1
|
Khabade S, Sirigiri DNR, Ram AB. l-Asparaginase from Solanum lycopersicum as a Nutraceutical for Acute Lymphoblastic Leukemia. ACS OMEGA 2024; 9:3616-3624. [PMID: 38284052 PMCID: PMC10809669 DOI: 10.1021/acsomega.3c07633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/25/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
l-Asparaginase (E.C. 3.5.1.1) is an indispensable analeptic anticancer enzyme used as an amalgam with additional cancer medicines for the cure of acute lymphoblastic leukemia (ALL). The presence of lAparaginase in tomato was confirmed byWestern blotting and DNA sequencing. The l-Asparaginase gene from tomato has been deposited in the NCBI database with accession number: OR736141. Crude enzyme was extracted from the fruit pulp of Solanum lycopersicum, and the activity was determined by the Nesslerization method. Further, the crude extract was subjected to purification, and kinetic parameters were studied. The percentage yield was calculated to be 6.457, and the purification fold was 0.086. The enzyme showed maximum activity at optimum pH 7.0, optimum temperature 37 °C, and incubation time of 05 min. The Michaelis constant "Km" and maximum velocity "Vmax" values were determined by the Lineweaver-Burk plot, which showed a low Km value of 0.66 and Vmax of 3.846 IU. Cytotoxic studies were carried out for crude and purified l-asparaginase. Purified l-Asparaginase has exhibited anticancer activity against the ALL model system, K-562 cell line, comparable to that of the anticancer compound vinblastine. Hence, l-Asparaginase from the fruit extract of tomato could be used as a nutraceutical to support cancer treatment in acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Sarina
P. Khabade
- Department
of PG Studies in Biotechnology, Nrupathunga
University, Bangalore 560001, India
| | - Divijendra Natha Reddy Sirigiri
- Department
of Biotechnology, BMS College of Engineering, Bangalore, Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka 560019, India
| | - Anshu Beulah Ram
- Department
of PG Studies in Biotechnology, Nrupathunga
University, Bangalore 560001, India
| |
Collapse
|
2
|
Sakamoto A, Inoue H, Miyamoto S, Ito S, Soda Y, Tani K. Coxsackievirus A11 is an immunostimulatory oncolytic virus that induces complete tumor regression in a human non-small cell lung cancer. Sci Rep 2023; 13:5924. [PMID: 37046036 PMCID: PMC10097657 DOI: 10.1038/s41598-023-33126-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Innovative treatment is required to improve overall survival rates for advanced NSCLC. Oncolytic virotherapy using enteroviruses has emerged as a promising anticancer strategy. To identify a novel, potent virotherapy with an improved safety profile, we assessed the oncolytic activity of 28 enteroviral strains and focused on coxsackievirus A11 (CVA11). CVA11 infection caused extensive oncolytic activity in all three of the examined human NSCLC cell lines, with high intercellular adhesion molecule-1 (ICAM-1) expression associated with greater CVA11-induced cytotoxicity. In vitro inhibition analysis using a pan-caspase inhibitor and western blot detection of cleaved poly (ADP-ribose) polymerase (PARP) indicated that apoptosis partly contributed to CVA11-driven cytotoxicity. CVA11 infection-induced immunogenic cell death in vitro was strongly suggested by substantial calreticulin expression and release of high mobility group box-1 protein (HMGB1). Moreover, in vivo treatment of human NSCLC xenografts with intratumoral CVA11 injection caused complete tumor regression in all treated mice, without significant weight loss. Our findings indicate that novel oncolytic virotherapy utilizing CVA11 may be less toxic and more effective than current treatments for human NSCLC, thus warranting further investigation in clinical trial settings, especially in combination with immunotherapy.
Collapse
Affiliation(s)
- Akira Sakamoto
- Laboratory of ALA Advanced Medical Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Inoue
- Department of Respiratory Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Shohei Miyamoto
- Laboratory of ALA Advanced Medical Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Shun Ito
- Laboratory of ALA Advanced Medical Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yasushi Soda
- Laboratory of ALA Advanced Medical Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kenzaburo Tani
- Laboratory of ALA Advanced Medical Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Yu J, Zhang W, Huo W, Meng X, Zhong T, Su Y, Liu Y, Liu J, Wang Z, Song F, Zhang S, Li Z, Yu X, Yu X, Hua S. Regulation of host factor γ-H2AX level and location by enterovirus A71 for viral replication. Virulence 2022; 13:241-257. [PMID: 35067196 PMCID: PMC8786350 DOI: 10.1080/21505594.2022.2028482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Numerous viruses manipulate host factors for viral production. We demonstrated that human enterovirus A71 (EVA71), a primary causative agent for hand, foot, and mouth disease (HFMD), increased the level of the DNA damage response (DDR) marker γ-H2AX. DDR is primarily mediated by the ataxia telangiectasia mutated (ATM), ATM and Rad3-related (ATR), or DNA-dependent protein kinase (DNA-PK) pathways. Upregulation of γ-H2AX by EVA71 was dependent on the ATR but not the ATM or DNA-PK pathway. As a nuclear factor, there is no previous evidence of cytoplasmic distribution of γ-H2AX. However, the present findings demonstrated that EVA71 encouraged the localization of γ-H2AX to the cytoplasm. Of note, γ-H2AX formed a complex with structural protein VP3, non-structural protein 3D, and the viral genome. Treatment with an inhibitor or CRISPR/Cas9 technology to decrease or silence the expression of γ-H2AX decreased viral genome replication in host cells; this effect was accompanied by decreased viral protein expression and virions. In animal experiments, caffeine was used to inhibit DDR; the results revealed that caffeine protected neonatal mice from death after infection with EVA71, laying the foundation for new therapeutic applications of caffeine. More importantly, in children with HFMD, γ-H2AX was upregulated in peripheral blood lymphocytes. The consistent in vitro and in vivo data on γ-H2AX from this study suggested that caffeine or other inhibitors of DDR might be novel therapeutic agents for HFMD.
Collapse
Affiliation(s)
- Jinghua Yu
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Xiangling Meng
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Ting Zhong
- Medicinal Chemistry, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Su
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Yumeng Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Jinming Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Zengyan Wang
- Department of Internal Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Fengmei Song
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Xiaofang Yu
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shucheng Hua
- Department of Internal Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
4
|
Antiproliferative effects of boswellic acid-loaded chitosan nanoparticles on human lung cancer cell line A549. Future Med Chem 2020; 12:2019-2034. [PMID: 33124483 DOI: 10.4155/fmc-2020-0083] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: In the present study boswellic acids-loaded chitosan nanoparticles were synthesized using ionic gelation technique. The influence of independent variables were studied and optimized on dependent variables using central composite design. Methodology & results: The designed nanoparticles were observed spherical in shape with an average size of 67.5-187.2 nm and have also shown an excellent entrapment efficiency (80.06 ± 0.48). The cytotoxicity assay revealed enhanced cytotoxicity for drug-loaded nanoparticles in contrast to the free drug having an IC50 value of 17.29 and 29.59 μM, respectively. Flow cytometry confirmed that treatment of cells with 40 μg/ml had arrested 22.75 ± 0.3% at SubG0 phase of the cell cycle when compared with untreated A459 cells. The observed results justified the boswellic acids-loaded chitosan nanoparticles were effective due to greater cellular uptake, sustained intercellular drug retention and enhanced antiproliferative effect by inducing apoptosis.
Collapse
|
5
|
Liu C, Wang F, Wang B, Wu T, Wang Y, Huo W, Zhang S, Su Y, Liu J, Liu Y, Yu J. Pseudolaric acid B induces apoptosis in human rhabdomyosarcoma RD cells. Oncol Lett 2020; 20:358. [PMID: 33133258 PMCID: PMC7590441 DOI: 10.3892/ol.2020.12222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/30/2020] [Indexed: 11/05/2022] Open
Abstract
Pseudolaric acid B (PAB) is a diterpene-type acid isolated from the root and trunk bark of Pseudolarix kaempferi Gordon of the Pinaceae family that has been demonstrated to induce apoptosis in various cell lines and autophagy in certain cell lines including murine fibrosarcoma L929, human thyroid squamous cell carcinoma SW579 and human lung fibroblast MRC5 cells. However, in human rhabdomyosarcoma RD cells, which are derived from the most common soft tissue sarcoma in children and represent a high-grade neoplasm of a skeletal myoblast type, it is not clear whether PAB induces apoptosis or autophagy. The identification of the exact mechanism of PAB is important for studying its antitumor effects and its potential application in the treatment of human rhabdomyosarcoma. To confirm the inhibitory ability of PAB on RD cells, the inhibitory ratio of PAB was analyzed, and the results of MTT assay demonstrated that PAB inhibited RD cell proliferation. Meanwhile aggregation of the microtubule fibers was found in PAB-treated RD cells compared with that in control-treated cells, which was consistent with previous studies. In addition, PAB inhibited RD cell migration, induced apoptosis and cell cycle arrest at the G2/M phase. These results suggested that the mechanism of PAB-mediated growth inhibition in RD was similar to that reported in the human breast cancer cell line MCF-7 and the neuroglioma cell line A172; however, it was different from that reported in the L929, MRC5 and SW579 cell lines. Additional experiments demonstrated that PAB regulated the activation of caspase-8 and caspase-9 to induce apoptosis and caused an upregulation of phosphorylated H2A histone family member X and cyclin B1 expression in order to induce cell cycle arrest. Therefore, PAB may be considered a potential treatment agent for human rhabdomyosarcoma.
Collapse
Affiliation(s)
- Chunyu Liu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China.,Acupunture Department, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Fei Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Bin Wang
- Department of Infectious Diseases, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ting Wu
- Neonatal Intensive Care Unit, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yue Wang
- Chemistry Department of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Ying Su
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Jinming Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yumeng Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
6
|
Huo W, Yu J, Liu C, Wu T, Wang Y, Meng X, Song F, Zhang S, Su Y, Liu Y, Liu J, Yu X, Hua S. Caspase-3 inhibitor inhibits enterovirus D68 production. J Microbiol 2020; 58:812-820. [PMID: 32870487 PMCID: PMC7459088 DOI: 10.1007/s12275-020-0241-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Enterovirus D68 (EVD68) is an emerging pathogen that recently caused a large worldwide outbreak of severe respiratory disease in children. However, the relationship between EVD68 and host cells remains unclear. Caspases are involved in cell death, immune response, and even viral production. We found that caspase-3 was activated during EVD68 replication to induce apoptosis. Caspase-3 inhibitor (Z-DEVD-FMK) inhibited viral production, protected host cells from the cytopathic effects of EVD68 infection, and prevented EVD68 from regulating the host cell cycle at G0/G1. Meanwhile, caspase-3 activator (PAC-1) increased EVD68 production. EVD68 infection therefore activates caspase-3 for virus production. This knowledge provides a potential direction for the prevention and treatment of disease related to EVD68.
Collapse
Affiliation(s)
- Wenbo Huo
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, 130000, P. R. China.,Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, 130000, P. R. China
| | - Chunyu Liu
- Acupuncture Department, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130000, P. R. China
| | - Ting Wu
- Neonatal Intensive Care Unit, The First Hospital of Jilin University, Jilin University, Changchun, 130000, P. R. China
| | - Yue Wang
- Department of Chemistry of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, P. R. China
| | - Xiangling Meng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Fengmei Song
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Ying Su
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Yumeng Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Jinming Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Shucheng Hua
- Department of Internal Medicine, The First Hospital of Jilin University, Jilin University, Changchun, 130000, P. R. China.
| |
Collapse
|
7
|
Jmii H, Halouani A, Maatouk M, Chekir-Ghedira L, Aouni M, Fisson S, Jaïdane H. Coxsackievirus B4 infection and interneuronal spread in primary cultured neurons. Microb Pathog 2020; 145:104235. [DOI: 10.1016/j.micpath.2020.104235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/11/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
|
8
|
BNIP3 deletion ameliorated enterovirus 71 infection-induced hand, foot and mouth disease via inhibiting apoptosis, autophagy, and inflammation in mice. Int Immunopharmacol 2020; 87:106799. [PMID: 32717566 DOI: 10.1016/j.intimp.2020.106799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/23/2022]
Abstract
Bcl2/adenovirus E1B protein-interacting protein 3 (BNIP3) plays a key role in cellular response to stress by regulating apoptosis and selective autophagy. The present study aimed to determine the effects of BNIP3 on enterovirus (EV) 71 infection-induced hand, foot and mouth disease (HFMD), and the apoptosis, autophagy and inflammatory in mice and SH-SY5Y human neuroblastoma cell line. Neonatal BALB/c mice were injected with EV 71 strain to induce the HFMD. Western blotting and ELISA were used to measure the protein expression and cytokine levels. The BNIP3 mRNA and protein levels in the brain were increased in EV 71-infected mice. By contrast, the BNIP3-knockout (KO) mice with EV 71 infection had higher health score and survival rate. BNIP3 deletion reversed the increase of cleaved-caspase 3, cleaved-caspase 8, Bax, LC3 II and LC3 II/LC3 I levels, and the decrease of Bcl2 and Bcl2/Bax and LC3 I levels in the brain of mice with EV 71 infection. The EV 71 infection-induced increase of tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1, interleukin (IL)-1β, IL-6, interferon (IFN)-α and IFN-γ levels were inhibited in BNIP3-KO mice. BNIP3 knockdown with small interfering RNA (siRNA) inhibited the EV 71 infection-induced the increases of apoptosis, autophagy and inflammatory factors in SH-SY5Y cells. BNIP3 overexpression further facilitated the EV 71 infection-induced increase of these inflammatory factors in SH-SY5Y cells. These results demonstrated that BNIP3 deletion ameliorated EV 71 infection-induced HFMD via inhibiting apoptosis, autophagy and inflammation in mice. BNIP3 may be a therapeutic target for HFMD.
Collapse
|
9
|
Zhang S, Yu X, Meng X, Huo W, Su Y, Liu J, Liu Y, Zhang J, Wang S, Yu J. Coxsackievirus A6 Induces Necroptosis for Viral Production. Front Microbiol 2020; 11:42. [PMID: 32117097 PMCID: PMC7011610 DOI: 10.3389/fmicb.2020.00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a febrile exanthematous disease with typical or atypical symptoms. Typical HFMD is usually caused by enterovirus 71 (EV71) or coxsackievirus A16, while atypical HFMD is usually caused by coxsackievirus A6 (CA6). In recent years, worldwide outbreaks of CA6-associated HFMD have dramatically increased, although the pathogenic mechanism of CA6 is still unclear. EV71 has been established to induce caspase-dependent apoptosis, but in this study, we demonstrate that CA6 infection promotes a distinct pathway of cell death that involves loss of cell membrane integrity. Necrostatin-1, an inhibitor of necroptosis, blocks the cell death induced by CA6 infection, but Z-DEVD-FMK, an inhibitor of caspase-3, has no effect on CA6-induced cell death. Furthermore, CA6 infection up-regulates the expression of the necroptosis signaling molecule RIPK3. Importantly, necrostatin-1 inhibits CA6 viral production, as assessed by its ability to inhibit levels of VP1 protein and genomic RNA and infectious particles. CA6-induced necroptosis is not dependent on the generation of reactive oxygen species; however, viral 3D protein can directly bind RIPK3, which is suggestive of a direct mechanism of necroptosis induction. Therefore, these results indicate that CA6 induces a mechanism of RIPK3-dependent necroptosis for viral production that is distinct from the mechanism of apoptosis induced by typical HFMD viruses.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xiangling Meng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Ying Su
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jinming Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yumeng Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jun Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shaohua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
10
|
Imre G. The involvement of regulated cell death forms in modulating the bacterial and viral pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:211-253. [PMID: 32381176 PMCID: PMC7102569 DOI: 10.1016/bs.ircmb.2019.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis, necroptosis and pyroptosis represent three distinct types of regulated cell death forms, which play significant roles in response to viral and bacterial infections. Whereas apoptosis is characterized by cell shrinkage, nuclear condensation, bleb formation and retained membrane integrity, necroptosis and pyroptosis exhibit osmotic imbalance driven cytoplasmic swelling and early membrane damage. These three cell death forms exert distinct immune stimulatory potential. The caspase driven apoptotic cell demise is considered in many circumstances as anti-inflammatory, whereas the two lytic cell death modalities can efficiently trigger immune response by releasing damage associated molecular patterns to the extracellular space. The relevance of these cell death modalities in infections can be best demonstrated by the presence of viral proteins that directly interfere with cell death pathways. Conversely, some pathogens hijack the cell death signaling routes to initiate a targeted attack against the immune cells of the host, and extracellular bacteria can benefit from the destruction of intact extracellular barriers upon cell death induction. The complexity and the crosstalk between these cell death modalities reflect a continuous evolutionary race between pathogens and host. This chapter discusses the current advances in the research of cell death signaling with regard to viral and bacterial infections and describes the network of the cell death initiating molecular mechanisms that selectively recognize pathogen associated molecular patterns.
Collapse
Affiliation(s)
- Gergely Imre
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Qu M, Di S, Zhang S, Xia Z, Quan G. Vitamin D receptor protects glioblastoma A172 cells against Coxsackievirus A16 infection induced cell death in the pathogenesis of hand, foot, and mouth disease. Biochem Biophys Res Commun 2017; 493:952-956. [DOI: 10.1016/j.bbrc.2017.09.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 01/13/2023]
|
12
|
Enterovirus A71 and coxsackievirus A16 show different replication kinetics in human neuronal and non-neuronal cell lines. Arch Virol 2016; 162:727-737. [DOI: 10.1007/s00705-016-3157-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 01/15/2023]
|
13
|
Coxsackievirus A16 induced neurological disorders in young gerbils which could serve as a new animal model for vaccine evaluation. Sci Rep 2016; 6:34299. [PMID: 27667023 PMCID: PMC5035925 DOI: 10.1038/srep34299] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/09/2016] [Indexed: 11/09/2022] Open
Abstract
Coxsackievirus A16 (CA16) is one of the major pathogens associated with human hand, foot, and mouth disease (HFMD) in the Asia-pacific region. Although CA16 infections are generally mild, severe neurological manifestations or even death has been reported. Studies on CA16 pathogenesis and vaccine development are severely hampered because the small animal models that are currently available show major limitations. In this study, gerbils (Meriones unguiculatus) were investigated for their suitability as an animal model to study CA16 pathogenesis and vaccine development. Our results showed that gerbils up to the age of 21 days were fully susceptible to CA16 and all died within five days post-infection. CA16 showed a tropism towards the skeletal muscle, spinal cord and brainstem of gerbils, and severe lesions, including necrosis, were observed. In addition, an inactivated CA16 whole-virus vaccine administrated to gerbils was able to provide full protection to the gerbils against lethal doses of CA16 strains. These results demonstrate that gerbils are a suitable animal model to study CA16 infection and vaccine development.
Collapse
|
14
|
Du J, Zheng B, Zheng W, Li P, Kang J, Hou J, Markham R, Zhao K, Yu XF. Analysis of Enterovirus 68 Strains from the 2014 North American Outbreak Reveals a New Clade, Indicating Viral Evolution. PLoS One 2015; 10:e0144208. [PMID: 26630383 PMCID: PMC4667938 DOI: 10.1371/journal.pone.0144208] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
Enterovirus 68 (EVD68) causes respiratory illness, mostly in children. Despite a reported low-level of transmission, the occurrence of several recent outbreaks worldwide including the 2014 outbreak in North America has raised concerns regarding the pathogenesis and evolution of EVD68. To elucidate the phylogenetic features of EVD68 and possible causes for the 2014 outbreak, 216 EVD68 strain sequences were retrieved from Genbank, including 22 from the 2014 outbreak. Several geographic and genotypic origins were established for these 22 strains, 19 of which were classified as Clade B. Of these 19 strains, 17 exhibited subsequent clustering and variation in protein residues involved in host-receptor interaction and/or viral antigenicity. Approximately 18 inter-clade variations were detected in VP1, which led to the identification of a new Clade D in EVD68 strains. The classification of this new clade was also verified by the re-construction of a Neighbor-Joining tree during the phylogenetic analysis. In addition, our results indicate that members of Clade B containing highly specific alterations in VP1 protein residues were the foremost contributors to the 2014 outbreak in the US. Altered host-receptor interaction and/or host immune recognition may explain the evolution of EVD68 as well as the global emergence and ongoing adaptation of this virus.
Collapse
Affiliation(s)
- Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenwen Zheng
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Li
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Kang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jingwei Hou
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Richard Markham
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
- * E-mail: (KZ); (XFY)
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (KZ); (XFY)
| |
Collapse
|
15
|
Type I Interferons Triggered through the Toll-Like Receptor 3-TRIF Pathway Control Coxsackievirus A16 Infection in Young Mice. J Virol 2015; 89:10860-7. [PMID: 26292317 DOI: 10.1128/jvi.01627-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/10/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Coxsackievirus A16 (CVA16) is one of the major etiological agents of hand, foot, and mouth disease (HFMD) in children. The host defense mechanisms against CVA16 infection remain almost entirely unknown. Unlike previous observations with enterovirus 71 (EV71) infection, here we show that gamma interferon (IFN-γ) or invariant NK T cell deficiency does not affect disease development or the survival of CVA16-infected mice. In contrast, type I interferon receptor deficiency resulted in the development of more severe disease in mice, and the mice had a lower survival rate than wild-type mice. Similarly, a deficiency of Toll-like receptor 3 (TLR3) and TRIF, but not other pattern recognition receptors, led to the decreased survival of CVA16-infected mice. TLR3-TRIF signaling was indispensable for the induction of type I interferons during CVA16 infection in mice and protected young mice from disease caused by the infection. In particular, TRIF-mediated immunity was critical for preventing CVA16 replication in the neuronal system before disease occurred. IFN-β treatment was also found to compensate for TRIF deficiency in mice and decreased the disease severity in and mortality of CVA16-infected mice. Altogether, type I interferons induced by TLR3-TRIF signaling mediate protective immunity against CVA16 infection. These findings may shed light on therapeutic strategies to combat HFMD caused by CVA16 infection. IMPORTANCE Hand, foot, and mouth disease (HFMD) is a major threat to public health in the Asia-Pacific region. Both CVA16 and EV71 are major pathogens that are responsible for HFMD. The majority of research efforts have focused on the more virulent EV71, but little has been done with CVA16. Thus far, host immune responses to CVA16 infection have not yet been elucidated. The present study discovered an initial molecular mechanism underlying host protective immunity against CVA16 infection, providing the first explanation for why CVA16 and EV71 cause different clinical outcomes upon infection of humans. Therefore, different therapeutic strategies should be developed to treat HFMD cases caused by these two viruses.
Collapse
|
16
|
Klein M, Chong P. Is a multivalent hand, foot, and mouth disease vaccine feasible? Hum Vaccin Immunother 2015; 11:2688-704. [PMID: 26009802 DOI: 10.1080/21645515.2015.1049780] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Enterovirus A infections are the primary cause of hand, foot and mouth disease (HFMD) in infants and young children. Although enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) are the predominant causes of HFMD epidemics worldwide, EV-A71 has emerged as a major neurovirulent virus responsible for severe neurological complications and fatal outcomes. HFMD is a serious health threat and economic burden across the Asia-Pacific region. Inactivated EV-A71 vaccines have elicited protection against EV-A71 but not against CV-A16 infections in large efficacy trials. The current development of a bivalent inactivated EV-A71/CV-A16 vaccine is the next step toward that of multivalent HFMD vaccines. These vaccines should ultimately include other prevalent pathogenic coxsackieviruses A (CV-A6 and CV-A10), coxsackieviruses B (B3 and B5) and echovirus 30 that often co-circulate during HFMD epidemics and can cause severe HFMD, aseptic meningitis and acute viral myocarditis. The prospect and challenges for the development of such multivalent vaccines are discussed.
Collapse
Affiliation(s)
| | - Pele Chong
- b Vaccine R&D Center; National Health Research Institutes ; Zhunan Town, Miaoli County , Taiwan.,c Graduate Institute of Immunology; China Medical University ; Taichung , Taiwan
| |
Collapse
|