1
|
Kühl M, Nielsen DA, Borisov SM. In Vivo Lifetime Imaging of the Internal O 2 Dynamics in Corals with near-Infrared-Emitting Sensor Nanoparticles. ACS Sens 2024; 9:4671-4679. [PMID: 39179239 PMCID: PMC11443520 DOI: 10.1021/acssensors.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Mapping of O2 with luminescent sensors within intact animals is challenging due to attenuation of excitation and emission light caused by tissue absorption and scattering as well as interfering background fluorescence. Here we show the application of luminescent O2 sensor nanoparticles (∼50-70 nm) composed of the O2 indicator platinum(II) tetra(4-fluoro)phenyltetrabenzoporphyrin (PtTPTBPF) immobilized in poly(methyl methacrylate-co-methacrylic acid) (PMMA-MA). We injected the sensor nanoparticles into the gastrovascular system of intact colony fractions of reef-building tropical corals that harbor photosynthetic microalgae in their tissues. The sensor nanoparticles are excited by red LED light (617 nm) and emit in the near-infrared (780 nm), which enhances the transmission of excitation and emission light through biological materials. This enabled us to map the internal O2 concentration via time-domain luminescence lifetime imaging through the outer tissue layers across several coral polyps in flowing seawater. After injection, nanoparticles dispersed within the coral tissue for several hours. While luminescence intensity imaging showed some local aggregation of sensor particles, lifetime imaging showed a more homogeneous O2 distribution across a larger area of the coral colony. Local stimulation of symbiont photosynthesis in corals induced oxygenation of illuminated tissue areas and formation of lateral O2 gradients toward surrounding respiring tissues, which were dissipated rapidly after the onset of darkness. Such measurements are key to improving our understanding of how corals regulate their internal chemical microenvironment and metabolic activity, and how they are affected by environmental stress such as ocean warming, acidification, and deoxygenation. Our experimental approach can also be adapted for in vivo O2 imaging in other natural systems such as biofilms, plant and animal tissues, as well as in organoids and other cell constructs, where imaging internal O2 conditions are relevant and challenging due to high optical density and background fluorescence.
Collapse
Affiliation(s)
- Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
- Climate Change Cluster, University of Technology Sydney, Broadway 2007, Australia
| | | | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
2
|
Alessi C, Lemonnier H, Camp EF, Wabete N, Payri C, Rodolfo Metalpa R. Algal symbiont diversity in Acropora muricata from the extreme reef of Bouraké associated with resistance to coral bleaching. PLoS One 2024; 19:e0296902. [PMID: 38416713 PMCID: PMC10901360 DOI: 10.1371/journal.pone.0296902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/21/2023] [Indexed: 03/01/2024] Open
Abstract
Widespread coral bleaching has generally been linked to high water temperatures at larger geographic scales. However, the bleaching response can be highly variable among individual of the same species, between different species, and across localities; what causes this variability remains unresolved. Here, we tracked bleached and non-bleached colonies of Acropora muricata to see if they recovered or died following a stress event inside the semi-enclosed lagoon of Bouraké (New Caledonia), where corals are long-term acclimatized to extreme conditions of temperature, pH and dissolved oxygen, and at a nearby control reef where conditions are more benign. We describe Symbiodiniaceae community changes based on next-generation sequencing of the ITS2 marker, metabolic responses, and energetic reserve measures (12 physiological traits evaluated) during the La Niña warm and rainy summer in 2021. Widespread coral bleaching (score 1 and 2 on the coral colour health chart) was observed only in Bouraké, likely due to the combination of the high temperatures (up to 32°C) and heavy rain. All colonies (i.e., Bouraké and reference site) associated predominantly with Symbiodinaceae from the genera Cladocopium. Unbleached colonies in Bouraké had a specific ITS2-type profile (proxies for Symbiodiniaceae genotypes), while the bleached colonies in Bouraké had the same ITS2-type profile of the reef control colonies during the stress event. After four months, the few bleached colonies that survived in Bouraké (B2) acquired the same ITS2 type profiles of the unbleached colonies in Bouraké. In terms of physiological performances, all bleached corals showed metabolic depression (e.g., Pgross and Rdark). In contrast, unbleached colonies in Bouraké maintained higher metabolic rates and energetic reserves compared to control corals. Our study suggests that Acropora muricata enhanced their resistance to bleaching thanks to specific Symbiodiniaceae associations, while energetic reserves may increase their resilience after stress.
Collapse
Affiliation(s)
- Cinzia Alessi
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie, Nouméa, New Caledonia
- Laboratoire d'Excellence CORAIL, ENTROPIE (UMR9220), IRD, Nouméa, New Caledonia
| | - Hugues Lemonnier
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie, Nouméa, New Caledonia
- Laboratoire d'Excellence CORAIL, ENTROPIE (UMR9220), IRD, Nouméa, New Caledonia
| | - Emma F Camp
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | - Nelly Wabete
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie, Nouméa, New Caledonia
| | - Claude Payri
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie, Nouméa, New Caledonia
- Laboratoire d'Excellence CORAIL, ENTROPIE (UMR9220), IRD, Nouméa, New Caledonia
| | - Riccardo Rodolfo Metalpa
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie, Nouméa, New Caledonia
- Laboratoire d'Excellence CORAIL, ENTROPIE (UMR9220), IRD, Nouméa, New Caledonia
- Labex ICONA International CO2 Natural Analogues Network, Shimoda, Japan
| |
Collapse
|
3
|
Blanckaert ACA, Biscéré T, Grover R, Ferrier-Pagès C. Species-Specific Response of Corals to Imbalanced Ratios of Inorganic Nutrients. Int J Mol Sci 2023; 24:3119. [PMID: 36834529 PMCID: PMC9962417 DOI: 10.3390/ijms24043119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Dissolved inorganic phosphorus (DIP) is a limiting nutrient in the physiology of scleractinian corals. Anthropogenic addition of dissolved inorganic nitrogen (DIN) to coastal reefs increases the seawater DIN:DIP ratio and further increases P limitation, which is detrimental to coral health. The effects of imbalanced DIN:DIP ratios on coral physiology require further investigation in coral species other than the most studied branching corals. Here we investigated the nutrient uptake rates, elemental tissue composition and physiology of a foliose stony coral, Turbinaria reniformis, and a soft coral, Sarcophyton glaucum, exposed to four different DIN: DIP ratios (0.5:0.2, 0.5:1, 3:0.2, 3:1). The results show that T. reniformis had high uptake rates of DIN and DIP, proportional to the seawater nutrient concentrations. DIN enrichment alone led to an increase in tissue N content, shifting the tissue N:P ratio towards P limitation. However, S. glaucum had 5 times lower uptake rates and only took up DIN when the seawater was simultaneously enriched with DIP. This double uptake of N and P did not alter tissue stoichiometry. This study allows us to better understand the susceptibility of corals to changes in the DIN:DIP ratio and predict how coral species will respond under eutrophic conditions in the reef.
Collapse
Affiliation(s)
- Alice C. A. Blanckaert
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC-98000 Monaco, Monaco
- IFD-ED 129, Sorbonne Université Sciences (Formerly UPMC Université Paris VI), CEDEX 05, 75005 Paris, France
| | - Tom Biscéré
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC-98000 Monaco, Monaco
| | - Renaud Grover
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC-98000 Monaco, Monaco
| | - Christine Ferrier-Pagès
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC-98000 Monaco, Monaco
| |
Collapse
|
4
|
Blanckaert ACA, Omanović D, Fine M, Grover R, Ferrier-Pagès C. Desert dust deposition supplies essential bioelements to Red Sea corals. GLOBAL CHANGE BIOLOGY 2022; 28:2341-2359. [PMID: 34981609 DOI: 10.1111/gcb.16074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Climate change-related increase in seawater temperature has become a leading cause of coral bleaching and mortality. However, corals from the northern Red Sea show high thermal tolerance and no recorded massive bleaching event. This specific region is frequently subjected to intense dust storms, coming from the surrounding arid deserts, which are expected to increase in frequency and intensity in the future. The aerial dust deposition supplies essential bioelements to the water column. Here, we investigated the effect of dust deposition on the physiology of a Red Sea coral, Stylophora pistillata. We measured the modifications in coral and Symbiodiniaceae metallome (cellular metal content), as well as the changes in photosynthesis and oxidative stress status of colonies exposed during few weeks to dust deposition. Our results show that 1 mg L-1 of dust supplied nanomolar amounts of nitrate and other essential bioelements, such as iron, manganese, zinc and copper, rapidly assimilated by the symbionts. At 25°C, metal bioaccumulation enhanced the chlorophyll concentration and photosynthesis of dust-exposed corals compared to control corals. These results suggest that primary production was limited by metal availability in seawater. A 5°C increase in seawater temperature enhanced iron assimilation in both control and dust-enriched corals. Temperature rise increased the photosynthesis of control corals only, dust-exposed ones having already reached maximal photosynthesis rates at 25°C. Finally, we observed a combined effect of temperature and bioelement concentration on the assimilation of molybdenum, cadmium, manganese and copper, which were in higher concentrations in symbionts of dust-exposed corals maintained at 30°C. All together these observations highlight the importance of dust deposition in the supply of essential bioelements, such as iron, to corals and its role in sustaining coral productivity in Red Sea reefs.
Collapse
Affiliation(s)
- Alice C A Blanckaert
- Centre Scientifique de Monaco, Coral Ecophysiology Team, Monaco, Monaco
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Dario Omanović
- Center for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maoz Fine
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Interuniversity Institute for Marine Science in Eilat, Eilat, Israel
| | - Renaud Grover
- Centre Scientifique de Monaco, Coral Ecophysiology Team, Monaco, Monaco
| | | |
Collapse
|
5
|
Blanckaert ACA, de Barros Marangoni LF, Rottier C, Grover R, Ferrier-Pagès C. Low levels of ultra-violet radiation mitigate the deleterious effects of nitrate and thermal stress on coral photosynthesis. MARINE POLLUTION BULLETIN 2021; 167:112257. [PMID: 33756374 DOI: 10.1016/j.marpolbul.2021.112257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 05/20/2023]
Abstract
Reef ecosystems are under increasing pressure from global and local stressors. Rising seawater temperature and high ultraviolet radiation (UVR) levels are the main drivers of the disruption of the coral-dinoflagellate symbiosis (bleaching). Bleaching can also be exacerbated by nitrate contamination in coastal reefs. However, the underlying physiological mechanisms are still poorly understood. Here, we assessed the physiological and oxidative state of the scleractinian coral Pocillopora damicornis, maintained eight weeks in a crossed-factorial design including two temperatures (26 °C or 30 °C), and two nitrate (0.5 and 3 μM-enriched), and UVR (no UVR and 25/1.5 Wm-2 UVA/B) levels. Nitrate enrichment, and high temperature, significantly impaired coral photosynthesis. However, UVR alleviated the nitrate and temperature-induced decrease in photosynthesis, by increasing the coral's antioxidant capacity. The present study contributes to our understanding of the combined effects of abiotic stressors on coral bleaching susceptibility. Such information is urgently needed to refine reef management strategies.
Collapse
Affiliation(s)
- Alice C A Blanckaert
- Sorbonne Université, UPMC Université Paris VI, IFD-ED 129, Paris Cedex 05, France; Centre Scientifique de Monaco, Coral Ecophysiology team, 8 Quai Antoine 1er, MC 98000, Monaco.
| | | | - Cécile Rottier
- Centre Scientifique de Monaco, Coral Ecophysiology team, 8 Quai Antoine 1er, MC 98000, Monaco
| | - Renaud Grover
- Centre Scientifique de Monaco, Coral Ecophysiology team, 8 Quai Antoine 1er, MC 98000, Monaco
| | - Christine Ferrier-Pagès
- Centre Scientifique de Monaco, Coral Ecophysiology team, 8 Quai Antoine 1er, MC 98000, Monaco
| |
Collapse
|
6
|
Mason RAB, Wall CB, Cunning R, Dove S, Gates RD. High light alongside elevated P CO2 alleviates thermal depression of photosynthesis in a hard coral ( Pocillopora acuta). ACTA ACUST UNITED AC 2020; 223:223/20/jeb223198. [PMID: 33087470 DOI: 10.1242/jeb.223198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022]
Abstract
The absorbtion of human-emitted CO2 by the oceans (elevated P CO2 ) is projected to alter the physiological performance of coral reef organisms by perturbing seawater chemistry (i.e. ocean acidification). Simultaneously, greenhouse gas emissions are driving ocean warming and changes in irradiance (through turbidity and cloud cover), which have the potential to influence the effects of ocean acidification on coral reefs. Here, we explored whether physiological impacts of elevated P CO2 on a coral-algal symbiosis (Pocillopora acuta-Symbiodiniaceae) are mediated by light and/or temperature levels. In a 39 day experiment, elevated P CO2 (962 versus 431 µatm P CO2 ) had an interactive effect with midday light availability (400 versus 800 µmol photons m-2 s-1) and temperature (25 versus 29°C) on areal gross and net photosynthesis, for which a decline at 29°C was ameliorated under simultaneous high-P CO2 and high-light conditions. Light-enhanced dark respiration increased under elevated P CO2 and/or elevated temperature. Symbiont to host cell ratio and chlorophyll a per symbiont increased at elevated temperature, whilst symbiont areal density decreased. The ability of moderately strong light in the presence of elevated P CO2 to alleviate the temperature-induced decrease in photosynthesis suggests that higher substrate availability facilitates a greater ability for photochemical quenching, partially offsetting the impacts of high temperature on the photosynthetic apparatus. Future environmental changes that result in moderate increases in light levels could therefore assist the P. acuta holobiont to cope with the 'one-two punch' of rising temperatures in the presence of an acidifying ocean.
Collapse
Affiliation(s)
- Robert A B Mason
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, PO Box 1346, Kāne'ohe, HI 96744, USA .,ARC Centre of Excellence for Coral Reef Studies, and Centre for Marine Science, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Christopher B Wall
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, PO Box 1346, Kāne'ohe, HI 96744, USA.,Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Ross Cunning
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, PO Box 1346, Kāne'ohe, HI 96744, USA.,Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL 60605, USA
| | - Sophie Dove
- ARC Centre of Excellence for Coral Reef Studies, and Centre for Marine Science, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, PO Box 1346, Kāne'ohe, HI 96744, USA
| |
Collapse
|
7
|
Krueger T, Horwitz N, Bodin J, Giovani ME, Escrig S, Fine M, Meibom A. Intracellular competition for nitrogen controls dinoflagellate population density in corals. Proc Biol Sci 2020; 287:20200049. [PMID: 32126963 PMCID: PMC7126079 DOI: 10.1098/rspb.2020.0049] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The density of dinoflagellate microalgae in the tissue of symbiotic corals is an important determinant for health and productivity of the coral animal. Yet, the specific mechanism for their regulation and the consequence for coral nutrition are insufficiently understood due to past methodological limitations to resolve the fine-scale metabolic consequences of fluctuating densities. Here, we characterized the physiological and nutritional consequences of symbiont density variations on the colony and tissue level in Stylophora pistillata from the Red Sea. Alterations in symbiont photophysiology maintained coral productivity and host nutrition across a broad range of symbiont densities. However, we demonstrate that density-dependent nutrient competition between individual symbiont cells, manifested as reduced nitrogen assimilation and cell biomass, probably creates the negative feedback mechanism for symbiont population growth that ultimately defines the steady-state density. Despite fundamental changes in symbiont nitrogen assimilation, we found no density-related metabolic optimum beyond which host nutrient assimilation or tissue biomass declined, indicating that host nutrient demand is sufficiently met across the typically observed range of symbiont densities under ambient conditions.
Collapse
Affiliation(s)
- Thomas Krueger
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Noa Horwitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.,The Interuniversity Institute for Marine Sciences, Eilat 88103, Israel
| | - Julia Bodin
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Maria-Evangelia Giovani
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Maoz Fine
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.,The Interuniversity Institute for Marine Sciences, Eilat 88103, Israel
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Wangpraseurt D, Holm JB, Larkum AWD, Pernice M, Ralph PJ, Suggett DJ, Kühl M. In vivo Microscale Measurements of Light and Photosynthesis during Coral Bleaching: Evidence for the Optical Feedback Loop? Front Microbiol 2017; 8:59. [PMID: 28174567 PMCID: PMC5258690 DOI: 10.3389/fmicb.2017.00059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
Climate change-related coral bleaching, i.e., the visible loss of zooxanthellae from the coral host, is increasing in frequency and extent and presents a major threat to coral reefs globally. Coral bleaching has been proposed to involve accelerating light stress of their microalgal endosymbionts via a positive feedback loop of photodamage, symbiont expulsion and excess in vivo light exposure. To test this hypothesis, we used light and O2 microsensors to characterize in vivo light exposure and photosynthesis of Symbiodinium during a thermal stress experiment. We created tissue areas with different densities of Symbiodinium cells in order to understand the optical properties and light microenvironment of corals during bleaching. Our results showed that in bleached Pocillopora damicornis corals, Symbiodinium light exposure was up to fivefold enhanced relative to healthy corals, and the relationship between symbiont loss and light enhancement was well-described by a power-law function. Cell-specific rates of Symbiodinium gross photosynthesis and light respiration were enhanced in bleached P. damicornis compared to healthy corals, while areal rates of net photosynthesis decreased. Symbiodinium light exposure in Favites sp. revealed the presence of low light microniches in bleached coral tissues, suggesting that light scattering in thick coral tissues can enable photoprotection of cryptic symbionts. Our study provides evidence for the acceleration of in vivo light exposure during coral bleaching but this optical feedback mechanism differs between coral hosts. Enhanced photosynthesis in relation to accelerating light exposure shows that coral microscale optics exerts a key role on coral photophysiology and the subsequent degree of radiative stress during coral bleaching.
Collapse
Affiliation(s)
- Daniel Wangpraseurt
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Climate Change Cluster, Department of Environmental Sciences, University of Sydney, SydneyNSW, Australia
| | - Jacob B Holm
- Marine Biological Section, Department of Biology, University of Copenhagen Helsingør, Denmark
| | - Anthony W D Larkum
- Climate Change Cluster, Department of Environmental Sciences, University of Sydney, Sydney NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster, Department of Environmental Sciences, University of Sydney, Sydney NSW, Australia
| | - Peter J Ralph
- Climate Change Cluster, Department of Environmental Sciences, University of Sydney, Sydney NSW, Australia
| | - David J Suggett
- Climate Change Cluster, Department of Environmental Sciences, University of Sydney, Sydney NSW, Australia
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Climate Change Cluster, Department of Environmental Sciences, University of Sydney, SydneyNSW, Australia
| |
Collapse
|
9
|
Hawkins TD, Hagemeyer JCG, Hoadley KD, Marsh AG, Warner ME. Partitioning of Respiration in an Animal-Algal Symbiosis: Implications for Different Aerobic Capacity between Symbiodinium spp. Front Physiol 2016; 7:128. [PMID: 27148067 PMCID: PMC4834350 DOI: 10.3389/fphys.2016.00128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/22/2016] [Indexed: 11/29/2022] Open
Abstract
Cnidarian-dinoflagellate symbioses are ecologically important and the subject of much investigation. However, our understanding of critical aspects of symbiosis physiology, such as the partitioning of total respiration between the host and symbiont, remains incomplete. Specifically, we know little about how the relationship between host and symbiont respiration varies between different holobionts (host-symbiont combinations). We applied molecular and biochemical techniques to investigate aerobic respiratory capacity in naturally symbiotic Exaiptasia pallida sea anemones, alongside animals infected with either homologous ITS2-type A4 Symbiodinium or a heterologous isolate of Symbiodinium minutum (ITS2-type B1). In naturally symbiotic anemones, host, symbiont, and total holobiont mitochondrial citrate synthase (CS) enzyme activity, but not host mitochondrial copy number, were reliable predictors of holobiont respiration. There was a positive association between symbiont density and host CS specific activity (mg protein−1), and a negative correlation between host- and symbiont CS specific activities. Notably, partitioning of total CS activity between host and symbiont in this natural E. pallida population was significantly different to the host/symbiont biomass ratio. In re-infected anemones, we found significant between-holobiont differences in the CS specific activity of the algal symbionts. Furthermore, the relationship between the partitioning of total CS activity and the host/symbiont biomass ratio differed between holobionts. These data have broad implications for our understanding of cnidarian-algal symbiosis. Specifically, the long-held assumption of equivalency between symbiont/host biomass and respiration ratios can result in significant overestimation of symbiont respiration and potentially erroneous conclusions regarding the percentage of carbon translocated to the host. The interspecific variability in symbiont aerobic capacity provides further evidence for distinct physiological differences that should be accounted for when studying diverse host-symbiont combinations.
Collapse
Affiliation(s)
- Thomas D Hawkins
- College of Earth, Ocean and Environment, School of Marine Science and Policy, University of Delaware Lewes, DE, USA
| | - Julia C G Hagemeyer
- College of Earth, Ocean and Environment, School of Marine Science and Policy, University of Delaware Lewes, DE, USA
| | - Kenneth D Hoadley
- College of Earth, Ocean and Environment, School of Marine Science and Policy, University of Delaware Lewes, DE, USA
| | - Adam G Marsh
- College of Earth, Ocean and Environment, School of Marine Science and Policy, University of Delaware Lewes, DE, USA
| | - Mark E Warner
- College of Earth, Ocean and Environment, School of Marine Science and Policy, University of Delaware Lewes, DE, USA
| |
Collapse
|
10
|
Lichtenberg M, Kühl M. Pronounced gradients of light, photosynthesis and O2 consumption in the tissue of the brown alga Fucus serratus. THE NEW PHYTOLOGIST 2015; 207:559-69. [PMID: 25827160 DOI: 10.1111/nph.13396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
Macroalgae live in an ever-changing light environment affected by wave motion, self-shading and light-scattering effects, and on the thallus scale, gradients of light and chemical parameters influence algal photosynthesis. However, the thallus microenvironment and internal gradients remain underexplored. In this study, microsensors were used to quantify gradients of light, O2 concentration, variable chlorophyll fluorescence, photosynthesis and O2 consumption as a function of irradiance in the cortex and medulla layers of Fucus serratus. The two cortex layers showed more efficient light utilization compared to the medulla, calculated both from electron transport rates through photosystem II and from photosynthesis-irradiance curves. At moderate irradiance, the upper cortex exhibited onset of photosynthetic saturation, whereas lower thallus layers exhibited net O2 consumption. O2 consumption rates in light varied with depth and irradiance and were more than two-fold higher than dark respiration. We show that the thallus microenvironment of F. serratus exhibits a highly stratified balance of production and consumption of O2 , and when the frond was held in a fixed position, high incident irradiance levels on the upper cortex did not saturate photosynthesis in the lower thallus layers. We discuss possible photoadaptive responses and consequences for optimizing photosynthetic activity on the basis of vertical differences in light attenuation coefficients.
Collapse
Affiliation(s)
- Mads Lichtenberg
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Wangpraseurt D, Tamburic B, Szabó M, Suggett D, Ralph PJ, Kühl M. Spectral effects on Symbiodinium photobiology studied with a programmable light engine. PLoS One 2014; 9:e112809. [PMID: 25389753 PMCID: PMC4229233 DOI: 10.1371/journal.pone.0112809] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022] Open
Abstract
The spectral light field of Symbiodinium within the tissue of the coral animal host can deviate strongly from the ambient light field on a coral reef and that of artificial light sources used in lab studies on coral photobiology. Here, we used a novel approach involving light microsensor measurements and a programmable light engine to reconstruct the spectral light field that Symbiodinium is exposed to inside the coral host and the light field of a conventional halogen lamp in a comparative study of Symbiodinium photobiology. We found that extracellular gross photosynthetic O2 evolution was unchanged under different spectral illumination, while the more red-weighted halogen lamp spectrum decreased PSII electron transport rates and there was a trend towards increased light-enhanced dark respiration rates under excess irradiance. The approach provided here allows for reconstructing and comparing intra-tissue coral light fields and other complex spectral compositions of incident irradiance. This novel combination of sensor technologies provides a framework to studying the influence of macro- and microscale optics on Symbiodinium photobiology with unprecedented spectral resolution.
Collapse
Affiliation(s)
- Daniel Wangpraseurt
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Bojan Tamburic
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Milán Szabó
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - David Suggett
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Peter J. Ralph
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Michael Kühl
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
- Singapore Centre on Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|