, gene amplification is a hallmark of cancer and has recently been found during stem cell differentiation. Amplifications in stem cells are restricted to specific tissue areas and time windows, rendering their detection difficult. Here, we report on the performance of deep WGS sequencing (average 82-fold depth of coverage) on the BGISEQ with nanoball technology to detect amplifications in human mesenchymal and neural stem cells. As reference technology, we applied array-based comparative genomic hybridization (aCGH), fluorescence in situ hybridization (FISH), and qPCR. Using different in silico strategies for amplification detection, we analyzed the potential of WGS for amplification detection. Our results provide evidence that WGS accurately identifies changes of the copy number profiles in human stem cell differentiation. However, the identified changes are not in all cases consistent between WGS and aCGH. The results between WGS and the validation by qPCR were concordant in 83.3% of all tested 36 cases. In sum, both genome-wide techniques, aCGH and WGS, have unique advantages and specific challenges, calling for locus-specific confirmation by the low-throughput approaches qPCR or FISH. Key messages WGS allows for the identification of dynamic copy number changes in human stem cells. Less stringent threshold setting is crucial for detection of copy number increase. Broad knowledge of dynamic copy number is pivotal to estimate stem cell capabilities.
Electronic supplementary material The online version of this article (10.1007/s00109-019-01792-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulrike Fischer
- Department of Human Genetics, Saarland University, Building 60, 66421, Homburg/Saar, Germany.
| | - Christina Backes
- Clinical Bioinformatics, Saarland University, Building E2.1, 66123, Saarbrücken, Germany
| | - Tobias Fehlmann
- Clinical Bioinformatics, Saarland University, Building E2.1, 66123, Saarbrücken, Germany
| | - Valentina Galata
- Clinical Bioinformatics, Saarland University, Building E2.1, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Building E2.1, 66123, Saarbrücken, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Building 60, 66421, Homburg/Saar, Germany
| |
Collapse
|
11
|
Liu Z, Tang M, Zhao J, Chai R, Kang J. Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705388. [PMID: 29450919 DOI: 10.1002/adma.201705388] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/26/2017] [Indexed: 05/23/2023]
Abstract
Stem-cell-based therapies have the potential to provide novel solutions for the treatment of a variety of diseases, but the main obstacles to such therapies lie in the uncontrolled differentiation and functional engraftment of implanted tissues. The physicochemical microenvironment controls the self-renewal and differentiation of stem cells, and the key step in mimicking the stem cell microenvironment is to construct a more physiologically relevant 3D culture system. Material-based 3D assemblies of stem cells facilitate the cellular interactions that promote morphogenesis and tissue organization in a similar manner to that which occurs during embryogenesis. Both natural and artificial materials can be used to create 3D scaffolds, and synthetic organic and inorganic porous materials are the two main kinds of artificial materials. Nanotechnology provides new opportunities to design novel advanced materials with special physicochemical properties for 3D stem cell culture and transplantation. Herein, the advances and advantages of 3D scaffold materials, especially with respect to stem-cell-based therapies, are first outlined. Second, the stem cell biology in 3D scaffold materials is reviewed. Third, the progress and basic principles of developing 3D scaffold materials for clinical applications in tissue engineering and regenerative medicine are reviewed.
Collapse
Affiliation(s)
- Zhongmin Liu
- Department of Cardiovascular and Thoracic Surgery, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jinping Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 211189, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
12
|
Acevedo JP, Angelopoulos I, van Noort D, Khoury M. Microtechnology applied to stem cells research and development. Regen Med 2018; 13:233-248. [PMID: 29557299 DOI: 10.2217/rme-2017-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microfabrication and microfluidics contribute to the research of cellular functions of cells and their interaction with their environment. Previously, it has been shown that microfluidics can contribute to the isolation, selection, characterization and migration of cells. This review aims to provide stem cell researchers with a toolkit of microtechnology (mT) instruments for elucidating complex stem cells functions which are challenging to decipher with traditional assays and animal models. These microdevices are able to investigate about the differentiation and niche interaction, stem cells transcriptomics, therapeutic functions and the capture of their secreted microvesicles. In conclusion, microtechnology will allow a more realistic assessment of stem cells properties, driving and accelerating the translation of regenerative medicine approaches to the clinic.
Collapse
Affiliation(s)
- Juan Pablo Acevedo
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Ioannis Angelopoulos
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Danny van Noort
- Facultad de Ingeniería y Ciencias Aplicadas Universidad de los Andes, Santiago, Chile.,Biotechnology, IFM, Linköping University, Sweden
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Santiago, Chile
| |
Collapse
|
13
|
Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Future Sci OA 2017; 3:FSO187. [PMID: 28670476 PMCID: PMC5481871 DOI: 10.4155/fsoa-2016-0091] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/21/2017] [Indexed: 02/07/2023] Open
Abstract
Microfluidic lab-on-a-chip provides a new platform with unique advantages to mimic complex physiological microenvironments in vivo and has been increasingly exploited to stem cell research. In this review, we highlight recent advances of microfluidic devices for stem cell culture and differentiation toward the development of organ-on-a-chip, especially with an emphasis on vital innovations within the last 2 years. Various aspects for improving on-chip stem-cell culture and differentiation, particularly toward organ-on-a-chip, are discussed, along with microenvironment control, surface modification, extracellular scaffolds, high throughput and stimuli. The combination of microfluidic technologies and stem cells hold great potential toward versatile systems of ‘organ-on-a-chip’ as desired.
Adapted with permission from [1–8]. Stem cells, capable of self-renewing and differentiating into cells of various tissue types, are drawing more and more attention for their enormous potential in many clinically associated applications that include drug screening, disease modeling and regenerative medicine. Conventional cell culture methods, however, have proven to be difficult to mimic in vivo like microenvironments and to provide a number of well-controlled stimuli that are critical for stem cell culture and differentiation. In contrast, microfluidic devices offer new capacities and unique advantages to mimic complex physiological microenvironments in vivo, and has been increasingly applied to stem cell research.
Collapse
|
14
|
Murphy AR, Laslett A, O'Brien CM, Cameron NR. Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomater 2017; 54:1-20. [PMID: 28259835 DOI: 10.1016/j.actbio.2017.02.046] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/22/2022]
Abstract
Understanding how neurodegenerative disorders develop is not only a key challenge for researchers but also for the wider society, given the rapidly aging populations in developed countries. Advances in this field require new tools with which to recreate neural tissue in vitro and produce realistic disease models. This in turn requires robust and reliable systems for performing 3D in vitro culture of neural lineage cells. This review provides a state of the art update on three-dimensional culture systems for in vitro development of neural tissue, employing a wide range of scaffold types including hydrogels, solid porous polymers, fibrous materials and decellularised tissues as well as microfluidic devices and lab-on-a-chip systems. To provide some context with in vivo development of the central nervous system (CNS), we also provide a brief overview of the neural stem cell niche, neural development and neural differentiation in vitro. We conclude with a discussion of future directions for this exciting and important field of biomaterials research. STATEMENT OF SIGNIFICANCE Neurodegenerative diseases, including dementia, Parkinson's and Alzheimer's diseases and motor neuron diseases, are a major societal challenge for aging populations. Understanding these conditions and developing therapies against them will require the development of new physical models of healthy and diseased neural tissue. Cellular models resembling neural tissue can be cultured in the laboratory with the help of 3D scaffolds - materials that allow the organization of neural cells into tissue-like structures. This review presents recent work on the development of different types of scaffolds for the 3D culture of neural lineage cells and the generation of functioning neural-like tissue. These in vitro culture systems are enabling the development of new approaches for modelling and tackling diseases of the brain and CNS.
Collapse
Affiliation(s)
- Ashley R Murphy
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia
| | - Andrew Laslett
- CSIRO Manufacturing, Bag 10, Clayton South MDC, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Bag 10, Clayton South MDC, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia.
| |
Collapse
|
15
|
Long BL, Li H, Mahadevan A, Tang T, Balotin K, Grandel N, Soto J, Wong SY, Abrego A, Li S, Qutub AA. GAIN: A graphical method to automatically analyze individual neurite outgrowth. J Neurosci Methods 2017; 283:62-71. [PMID: 28336360 DOI: 10.1016/j.jneumeth.2017.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/18/2017] [Accepted: 03/18/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neurite outgrowth is a metric widely used to assess the success of in vitro neural stem cell differentiation or neuron reprogramming protocols and to evaluate high-content screening assays for neural regenerative drug discovery. However, neurite measurements are tedious to perform manually, and there is a paucity of freely available, fully automated software to determine neurite measurements and neuron counting. To provide such a tool to the neurobiology, stem cell, cell engineering, and neuroregenerative communities, we developed an algorithm for performing high-throughput neurite analysis in immunofluorescent images. NEW METHOD Given an input of paired neuronal nuclear and cytoskeletal microscopy images, the GAIN algorithm calculates neurite length statistics linked to individual cells or clusters of cells. It also provides an estimate of the number of nuclei in clusters of overlapping cells, thereby increasing the accuracy of neurite length statistics for higher confluency cultures. GAIN combines image processing for neuronal cell bodies and neurites with an algorithm for resolving neurite junctions. RESULTS GAIN produces a table of neurite lengths from cell body to neurite tip per cell cluster in an image along with a count of cells per cluster. COMPARISON WITH EXISTING METHODS GAIN's performance compares favorably with the popular ImageJ plugin NeuriteTracer for counting neurons, and provides the added benefit of assigning neurites to their respective cell bodies. CONCLUSIONS In summary, GAIN provides a new tool to improve the robust assessment of neural cells by image-based analysis.
Collapse
Affiliation(s)
- B L Long
- Department of Bioengineering, Rice University, Houston, TX 77030 USA.
| | - H Li
- Department of Bioengineering, Rice University, Houston, TX 77030 USA
| | - A Mahadevan
- Department of Bioengineering, Rice University, Houston, TX 77030 USA
| | - T Tang
- Department of Bioengineering, Rice University, Houston, TX 77030 USA
| | - K Balotin
- Department of Bioengineering, Rice University, Houston, TX 77030 USA
| | - N Grandel
- Department of Bioengineering, Rice University, Houston, TX 77030 USA
| | - J Soto
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - S Y Wong
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - A Abrego
- Department of Bioengineering, Rice University, Houston, TX 77030 USA
| | - S Li
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
| | - A A Qutub
- Department of Bioengineering, Rice University, Houston, TX 77030 USA
| |
Collapse
|
16
|
Wang Y, Ma J, Li N, Wang L, Shen L, Sun Y, Wang Y, Zhao J, Wei W, Ren Y, Liu J. Microfluidic engineering of neural stem cell niches for fate determination. BIOMICROFLUIDICS 2017; 11:014106. [PMID: 28798841 PMCID: PMC5533482 DOI: 10.1063/1.4974902] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/04/2017] [Indexed: 06/07/2023]
Abstract
Neural stem cell (NSC) transplantation has great therapeutic potential for neurodegenerative diseases and central nervous system injuries. Successful NSC replacement therapy requires precise control over the cellular behaviors. However, the regulation of NSC fate is largely unclear, which severely restricts the potential clinical applications. To develop an effective model, we designed an assembled microfluidic system to engineer NSC niches and assessed the effects of various culture conditions on NSC fate determination. Five types of NSC microenvironments, including two-dimensional (2D) cellular monolayer culture, 2D cellular monolayer culture on the extracellular matrix (ECM), dispersed cells in the ECM, three-dimensional (3D) spheroid aggregates, and 3D spheroids cultured in the ECM, were constructed within an integrated microfluidic chip simultaneously. In addition, we evaluated the influence of static and perfusion culture on NSCs. The efficiency of this approach was evaluated comprehensively by characterization of NSC viability, self-renewal, proliferation, and differentiation into neurons, astrocytes, or oligodendrocytes. Differences in the status and fate of NSCs governed by the culture modes and micro-niches were analyzed. NSCs in the microfluidic device demonstrated good viability, the 3D culture in the ECM facilitated NSC self-renewal and proliferation, and 2D culture in the static state and spheroid culture under perfusion conditions benefited NSC differentiation. Regulation of NSC self-renewal and differentiation on this microfluidic device could provide NSC-based medicinal products and references for distinct nerve disease therapy.
Collapse
Affiliation(s)
| | - Jingyun Ma
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Na Li
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liang Wang
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liming Shen
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yu Sun
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yajun Wang
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Jingyuan Zhao
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenjuan Wei
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yan Ren
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Liu
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
17
|
Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, Bal-Price A, Hogberg HT, Quinones-Hinojosa A, Guerrero-Cazares H, Levchenko A. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. LAB ON A CHIP 2016; 16:4152-4162. [PMID: 27722368 DOI: 10.1039/c6lc00946h] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Migration of neural progenitors in the complex tissue environment of the central nervous system is not well understood. Progress in this area has the potential to drive breakthroughs in neuroregenerative therapies, brain cancer treatments, and neurodevelopmental studies. To a large extent, advances have been limited due to a lack of controlled environments recapitulating characteristics of the central nervous system milieu. Reductionist cell culture models are frequently too simplistic, and physiologically more relevant approaches such as ex vivo brain slices or in situ experiments provide little control and make information extraction difficult. Here, we present a brain-on-chip model that bridges the gap between cell culture and ex vivo/in vivo conditions through recapitulation of self-organized neural differentiation. We use a new multi-layer silicone elastomer device, over the course of four weeks to differentiate pluripotent human (NTERA2) cells into neuronal clusters interconnected with thick axonal bundles and interspersed with astrocytes, resembling the brain parenchyma. Neurons within the device express the neurofilament heavy (NF200) mature axonal marker and the microtubule-associated protein (MAP2ab) mature dendritic marker, demonstrating that the devices are sufficiently biocompatible to allow neuronal maturation. This neuronal-glial environment is interfaced with a layer of human brain microvascular endothelial cells showing characteristics of the blood-brain barrier including the expression of zonula occludens (ZO1) tight junctions and increased trans-endothelial electrical resistance. We used this device to model migration of human neural progenitors in response to chemotactic cues within a brain-tissue setting. We show that in the presence of an environment mimicking brain conditions, neural progenitor cells show a significantly enhanced chemotactic response towards shallow gradients of CXCL12, a key chemokine expressed during embryonic brain development and in pathological tissue regions of the central nervous system. Our brain-on-chip model thus provides a convenient and scalable model of neural differentiation and maturation extensible to analysis of complex cell and tissue behaviors.
Collapse
Affiliation(s)
- Onur Kilic
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Emily Lavell
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Paula Schiapparelli
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yun Feng
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. and Department of Pharmacology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA and CAAT-Europe, University of Konstanz, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hugo Guerrero-Cazares
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
18
|
Karimi M, Bahrami S, Mirshekari H, Basri SMM, Nik AB, Aref AR, Akbari M, Hamblin MR. Microfluidic systems for stem cell-based neural tissue engineering. LAB ON A CHIP 2016; 16:2551-71. [PMID: 27296463 PMCID: PMC4935609 DOI: 10.1039/c6lc00489j] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. and Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamed Mirshekari
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran.
| | - Seyed Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran. and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Iran.
| | - Amir R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA.
| | - Mohsen Akbari
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA. and Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|