1
|
Ortega MA, Celoy RM, Chacon F, Yuan Y, Xue LJ, Pandey SP, Drowns MR, Kvitko BH, Tsai CJ. Altering cold-regulated gene expression decouples the salicylic acid-growth trade-off in Arabidopsis. THE PLANT CELL 2024; 36:4293-4308. [PMID: 39056470 PMCID: PMC11448890 DOI: 10.1093/plcell/koae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
In Arabidopsis (Arabidopsis thaliana), overproduction of salicylic acid (SA) increases disease resistance and abiotic stress tolerance but penalizes growth. This growth-defense trade-off has hindered the adoption of SA-based disease management strategies in agriculture. However, investigation of how SA inhibits plant growth has been challenging because many SA-hyperaccumulating Arabidopsis mutants have developmental defects due to the pleiotropic effects of the underlying genes. Here, we heterologously expressed a bacterial SA synthase gene in Arabidopsis and observed that elevated SA levels decreased plant growth and reduced the expression of cold-regulated (COR) genes in a dose-dependent manner. Growth suppression was exacerbated at below-ambient temperatures. Severing the SA-responsiveness of individual COR genes was sufficient to overcome the growth inhibition caused by elevated SA at ambient and below-ambient temperatures while preserving disease- and abiotic-stress-related benefits. Our results show the potential of decoupling SA-mediated growth and defense trade-offs for improving crop productivity.
Collapse
Affiliation(s)
- María A Ortega
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Rhodesia M Celoy
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Francisco Chacon
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Yinan Yuan
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Liang-Jiao Xue
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saurabh P Pandey
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - MaKenzie R Drowns
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Brian H Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA 30603, USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Leng J, Tu W, Hou Y, Cui H. Temperature-Inducible Transgenic EDS1 and PAD4 in Arabidopsis Confer an Enhanced Disease Resistance at Elevated Temperature. PLANTS 2021; 10:plants10061258. [PMID: 34205696 PMCID: PMC8234125 DOI: 10.3390/plants10061258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 01/14/2023]
Abstract
Temperature is one of the most important environmental factors greatly affecting plant disease development. High temperature favors outbreaks of many plant diseases, which threaten food security and turn to be a big issue along with climate change and global warming. Here, we found that concurrent constitutive expression of the key immune regulators EDS1 and PAD4 in Arabidopsis significantly enhanced resistance to virulent bacterial pathogen Pseudomonas syringae pv. tomato at elevated temperature; however, autoimmunity-related growth retardation was also observed on these plants at a normal temperature. To balance this growth-defense trade-off, we generated transgenic plants dual expressing EDS1 and PAD4 genes under the control of a thermo-sensitive promoter from the HSP70 gene, whose expression is highly induced at an elevated temperature. Unlike constitutive overexpression lines, the proHSP70-EP transgenic lines exhibited enhanced resistance to bacterial pathogens at an elevated temperature without growth defects at normal condition. Thus, this study provides a potential strategy for genetic manipulation of plants to deal with the simultaneous abiotic and biotic stresses.
Collapse
|
3
|
Valandro F, Menguer PK, Cabreira-Cagliari C, Margis-Pinheiro M, Cagliari A. Programmed cell death (PCD) control in plants: New insights from the Arabidopsis thaliana deathosome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110603. [PMID: 32900441 DOI: 10.1016/j.plantsci.2020.110603] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled process that leads to cell suicide in both eukaryotic and prokaryotic organisms. In plants PCD occurs during development, defence response and when exposed to adverse conditions. PCD acts controlling the number of cells by eliminating damaged, old, or unnecessary cells to maintain cellular homeostasis. Unlike in animals, the knowledge about PCD in plants is limited. The molecular network that controls plant PCD is poorly understood. Here we present a review of the current mechanisms involved with the genetic control of PCD in plants. We also present an updated version of the AtLSD1 deathosome, which was previously proposed as a network controlling HR-mediated cell death in Arabidopsis thaliana. Finally, we discuss the unclear points and open questions related to the AtLSD1 deathosome.
Collapse
Affiliation(s)
- Fernanda Valandro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Paloma Koprovski Menguer
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | | | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Alexandro Cagliari
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, RS, Brazil; Universidade Estadual do Rio Grande do Sul (UERGS), RS, Brazil.
| |
Collapse
|
4
|
Jung HW, Panigrahi GK, Jung GY, Lee YJ, Shin KH, Sahoo A, Choi ES, Lee E, Man Kim K, Yang SH, Jeon JS, Lee SC, Kim SH. Pathogen-Associated Molecular Pattern-Triggered Immunity Involves Proteolytic Degradation of Core Nonsense-Mediated mRNA Decay Factors During the Early Defense Response. THE PLANT CELL 2020; 32:1081-1101. [PMID: 32086363 PMCID: PMC7145493 DOI: 10.1105/tpc.19.00631] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 05/06/2023]
Abstract
Nonsense-mediated mRNA decay (NMD), an mRNA quality control process, is thought to function in plant immunity. A subset of fully spliced (FS) transcripts of Arabidopsis (Arabidopsis thaliana) resistance (R) genes are upregulated during bacterial infection. Here, we report that 81.2% and 65.1% of FS natural TIR-NBS-LRR (TNL) and CC-NBS-LRR transcripts, respectively, retain characteristics of NMD regulation, as their transcript levels could be controlled posttranscriptionally. Both bacterial infection and the perception of bacteria by pattern recognition receptors initiated the destruction of core NMD factors UP-FRAMESHIFT1 (UPF1), UPF2, and UPF3 in Arabidopsis within 30 min of inoculation via the independent ubiquitination of UPF1 and UPF3 and their degradation via the 26S proteasome pathway. The induction of UPF1 and UPF3 ubiquitination was delayed in mitogen-activated protein kinase3 (mpk3) and mpk6, but not in salicylic acid-signaling mutants, during the early immune response. Finally, previously uncharacterized TNL-type R transcripts accumulated in upf mutants and conferred disease resistance to infection with a virulent Pseudomonas strain in plants. Our findings demonstrate that NMD is one of the main regulatory processes through which PRRs fine-tune R transcript levels to reduce fitness costs and achieve effective immunity.
Collapse
Affiliation(s)
- Ho Won Jung
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Gagan Kumar Panigrahi
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
- School of Applied Sciences, Centurion University of Technology and Management, Odisha 752050, India
| | - Ga Young Jung
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Yu Jeong Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Ki Hun Shin
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Annapurna Sahoo
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Eun Su Choi
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Eunji Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Kyung Man Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Sung Chul Lee
- School of Biological Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Sang Hyon Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| |
Collapse
|
5
|
Kumar A, Pathak RK, Gupta SM, Gaur VS, Pandey D. Systems Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and Sustainability. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 19:581-601. [PMID: 26484978 DOI: 10.1089/omi.2015.0106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, rapid developments in several omics platforms and next generation sequencing technology have generated a huge amount of biological data about plants. Systems biology aims to develop and use well-organized and efficient algorithms, data structure, visualization, and communication tools for the integration of these biological data with the goal of computational modeling and simulation. It studies crop plant systems by systematically perturbing them, checking the gene, protein, and informational pathway responses; integrating these data; and finally, formulating mathematical models that describe the structure of system and its response to individual perturbations. Consequently, systems biology approaches, such as integrative and predictive ones, hold immense potential in understanding of molecular mechanism of agriculturally important complex traits linked to agricultural productivity. This has led to identification of some key genes and proteins involved in networks of pathways involved in input use efficiency, biotic and abiotic stress resistance, photosynthesis efficiency, root, stem and leaf architecture, and nutrient mobilization. The developments in the above fields have made it possible to design smart crops with superior agronomic traits through genetic manipulation of key candidate genes.
Collapse
Affiliation(s)
| | - Rajesh Kumar Pathak
- 2 Department of Biotechnology, G. B. Pant Engineering College , Pauri Garhwal-246194, Uttarakhand, India
| | - Sanjay Mohan Gupta
- 3 Molecular Biology and Genetic Engineering Laboratory, Defence Institute of Bio-Energy Research , DRDO, Haldwani, Uttarakhand, India
| | - Vikram Singh Gaur
- 4 College of Agriculture , Waraseoni, Balaghat, Madhya Pradesh, India
| | | |
Collapse
|
6
|
Shen C, Yang Y, Liu K, Zhang L, Guo H, Sun T, Wang H. Involvement of endogenous salicylic acid in iron-deficiency responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4179-93. [PMID: 27208542 DOI: 10.1093/jxb/erw196] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Several phytohormones have been demonstrated to be involved in iron (Fe) homeostasis. We took advantage of a salicylic acid (SA) biosynthesis defective mutant phytoalexin deficient 4 (pad4: T-DNA Salk_089936) to explore the possible effects of endogenous SA on the morphological and physiological responses to Fe deprivation. The morphological and physiological analysis was carried out between Col-0 and the pad4 mutant. Under an Fe-deficiency treatment, Col-0 showed more severe leaf chlorosis and root growth inhibition compared with the pad4 mutant. The soluble Fe concentrations were significantly higher in pad4 than in Col-0 under the Fe-deficiency treatment. Fe deficiency significantly induced SA accumulation in Col-0 and the loss-of-function of PAD4 blocked this process. The requirement of endogenous SA accumulation for Fe-deficiency responses was confirmed using a series of SA biosynthetic mutants and transgenic lines. Furthermore, a comparative RNA sequencing analysis of the whole seedling transcriptomes between Col-0 and the pad4 mutant was also performed. Based on the transcriptome data, the expression levels of many auxin- and ethylene-response genes were altered in pad4 compared with Col-0. Fe deficiency increases SA contents which elevates auxin and ethylene signalling, thereby activating Fe translocation via the bHLH38/39-mediated transcriptional regulation of downstream Fe genes.
Collapse
Affiliation(s)
- Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yanjun Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| | - Lei Zhang
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27607, USA
| | - Hong Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Tao Sun
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
7
|
Molojwane E, Adams N, Sweetlove LJ, Ingle RA. Heterologous expression of mitochondria-targeted microbial nitrilase enzymes increases cyanide tolerance in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:922-926. [PMID: 25711239 DOI: 10.1111/plb.12323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
Anthropogenic activities have resulted in cyanide (CN) contamination of both soil and water in many areas of the globe. While plants possess a detoxification pathway that serves to degrade endogenously generated CN, this system is readily overwhelmed, limiting the use of plants in bioremediation. Genetic engineering of additional CN degradation pathways in plants is one potential strategy to increase their tolerance to CN. Here we show that heterologous expression of microbial nitrilase enzymes targeted to the mitochondria increases CN tolerance in Arabidopsis. Root length in seedlings expressing either a CN dihydratase from Bacillus pumilis or a CN hydratase from Neurospora crassa was increased by 45% relative in wild-type plants in the presence of 50 μm KCN. We also demonstrate that in contrast to its strong inhibitory effects on seedling establishment, seed germination of the Col-0 ecotype of Arabidopsis is unaffected by CN.
Collapse
Affiliation(s)
- E Molojwane
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - N Adams
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - L J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - R A Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|