1
|
Andreolla AP, Borges AA, Nagashima S, Vaz de Paula CB, de Noronha L, Zanchin NIT, Bordignon J, Duarte Dos Santos CN. Development of monoclonal antibodies against oropouche virus and its applicability to immunohistochemical diagnosis. Virol J 2024; 21:81. [PMID: 38589896 PMCID: PMC11000289 DOI: 10.1186/s12985-024-02323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
Orthobunyavirus oropouche ense virus (OROV), the causative agent of Oropouche fever, is widely dispersed in Brazil and South America, causing sporadic outbreaks. Due to the similarity of initial clinical symptoms caused by OROV with other arboviruses found in overlapping geographical areas, differential diagnosis is challenging. As for most neglected tropical diseases, there is a shortage of reagents for diagnosing and studying OROV pathogenesis. We therefore developed and characterized mouse monoclonal antibodies and, one of them recognizes the OROV nucleocapsid in indirect immunofluorescent (IFA) and immunohistochemistry (IHC) assays. Considering that it is the first monoclonal antibody produced for detecting OROV infections, we believe that it will be useful not only for diagnostic purposes but also for performing serological surveys and epidemiological surveillance on the dispersion and prevalence of OROV in Brazil and South America.
Collapse
Affiliation(s)
- Ana Paula Andreolla
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz PR, Cidade Industrial de Curitiba, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Alessandra Abel Borges
- Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde (ICBS), Universidade Federal de Alagoas (UFAL), Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceió, Alagoas, Brazil
| | - Seigo Nagashima
- Laboratório de Patologia Experimental, Pontifica Universidade Católica do Paraná (PUC/PR), Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, Brazil
| | - Caroline Busatta Vaz de Paula
- Laboratório de Patologia Experimental, Pontifica Universidade Católica do Paraná (PUC/PR), Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, Brazil
| | - Lucia de Noronha
- Laboratório de Patologia Experimental, Pontifica Universidade Católica do Paraná (PUC/PR), Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná, Brazil
| | - Nilson I T Zanchin
- Laboratório de Biologia Estrutural e Engenharia de Proteínas, Instituto Carlos Chagas, ICC/Fiocruz PR, Cidade Industrial de Curitiba, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz PR, Cidade Industrial de Curitiba, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil.
| | - Claudia Nunes Duarte Dos Santos
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz PR, Cidade Industrial de Curitiba, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Espada CE, da Rocha EL, Ricciardi-Jorge T, dos Santos AA, Soares ZG, Malaquias G, Patrício DO, Gonzalez Kozlova E, dos Santos PF, Bordignon J, Sanford TJ, Fajardo T, Sweeney TR, Báfica A, Mansur DS. ISG15/USP18/STAT2 is a molecular hub regulating IFN I-mediated control of Dengue and Zika virus replication. Front Immunol 2024; 15:1331731. [PMID: 38384473 PMCID: PMC10879325 DOI: 10.3389/fimmu.2024.1331731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The establishment of a virus infection is the result of the pathogen's ability to replicate in a hostile environment generated by the host's immune system. Here, we found that ISG15 restricts Dengue and Zika viruses' replication through the stabilization of its binding partner USP18. ISG15 expression was necessary to control DV replication driven by both autocrine and paracrine type one interferon (IFN-I) signaling. Moreover, USP18 competes with NS5-mediated STAT2 degradation, a major mechanism for establishment of flavivirus infection. Strikingly, reconstitution of USP18 in ISG15-deficient cells was sufficient to restore the STAT2's stability and restrict virus growth, suggesting that the IFNAR-mediated ISG15 activity is also antiviral. Our results add a novel layer of complexity in the virus/host interaction interface and suggest that NS5 has a narrow window of opportunity to degrade STAT2, therefore suppressing host's IFN-I mediated response and promoting virus replication.
Collapse
Affiliation(s)
- Constanza Eleonora Espada
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Edroaldo Lummertz da Rocha
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Taissa Ricciardi-Jorge
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Adara Aurea dos Santos
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Zamira Guerra Soares
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Greicy Malaquias
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel Oliveira Patrício
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Edgar Gonzalez Kozlova
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Paula Fernandes dos Santos
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Instituto Carlos Chagas (ICC)/Fiocruz-PR, Curitiba, Brazil
| | - Thomas J. Sanford
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Teodoro Fajardo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Trevor R. Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Viral Gene Expression Group, The Pirbright Institute, Guildford, United Kingdom
| | - André Báfica
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
3
|
Chikungunya Virus and Its Envelope Protein E2 Induce Hyperalgesia in Mice: Inhibition by Anti-E2 Monoclonal Antibodies and by Targeting TRPV1. Cells 2023; 12:cells12040556. [PMID: 36831223 PMCID: PMC9954636 DOI: 10.3390/cells12040556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Chikungunya virus is an arthropod-borne infectious agent that causes Chikungunya fever disease. About 90% of the infected patients experience intense polyarthralgia, affecting mainly the extremities but also the large joints such as the knees. Chronic disease symptoms persist for months, even after clearance of the virus from the blood. Envelope proteins stimulate the immune response against the Chikungunya virus, becoming an important therapeutic target. We inactivated the Chikungunya virus (iCHIKV) and produced recombinant E2 (rE2) protein and three different types of anti-rE2 monoclonal antibodies. Using these tools, we observed that iCHIKV and rE2 protein induced mechanical hyperalgesia (electronic aesthesiometer test) and thermal hyperalgesia (Hargreaves test) in mice. These behavioral results were accompanied by the activation of dorsal root ganglia (DRG) neurons in mice, as observed by calcium influx. Treatment with three different types of anti-rE2 monoclonal antibodies and absence or blockade (AMG-9810 treatment) of transient receptor potential vanilloid 1 (TRPV1) channel diminished mechanical and thermal hyperalgesia in mice. iCHIKV and rE2 activated TRPV1+ mouse DRG neurons in vitro, demonstrating their ability to activate nociceptor sensory neurons directly. Therefore, our mouse data demonstrate that targeting E2 CHIKV protein with monoclonal antibodies and inhibiting TRPV1 channels are reasonable strategies to control CHIKV pain.
Collapse
|
4
|
Cell Type Variability in the Incorporation of Lipids in the Dengue Virus Virion. Viruses 2022; 14:v14112566. [PMID: 36423175 PMCID: PMC9698084 DOI: 10.3390/v14112566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
A lipid bilayer produced from the host membrane makes up around 20% of the weight of the dengue virus (DENV) virion and is crucial for virus entry. Despite its significance, the virion's lipid composition is still poorly understood. In tandem with lipid profiles of the cells utilised to generate the virions, this work determined a partial lipid profile of DENV virions derived from two cell lines (C6/36 and LLC-MK2). The results showed distinctive profiles between the two cell types. In the mammalian LLC-MK2 cells, 30.8% (73/237 identified lipid species; 31 upregulated, 42 downregulated) of lipid species were altered in response to infection, whilst in insect C6/36 cells only 12.0% (25/208; 19 upregulated, 6 downregulated) of lipid species showed alterations in response to infection. For virions from LLC-MK2 cells, 14 lipids were detected specifically in virions with a further seven lipids being enriched (over mock controls). For virions from C6/36 cells, 43 lipids were detected that were not seen in mock preparations, with a further 16 being specifically enriched (over mock control). These results provide the first lipid description of DENV virions produced in mammalian and mosquito cells, as well as the lipid changes in the corresponding infected cells.
Collapse
|
5
|
Martinez F, Ghietto LM, Lingua G, Mugas ML, Aguilar JJ, Gil P, Pisano MB, Marioni J, Paglini MG, Contigiani MS, Núñez-Montoya SC, Konigheim BS. New insights into the antiviral activity of nordihydroguaiaretic acid: Inhibition of dengue virus serotype 1 replication. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154424. [PMID: 36126544 DOI: 10.1016/j.phymed.2022.154424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Dengue virus (DENV) is considered one of the most important pathogens in the world causing 390 million infections each year. Currently, the development of vaccines against DENV presents some shortcomings and there is no antiviral therapy available for its infection. An important challenge is that both treatments and vaccines must be effective against all four DENV serotypes. Nordihydroguaiaretic acid (NDGA), isolated from Larrea divaricata Cav. (Zygophyllaceae) has shown a significant inhibitory effect on a broad spectrum of viruses, including DENV serotypes 2 and 4. PURPOSE We evaluated the in vitro virucidal and antiviral activity of NDGA on DENV serotype 1 (DENV1), including the study of its mechanism of action, to provide more evidence on its antiviral activity. METHODS The viability of viral particles was quantified by the plaque-forming unit reduction method. NDGA effects on DENV1 genome and viral proteins were evaluated by qPCR and immunofluorescence, respectively. Lysosomotropic activity was assayed using acridine orange and neutral red dyes. RESULTS NDGA showed in vitro virucidal and antiviral activity against DENV1. The antiviral effect would be effective within the first 2 h after viral internalization, when the uncoating process takes place. In addition, we determined by qPCR that NDGA decreases the amount of intracellular RNA of DENV1 and, by immunofluorescence, the number of cells infected. These results indicate that the antiviral effect of NDGA would have an intracellular mechanism of action, which is consistent with its ability to be incorporated into host cells. Considering the inhibitory activity of NDGA on the cellular lipid metabolism, we compared the antiviral effect of two inhibitors acting on two different pathways of this type of metabolism: 1) resveratrol that inhibits the sterol regulatory element of binding proteins, and 2) caffeic acid that inhibits the 5-lipoxygenase (5-LOX) enzyme. Only caffeic acid produced an inhibitory effect on DENV1 infection. We studied the lysosomotropic activity of NDGA on host cells and found, for the first time, that this compound inhibited the acidification of cell vesicles which would prevent DENV1 uncoating process. CONCLUSION The present work contributes to the knowledge of NDGA activity on DENV. We describe its activity on DENV1, a serotype different to those that have been already reported. Moreover, we provide evidence on which stage/s of the viral replication cycle NDGA exerts its effects. We suggest that the mechanism of action of NDGA on DENV1 is related to its lysosomotropic effect, which inhibits the viral uncoating process.
Collapse
Affiliation(s)
- Florencia Martinez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Cdad. Universitaria, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Lucia Maria Ghietto
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Cdad. Universitaria, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Giuliana Lingua
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Cdad. Universitaria, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - M Laura Mugas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Farmacognosia. Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV), Av. Vélez Sarsfield 1666. CP, Córdoba X5016GCN, Argentina
| | - J Javier Aguilar
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Cdad. Universitaria, Córdoba X5000HUA, Argentina
| | - Pedro Gil
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Cdad. Universitaria, Córdoba X5000HUA, Argentina
| | - M Belén Pisano
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Cdad. Universitaria, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Juliana Marioni
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Farmacognosia. Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV), Av. Vélez Sarsfield 1666. CP, Córdoba X5016GCN, Argentina
| | - María Gabriela Paglini
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Cdad. Universitaria, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marta S Contigiani
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Cdad. Universitaria, Córdoba X5000HUA, Argentina
| | - Susana C Núñez-Montoya
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Farmacognosia. Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV), Av. Vélez Sarsfield 1666. CP, Córdoba X5016GCN, Argentina.
| | - Brenda S Konigheim
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Cdad. Universitaria, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
6
|
Strottmann DM, Zanluca C, Mosimann ALP, Koishi AC, Auwerter NC, Faoro H, Cataneo AHD, Kuczera D, Wowk PF, Bordignon J, Duarte Dos Santos CN. Genetic and biological characterisation of Zika virus isolates from different Brazilian regions. Mem Inst Oswaldo Cruz 2019; 114:e190150. [PMID: 31432892 PMCID: PMC6701881 DOI: 10.1590/0074-02760190150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) infections reported in recent epidemics have been linked
to clinical complications that had never been associated with ZIKV before.
Adaptive mutations could have contributed to the successful emergence of
ZIKV as a global health threat to a nonimmune population. However, the
causal relationships between the ZIKV genetic determinants, the pathogenesis
and the rapid spread in Latin America and in the Caribbean remain widely
unknown. OBJECTIVES The aim of this study was to characterise three ZIKV isolates obtained from
patient samples during the 2015/2016 Brazilian epidemics. METHODS The ZIKV genomes of these strains were completely sequenced and in
vitro infection kinetics experiments were carried out in cell
lines and human primary cells. FINDINGS Eight nonsynonymous substitutions throughout the viral genome of the three
Brazilian isolates were identified. Infection kinetics experiments were
carried out with mammalian cell lines A549, Huh7.5, Vero E6 and human
monocyte-derived dendritic cells (mdDCs) and insect cells (Aag2, C6/36 and
AP61) and suggest that some of these mutations might be associated with
distinct viral fitness. The clinical isolates also presented differences in
their infectivity rates when compared to the well-established ZIKV strains
(MR766 and PE243), especially in their abilities to infect mammalian
cells. MAIN CONCLUSIONS Genomic analysis of three recent ZIKV isolates revealed some nonsynonymous
substitutions, which could have an impact on the viral fitness in mammalian
and insect cells.
Collapse
Affiliation(s)
- Daisy Maria Strottmann
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Camila Zanluca
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Ana Luiza Pamplona Mosimann
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Andrea C Koishi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Nathalia Cavalheiro Auwerter
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Helisson Faoro
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Regulação da Expressão Gênica, Curitiba, PR, Brasil
| | | | - Diogo Kuczera
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Pryscilla Fanini Wowk
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Juliano Bordignon
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | | |
Collapse
|
7
|
Zhang L, Li Z, Jin H, Hu X, Su J. Development and application of a monoclonal antibody-based blocking ELISA for detection of antibodies to Tembusu virus in multiple poultry species. BMC Vet Res 2018; 14:201. [PMID: 29940964 PMCID: PMC6019803 DOI: 10.1186/s12917-018-1537-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
Background Tembusu virus (TMUV) is a member of the genus Flavivirus. Outbreak of this virus infection in duck flocks was first observed in China in April 2010, causing severe egg drop and neurological signs in laying ducks. Recently reported duck infections in southeastern Asia highlighted the need for well-validated diagnostic methods of TMUV surveillance to understand its epidemiological characteristics and maintenance in nature. Several enzyme-linked immunosorbent assays (ELISAs) for the detection of TMUV infection have been reported, but none have been applied to high-throughput diagnostics. Results In this study, a monoclonal antibody (MAb) against TMUV was generated and characterized. MAb 9E4 was shown to bind specifically to a disulfide bond-dependent epitope on the domain I/II of TMUV E protein, and a blocking ELISA was established based on this MAb. The cut-off percentage inhibition value for negative sera was set at 30%. By comparison with the virus neutralization test, the specificity and sensitivity of the blocking ELISA were 96.37% and 100%, respectively, and the kappa value was 0.966, based on 416 serum samples collected from both experimentally and clinically infected ducks, geese and chickens. A good correlation (r2 = 07998, P < 0.001) was observed between the blocking ELISA and plaque reduction neutralization test (PRNT) titers. Using archived duck serum samples collected between 2009 and 2015, the seroprevalence in duck flocks raised in Northern China was estimated by blocking ELISA. Conclusions Our MAb-based blocking ELISA provides a reliable and rapid diagnostic tool for serological monitoring of TMUV infection and evaluation of immune status following TMUV vaccination in multiple poultry species. Electronic supplementary material The online version of this article (10.1186/s12917-018-1537-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lijiao Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhanhong Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Huan Jin
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xueying Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingliang Su
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Xavier-Neto J, Carvalho M, Pascoalino BDS, Cardoso AC, Costa ÂMS, Pereira AHM, Santos LN, Saito Â, Marques RE, Smetana JHC, Consonni SR, Bandeira C, Costa VV, Bajgelman MC, de Oliveira PSL, Cordeiro MT, Gonzales Gil LHV, Pauletti BA, Granato DC, Paes Leme AF, Freitas-Junior L, Holanda de Freitas CBM, Teixeira MM, Bevilacqua E, Franchini K. Hydrocephalus and arthrogryposis in an immunocompetent mouse model of ZIKA teratogeny: A developmental study. PLoS Negl Trop Dis 2017; 11:e0005363. [PMID: 28231241 PMCID: PMC5322881 DOI: 10.1371/journal.pntd.0005363] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/27/2017] [Indexed: 11/18/2022] Open
Abstract
The teratogenic mechanisms triggered by ZIKV are still obscure due to the lack of a suitable animal model. Here we present a mouse model of developmental disruption induced by ZIKV hematogenic infection. The model utilizes immunocompetent animals from wild-type FVB/NJ and C57BL/6J strains, providing a better analogy to the human condition than approaches involving immunodeficient, genetically modified animals, or direct ZIKV injection into the brain. When injected via the jugular vein into the blood of pregnant females harboring conceptuses from early gastrulation to organogenesis stages, akin to the human second and fifth week of pregnancy, ZIKV infects maternal tissues, placentas and embryos/fetuses. Early exposure to ZIKV at developmental day 5 (second week in humans) produced complex manifestations of anterior and posterior dysraphia and hydrocephalus, as well as severe malformations and delayed development in 10.5 days post-coitum (dpc) embryos. Exposure to the virus at 7.5-9.5 dpc induces intra-amniotic hemorrhage, widespread edema, and vascular rarefaction, often prominent in the cephalic region. At these stages, most affected embryos/fetuses displayed gross malformations and/or intrauterine growth restriction (IUGR), rather than isolated microcephaly. Disrupted conceptuses failed to achieve normal developmental landmarks and died in utero. Importantly, this is the only model so far to display dysraphia and hydrocephalus, the harbinger of microcephaly in humans, as well as arthrogryposis, a set of abnormal joint postures observed in the human setting. Late exposure to ZIKV at 12.5 dpc failed to produce noticeable malformations. We have thus characterized a developmental window of opportunity for ZIKV-induced teratogenesis encompassing early gastrulation, neurulation and early organogenesis stages. This should not, however, be interpreted as evidence for any safe developmental windows for ZIKV exposure. Late developmental abnormalities correlated with damage to the placenta, particularly to the labyrinthine layer, suggesting that circulatory changes are integral to the altered phenotypes.
Collapse
Affiliation(s)
- Jose Xavier-Neto
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Murilo Carvalho
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Bruno dos Santos Pascoalino
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Alisson Campos Cardoso
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Ângela Maria Sousa Costa
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Ana Helena Macedo Pereira
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Luana Nunes Santos
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ângela Saito
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Juliana Helena Costa Smetana
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Silvio Roberto Consonni
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Carla Bandeira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Vivian Vasconcelos Costa
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Marcio Chaim Bajgelman
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Paulo Sérgio Lopes de Oliveira
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Marli Tenorio Cordeiro
- CPqAM-Fiocruz. Federal University of Pernambuco, Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, Brazil
| | - Laura Helena Vega Gonzales Gil
- CPqAM-Fiocruz. Federal University of Pernambuco, Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, Brazil
| | - Bianca Alves Pauletti
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Daniela Campos Granato
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Lucio Freitas-Junior
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | | | - Mauro Martins Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Estela Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Kleber Franchini
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| |
Collapse
|
9
|
Suwanmanee S, Luplertlop N. Dengue and Zika viruses: lessons learned from the similarities between these Aedes mosquito-vectored arboviruses. J Microbiol 2017; 55:81-89. [PMID: 28120186 DOI: 10.1007/s12275-017-6494-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/22/2016] [Accepted: 12/13/2016] [Indexed: 01/14/2023]
Abstract
The currently spreading arbovirus epidemic is having a severe impact on human health worldwide. The two most common flaviviruses, dengue virus (DENV) and Zika virus (ZIKV), are transmitted through the same viral vector, Aedes spp. mosquitoes. Since the discovery of DENV in 1943, this virus has been reported to cause around 390 million human infections per year, approximately 500,000 of which require hospitalization and over 20,000 of which are lethal. The present DENV epidemic is primarily concentrated in Southeast Asia. ZIKV, which was discovered in 1952, is another important arthropod-borne flavivirus. The neurotropic role of ZIKV has been reported in infected newborns with microcephaly and in adults with Guillain-Barre syndrome. Despite DENV and ZIKV sharing the same viral vector, their complex pathogenic natures are poorly understood, and the infections they cause do not have specific treatments or effective vaccines. Therefore, this review will describe what is currently known about the clinical characteristics, pathogenesis mechanisms, and transmission of these two viruses. Better understanding of the interrelationships between DENV and ZIKV will provide a useful perspective for developing an effective strategy for controlling both viruses in the future.
Collapse
Affiliation(s)
- San Suwanmanee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
10
|
Kathiresan E, Paramasivan R, Thenmozhi V, Das A, Dhananjeyan KJ, Sankar SG, Jerald Leo SV, Rathnapraba S, Vennison SJ. Development and multi-use applications of dengue NS1 monoclonal antibody for early diagnosis. RSC Adv 2017. [DOI: 10.1039/c6ra24763f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Swift and early diagnosis of dengue is important for case management and epidemiological purpose.
Collapse
Affiliation(s)
- E. Kathiresan
- Department of Biotechnology
- Anna University
- Tiruchirappalli 620 024
- India
| | - R. Paramasivan
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - V. Thenmozhi
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - Aparup Das
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - K. J. Dhananjeyan
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - S. Gowri Sankar
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - S. Victor Jerald Leo
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - S. Rathnapraba
- Department of Animal Biotechnology
- Madras Veterinary College
- Tamil Nadu Veterinary and Animal Sciences University
- Chennai
- India
| | - S. John Vennison
- Department of Biotechnology
- Anna University
- Tiruchirappalli 620 024
- India
| |
Collapse
|
11
|
Fleith RC, Lobo FP, Dos Santos PF, Rocha MM, Bordignon J, Strottmann DM, Patricio DO, Pavanelli WR, Lo Sarzi M, Santos CND, Ferguson BJ, Mansur DS. Genome-wide analyses reveal a highly conserved Dengue virus envelope peptide which is critical for virus viability and antigenic in humans. Sci Rep 2016; 6:36339. [PMID: 27805018 PMCID: PMC5090869 DOI: 10.1038/srep36339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/14/2016] [Indexed: 12/15/2022] Open
Abstract
Targeting regions of proteins that show a high degree of structural conservation has been proposed as a method of developing immunotherapies and vaccines that may bypass the wide genetic variability of RNA viruses. Despite several attempts, a vaccine that protects evenly against the four circulating Dengue virus (DV) serotypes remains elusive. To find critical conserved amino acids in dengue viruses, 120 complete genomes of each serotype were selected at random and used to calculate conservation scores for nucleotide and amino acid sequences. The identified peptide sequences were analysed for their structural conservation and localisation using crystallographic data. The longest, surface exposed, highly conserved peptide of Envelope protein was found to correspond to amino acid residues 250 to 270. Mutation of this peptide in DV1 was lethal, since no replication of the mutant virus was detected in human cells. Antibodies against this peptide were detected in DV naturally infected patients indicating its potential antigenicity. Hence, this study has identified a highly conserved, critical peptide in DV that is a target of antibodies in infected humans.
Collapse
Affiliation(s)
- Renata C Fleith
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Francisco P Lobo
- Department of General Biology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula F Dos Santos
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Mariana M Rocha
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Juliano Bordignon
- Laboratory of Molecular Virology, Instituto Carlos Chagas, Curitiba, Brazil
| | - Daisy M Strottmann
- Laboratory of Molecular Virology, Instituto Carlos Chagas, Curitiba, Brazil
| | - Daniel O Patricio
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | - Claudia N D Santos
- Laboratory of Molecular Virology, Instituto Carlos Chagas, Curitiba, Brazil
| | | | - Daniel S Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
12
|
Development and Characterization of Monoclonal Antibodies to Yellow Fever Virus and Application in Antigen Detection and IgM Capture Enzyme-Linked Immunosorbent Assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:689-97. [PMID: 27307452 PMCID: PMC4979174 DOI: 10.1128/cvi.00209-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/06/2016] [Indexed: 11/29/2022]
Abstract
Yellow fever (YF) is an acute hemorrhagic viral infection transmitted by mosquitoes in Africa and South America. The major challenge in YF disease detection and confirmation of outbreaks in Africa is the limited availability of reference laboratories and the persistent lack of access to diagnostic tests. We used wild-type YF virus sequences to generate recombinant envelope protein in an Escherichia coli expression system. Both the recombinant protein and sucrose gradient-purified YF vaccine virus 17D (YF-17D) were used to immunize BALB/c mice to generate monoclonal antibodies (MAbs). Eight MAbs were established and systematically characterized by indirect enzyme-linked immunosorbent assay (ELISA), Western blot analysis, and immunofluorescence assay (IFA). The established MAbs showed strong reactivity with wild-type YF virus and recombinant protein with no detectable cross-reactivity to dengue virus or Japanese encephalitis virus. Epitope mapping showed strong binding of three MAbs to amino acid positions 1 to 51, while two MAbs mapped to amino acid positions 52 to 135 of the envelope protein. The remaining three MAbs did not show reactivity to envelope fragments. The established MAbs exert no neutralization against wild-type YF and 17D viruses (titer of <10 for both strains). The applicability of MAbs 8H3 and 3F4 was further evaluated using IgM capture ELISA. A total of 49 serum samples were analyzed, among which 12 positive patient and vaccinee samples were correctly identified. Using serum samples that were 2-fold serially diluted, the IgM capture ELISA was able to detect all YF-positive samples. Furthermore, MAb-based antigen detection ELISA enabled the detection of virus in culture supernatants containing titers of about 1,000 focus-forming units.
Collapse
|
13
|
Nedjadi T, El-Kafrawy S, Sohrab SS, Desprès P, Damanhouri G, Azhar E. Tackling dengue fever: Current status and challenges. Virol J 2015; 12:212. [PMID: 26645066 PMCID: PMC4673751 DOI: 10.1186/s12985-015-0444-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
According to recent statistics, 96 million apparent dengue infections were estimated worldwide in 2010. This figure is by far greater than the WHO prediction which indicates the rapid spread of this disease posing a growing threat to the economy and a major challenge to clinicians and health care services across the globe particularly in the affected areas.This article aims at bringing to light the current epidemiological and clinical status of the dengue fever. The relationship between genetic mutations, single nucleotide polymorphism (SNP) and the pathophysiology of disease progression will be put into perspective. It will also highlight the recent advances in dengue vaccine development.Thus far, a significant progress has been made in unraveling the risk factors and understanding the molecular pathogenesis associated with the disease. However, further insights in molecular features of the disease and the development of animal models will enormously help improving the therapeutic interventions and potentially contribute to finding new preventive measures for population at risk.
Collapse
Affiliation(s)
- Taoufik Nedjadi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sherif El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sayed S Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Philippe Desprès
- UMR PIMIT (I2T team), University of Reunion island, INSERM U1187, CNRS 9192, IRD 249, Technology Platform CYROI, 2 rue Maxime Rivière Saint-Clotilde, La Reunion, 97491, France.
| | - Ghazi Damanhouri
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Esam Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
14
|
Chew MF, Tham HW, Rajik M, Sharifah S. Anti-dengue virus serotype 2 activity and mode of action of a novel peptide. J Appl Microbiol 2015; 119:1170-80. [DOI: 10.1111/jam.12921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/07/2015] [Accepted: 07/21/2015] [Indexed: 11/27/2022]
Affiliation(s)
- M.-F. Chew
- Virus-Host Interaction Group; Infectious Disease Laboratory (MR3); Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Selangor Malaysia
| | - H.-W. Tham
- Virus-Host Interaction Group; Infectious Disease Laboratory (MR3); Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Selangor Malaysia
| | - M. Rajik
- Synamatix Sdn. Bhd.; Chemistry Lab 4; Enterprise 2; Technology Park Malaysia; Kuala Lumpur Malaysia
| | - S.H. Sharifah
- Virus-Host Interaction Group; Infectious Disease Laboratory (MR3); Jeffrey Cheah School of Medicine and Health Sciences; Monash University Malaysia; Selangor Malaysia
| |
Collapse
|