1
|
Chen G, Zeng M, Liu Z, Zhou M, Zha J, Zhang L, Chen H, Liu H. The kinetics of mTORC1 activation associates with FOXP3 expression pattern of CD4+ T cells and outcome of steroid-sensitive minimal change disease. Int Immunopharmacol 2023; 122:110589. [PMID: 37418986 DOI: 10.1016/j.intimp.2023.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Minimal change disease (MCD) usually responds to glucocorticoids (GCs) but relapses in most cases. Relapse pathogenesis after complete remission (CR) remains unclear. We hypothesized that FOXP3+ T regulatory cell (Treg) dysregulation may drive early relapses (ER). In this study, a cohort of 23 MCD patients were treated with a conventional GC regimen for the initial onset of nephrotic syndrome. Upon GC withdrawal, seven patients suffered from ER, while 16 patients sustained remission (SR) during the 12-month follow-up. Patients with ER had reduced FOXP3+ Treg proportions compared with healthy controls. Treg reduction, accompanied by IL-10 impairment, was ascribed to a proportional decline of FOXP3medium rather than FOXP3high cells. GC-induced CR was marked by a rise in the proportions of FOXP3+ and FOXP3medium cells compared to baseline levels. These increases declined in patients with ER. The expression level of phosphorylated ribosomal protein S6 was used to track the dynamic shifts in mTORC1 activity within CD4+ T cells of MCD patients at various stages of treatment. Baseline mTORC1 activity was inversely correlated with FOXP3+ and FOXP3medium Treg proportion. The mTORC1 activity in CD4+ T cells served as a reliable indicator for ER and demonstrated improved performance when paired with FOXP3 expression. Mechanically, targeting mTORC1 intervention by siRNAs sufficiently altered the conversion pattern of CD4+ T cell to FOXP3+ Treg. Taken together, the activity of mTORC1 in CD4+ T cells can act as a credible predictor for ER in MCD, especially when combined with FOXP3 expression, and may offer a potential therapeutic avenue for the treatment of podocytopathies.
Collapse
Affiliation(s)
- Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China; Clinical Immunology Research Center of Central South University, Changsha, China.
| | - Mengru Zeng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mi Zhou
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Zha
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei Zhang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huihui Chen
- Clinical Immunology Research Center of Central South University, Changsha, China; Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
2
|
Wang C, Qu W, Chen Q, Huang WY, Kang Y, Shen J. Primary nephrotic syndrome relapse within 1 year after glucocorticoid therapy in children is associated with gut microbiota composition at syndrome onset. Nephrol Dial Transplant 2023; 38:1969-1980. [PMID: 36815457 DOI: 10.1093/ndt/gfac328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Children with primary nephrotic syndrome (PNS) who relapse after glucocorticoid therapy are shown to have a decreased total proportion of butyrate-producing bacteria in the gut at onset. Glucocorticoid treatment changes the gut microbiota composition. It is unclear whether gut microbiota at remission right after therapy and gut bacteria other than butyrate-producing bacteria are associated with PNS relapse. METHODS PNS relapse of paediatric patients within 1 year after glucocorticoid therapy was recorded. The gut microbiota composition, profiled with 16S rRNA gene V3-V4 region sequencing, was compared between relapsing and non-relapsing PNS children at onset before glucocorticoid treatment (preT group) and in PNS children at remission right after treatment (postT group), respectively. RESULTS The gut microbiota composition of postT children significantly differed from that of preT children by having lower levels of Bacteroides, Lachnoclostridium, Flavonifractor, Ruminococcaceae UBA1819, Oscillibacter, Hungatella and Coprobacillus and higher levels of Ruminococcaceae UCG-013 and Clostridium sensu stricto 1 group. In the preT group, compared with non-relapsing patients, relapsing patients showed decreased Blautia, Dialister and total proportion of butyrate-producing bacteria and increased Oscillibacter, Anaerotruncus and Ruminococcaceae UBA1819. However, relapsing and non-relapsing postT children showed no difference in gut microbiota composition. CONCLUSIONS PNS relapse-associated gut microbiota dysbiosis at onset, which includes alterations of both butyrate-producing and non-butyrate-producing bacteria, disappeared right after glucocorticoid therapy. It is necessary to study the association of the longitudinal changes in the complete profiles of gut microbiota after glucocorticoid treatment with later PNS relapse.
Collapse
Affiliation(s)
- Chenwei Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wei Qu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Qiurong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wen-Yan Huang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yulin Kang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jian Shen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
3
|
Vincenti F, Angeletti A, Ghiggeri GM. State of the art in childhood nephrotic syndrome: concrete discoveries and unmet needs. Front Immunol 2023; 14:1167741. [PMID: 37503337 PMCID: PMC10368981 DOI: 10.3389/fimmu.2023.1167741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Nephrotic syndrome (NS) is a clinical entity characterized by proteinuria, hypoalbuminemia, and peripheral edema. NS affects about 2-7 per 100,000 children aged below 18 years old yearly and is classified, based on the response to drugs, into steroid sensitive (SSNS), steroid dependent, (SDNS), multidrug dependent (MDNS), and multidrug resistant (MRNS). Forms of NS that are more difficult to treat are associated with a worse outcome with respect to renal function. In particular, MRNS commonly progresses to end stage renal failure requiring renal transplantation, with recurrence of the original disease in half of the cases. Histological presentations of NS may vary from minimal glomerular lesions (MCD) to focal segmental glomerulosclerosis (FSGS) and, of relevance, the histological patterns do not correlate with the response to treatments. Moreover, around half of MRNS cases are secondary to causative pathogenic variants in genes involved in maintaining the glomerular structure. The pathogenesis of NS is still poorly understood and therapeutic approaches are mostly based on clinical experience. Understanding of pathogenetic mechanisms of NS is one of the 'unmet needs' in nephrology and represents a significant challenge for the scientific community. The scope of the present review includes exploring relevant findings, identifying unmet needs, and reviewing therapeutic developments that characterize NS in the last decades. The main aim is to provide a basis for new perspectives and mechanistic studies in NS.
Collapse
Affiliation(s)
- Flavio Vincenti
- Division of Nephrology, Department of Medicine and Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Andrea Angeletti
- Nephrology Dialysis and Transplantation, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Marco Ghiggeri
- Nephrology Dialysis and Transplantation, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
4
|
Casiraghi F, Todeschini M, Podestà MA, Mister M, Ruggiero B, Trillini M, Carrara C, Diadei O, Villa A, Benigni A, Remuzzi G. Immunophenotypic Alterations in Adult Patients with Steroid-Dependent and Frequently Relapsing Nephrotic Syndrome. Int J Mol Sci 2023; 24:ijms24097687. [PMID: 37175393 PMCID: PMC10178237 DOI: 10.3390/ijms24097687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Immune dysregulation plays a key role in the pathogenesis of steroid-dependent/frequently relapsing nephrotic syndrome (SDNS/FRNS). However, in contrast with evidence from the pediatric series, no major B- or T-cell alterations have been described for adults. In these patients, treatment with rituximab allows safe discontinuation of steroids, but long-term efficacy is variable, and some patients experience NS relapses after B cell reconstitution. In this study, we aimed to determine disease-associated changes in the B and T cell phenotype of adult patients with SDND/FRNS after steroid-induced remission. We also investigated whether any of these changes in immune cell subsets could discriminate between patients who developed NS relapses after steroid-sparing treatment with rituximab from those who did not. Lymphocyte subsets in SDNS/FRNS patients (n = 18) were compared to those from patients with steroid-resistant NS (SRNS, n = 7) and healthy volunteers (HV, n = 15). Before rituximab, SDND/FRNS patients showed increased frequencies of total and memory B cells, mainly with a CD38-negative phenotype. Within the T-cell compartment, significantly lower levels of FOXP3+ regulatory T cells (Tregs) were found, mostly due to a reduction in CD45RO+ memory Tregs compared to both SRNS and HV. The levels of CD45RO+ Tregs were significantly lower at baseline in patients who relapsed after rituximab (n = 9) compared to patients who did not (n = 9). In conclusion, patients with SDND/FRNS displayed expansion of memory B cells and reduced memory Tregs. Treg levels at baseline may help identify patients who will achieve sustained remission following rituximab infusion from those who will experience NS relapses.
Collapse
Affiliation(s)
- Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Marta Todeschini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | | | - Marilena Mister
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Barbara Ruggiero
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Matias Trillini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Camillo Carrara
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Olimpia Diadei
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Alessandro Villa
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| |
Collapse
|
5
|
Therapeutic trials in difficult to treat steroid sensitive nephrotic syndrome: challenges and future directions. Pediatr Nephrol 2023; 38:17-34. [PMID: 35482099 PMCID: PMC9048617 DOI: 10.1007/s00467-022-05520-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023]
Abstract
Steroid sensitive nephrotic syndrome is a common condition in pediatric nephrology, and most children have excellent outcomes. Yet, 50% of children will require steroid-sparing agents due to frequently relapsing disease and may suffer consequences from steroid dependence or use of steroid-sparing agents. Several steroid-sparing therapeutic agents are available with few high quality randomized controlled trials to compare efficacy leading to reliance on observational data for clinical guidance. Reported trials focus on short-term outcomes such as time to first relapse, relapse rates up to 1-2 years of follow-up, and few have studied long-term remission. Trial designs often do not consider inter-individual variability, and differing response to treatments may occur due to heterogeneity in pathogenic mechanisms, and genetic and environmental influences. Strategies are proposed to improve the quantity and quality of trials in steroid sensitive nephrotic syndrome with integration of biomarkers, novel trial designs, and standardized outcomes, especially for long-term remission. Collaborative efforts among international trial networks will help move us toward a shared goal of finding a cure for children with nephrotic syndrome.
Collapse
|
6
|
Hackl A, Zed SEDA, Diefenhardt P, Binz-Lotter J, Ehren R, Weber LT. The role of the immune system in idiopathic nephrotic syndrome. Mol Cell Pediatr 2021; 8:18. [PMID: 34792685 PMCID: PMC8600105 DOI: 10.1186/s40348-021-00128-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) in children is characterized by massive proteinuria and hypoalbuminemia and usually responds well to steroids. However, relapses are frequent, which can require multi-drug therapy with deleterious long-term side effects. In the last decades, different hypotheses on molecular mechanisms underlying INS have been proposed and several lines of evidences strongly indicate a crucial role of the immune system in the pathogenesis of non-genetic INS. INS is traditionally considered a T-cell-mediated disorder triggered by a circulating factor, which causes the impairment of the glomerular filtration barrier and subsequent proteinuria. Additionally, the imbalance between Th17/Tregs as well as Th2/Th1 has been implicated in the pathomechanism of INS. Interestingly, B-cells have gained attention, since rituximab, an anti-CD20 antibody demonstrated a good therapeutic response in the treatment of INS. Finally, recent findings indicate that even podocytes can act as antigen-presenting cells under inflammatory stimuli and play a direct role in activating cellular pathways that cause proteinuria. Even though our knowledge on the underlying mechanisms of INS is still incomplete, it became clear that instead of a traditionally implicated cell subset or one particular molecule as a causative factor for INS, a multi-step control system including soluble factors, immune cells, and podocytes is necessary to prevent the occurrence of INS. This present review aims to provide an overview of the current knowledge on this topic, since advances in our understanding of the immunopathogenesis of INS may help drive new tailored therapeutic approaches forward.
Collapse
Affiliation(s)
- Agnes Hackl
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany. .,Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Seif El Din Abo Zed
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Paul Diefenhardt
- Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Julia Binz-Lotter
- Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Rasmus Ehren
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lutz Thorsten Weber
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
7
|
Ontawong A, Srimaroeng C, Boonphang O, Phatsara M, Amornlerdpison D, Duangjai A. Spirogyra neglecta Aqueous Extract Attenuates LPS-Induced Renal Inflammation. Biol Pharm Bull 2020; 42:1814-1822. [PMID: 31685765 DOI: 10.1248/bpb.b19-00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spirogyra neglecta (SN), commonly named "Tao" in Thai, is a genus of filamentous green macroalgae. SN contains polyphenols such as isoquercetin, catechin, hydroquinone and kaempferol. These constituents exhibit beneficial effects including anti-oxidant, anti-gastric ulcer, anti-hyperglycaemia and anti-hyperlipidaemia in both in vitro and in vivo models. Whether SN extract (SNE) has an anti-inflammatory effect in vivo remains unclear. This study examined the effect of SNE on renal function and renal organic transport in lipopolysaccharide (LPS)-induced renal inflammation in rats. Rats were randomised and divided into normal saline (NS), NS supplemented with 1000 mg/kg body weight (BW) of SNE (NS + SNE), intraperitoneally injected with 12 mg/kg BW of LPS and LPS treated with 1000 mg/kg BW of SNE (LPS + SNE). Biochemical parameters in serum and urine, lipid peroxidation concentration, kidney function and renal organic anion and cation transports were determined. LPS-injected rats developed renal injury and inflammation by increasing urine microalbumin, total malondialdehyde (MDA) and inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β protein expression, respectively. In addition, uptake of renal organic anion, [3H]-oestrone sulphate (ES), was reduced in LPS-injected rats together with increased expression of organic anion transporter 3 (Oat3). However, the renal injury and inflammation, as well as impaired Oat3 function and protein expression, were restored in LPS + SNE rats. Accordingly, SNE could be developed as nutraceutical product to prevent inflammation-induced nephrotoxicity.
Collapse
|
8
|
Wang D, Jiang X, Teng S, Zhang Y, Liu Y, Li X, Li Y. The Antidiabetic and Antinephritic Activities of Auricularia cornea (An Albino Mutant Strain) via Modulation of Oxidative Stress in the db/db Mice. Front Immunol 2019; 10:1039. [PMID: 31134090 PMCID: PMC6517500 DOI: 10.3389/fimmu.2019.01039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/23/2019] [Indexed: 12/04/2022] Open
Abstract
This study first systematically analyzed the constituents of an albino mutant strain of Auricularia cornea (AU). After 8 weeks of continuous treatment with metformin (Met) (0.1 g/kg) and AU (0.1 and 0.4 g/kg), db/db mice showed hypoglycemic functioning, indicated by reduced bodyweight, food intake, plasma glucose, serum levels of glycated hemoglobin A1c and glucagon, hepatic levels of phosphoenolpyruvate carboxykinase and lucose-6-phosphatasem, and increased serum levels of insulin. The effect of hypolipidemic functions were indicated by suppressed levels of total cholesterol and triglyceride, and enhanced levels of hepatic glycogen and high-density lipoprotein cholesterol. The renal protective effect of AU was confirmed by the protection in renal structures and the regulation of potential indicators of nephropathy. The anti-oxidative and anti-inflammatory effects of AU were verified by a cytokine array combined with an enzyme-linked immunosorbent assay. AU decreased the expression of protein kinase C α and β2 and phosphor-nuclear factor-κB, and enhanced the expression of catalase, nuclear respiratory factor 2 (Nrf2), manganese superoxide dismutase 2, heme oxygenase-1 and−2, heat shock protein 27 (HSP27), HSP60, and HSP70 in the kidneys of db/db mice. The results confirmed that AU's anti-diabetic and anti-nephritic effects are related to its modulation on oxidative stress.
Collapse
Affiliation(s)
- Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Xue Jiang
- School of Life Sciences, Jilin University, Changchun, China
| | - Shanshan Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Xiao Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
He R, Li L, Kong Y, Tian L, Tian X, Fang P, Bian M, Liu Z. Preventing murine transfusion-related acute lung injury by expansion of CD4 + CD25 + FoxP3 + Tregs using IL-2/anti-IL-2 complexes. Transfusion 2018; 59:534-544. [PMID: 30499590 DOI: 10.1111/trf.15064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Transfusion-related acute lung injury (TRALI) is one of the most serious adverse events following transfusion, and there is no specific treatment in clinical practice. However, regulatory T cells (Tregs) have been suggested to play a potential role in the treatment of TRALI. This study investigated whether interleukin (IL)-2 or IL-2/anti-IL-2 complexes (IL-2c), which are mediators of Treg expansion, can modulate the severity of antibody-mediated TRALI in vivo. STUDY DESIGN AND METHODS This study utilized a mouse model of the "two-hit" mechanism: BALB/c mice were primed with lipopolysaccharide (LPS) as the first hit, and then TRALI was induced by injecting major histocompatibility complex Class I antibodies. Mice injected with LPS only or LPS combined with isotype control antibodies served as controls. For the Treg-depleted groups, mice were infused with anti-mouse IL-2Rα first and then subjected to the same treatments as the TRALI group. Regarding IL-2- and IL-2c-treated mice, recombinant murine IL-2 or IL-2c was intraperitoneally administered to mice for 5 consecutive days before induction of the TRALI model. Samples were collected 2 hours after TRALI induction. RESULTS Prophylactic administration of IL-2 or IL-2c to mice prevented the onset of edema, pulmonary protein levels, and proinflammatory factors that inhibited polymorphonuclear neutrophil aggregation in the lungs. Furthermore, the percentage of CD4+ CD25+ FoxP3+ Tregs was expanded in vivo using IL-2 and IL-2c compared to TRALI mice, as was confirmed through analysis of the spleen, blood, and lung. CONCLUSION This study validates that the protective mechanisms against TRALI involve CD4+ CD25+ FoxP3+ Tregs, which can be expanded in vivo by IL-2 and IL-2c. This results in increased IL-10 levels and decreased IL-17A, thereby prophylactically preventing antibody-mediated murine TRALI.
Collapse
Affiliation(s)
- Rui He
- Department of Blood Transfusion, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ling Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yujie Kong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Li Tian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xue Tian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Peng Fang
- Department of Blood Transfusion, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Maohong Bian
- Department of Blood Transfusion, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
10
|
The Antidiabetic and Antinephritic Activities of Tuber melanosporum via Modulation of Nrf2-Mediated Oxidative Stress in the db/db Mouse. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7453865. [PMID: 30186548 PMCID: PMC6087590 DOI: 10.1155/2018/7453865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Tuber melanosporum (TM), a valuable edible fungus, contains 19 types of fatty acid, 17 types of amino acid, 6 vitamins, and 7 minerals. The antidiabetic and antinephritic effects of TM and the underlying mechanisms related to oxidative stress were investigated in db/db mice. Eight-week oral administration of metformin (Met) at 0.1 g/kg and TM at doses of 0.2 and 0.4 g/kg decreased body weight, plasma glucose, serum levels of glycated hemoglobin, triglyceride, and total cholesterol and increased serum levels of high-density lipoprotein cholesterol in the mice, suggesting hypoglycemic and hypolipidemic effects. TM promoted glucose metabolism by increasing the levels of pyruvate kinase and hepatic glycogen. It also regulated the levels of inflammatory factors and oxidative enzymes in serum and/or the kidneys of the mice. Additionally, TM increased the expression of nuclear respiratory factor 2 (Nrf2), catalase, heme oxygenase 1, heme oxygenase 2, and manganese superoxide dismutase 2 and decreased the expression of protein kinase C alpha, phosphor-janus kinase 2, phosphor-signal transducer and activator of transcription 3, and phosphor-nuclear factor-κB in the kidneys. The results of this study reveal the antidiabetic and antidiabetic nephritic properties of TM via modulating oxidative stress and inflammation-related cytokines through improving the Nrf2 signaling pathway.
Collapse
|
11
|
Ma Q, Yuan L, Zhuang Y. Preparation, characterization and in vivo antidiabetic effects of polysaccharides from Pachyrrhizus erosus. Int J Biol Macromol 2018; 114:97-105. [PMID: 29572140 DOI: 10.1016/j.ijbiomac.2018.03.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/25/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022]
Abstract
Polysaccharides were extracted from Pachyrrhizus erosus (PEP) and three fractions (PEP60, PEP80 and PEP95) were separated by ethanol precipitation. Antidiabetic activities of three fractions were evaluated by streptozotocin-induced diabetic mouse model. Three PEP fractions reduced fasting blood glucose levels in mice, and regulated the levels of glycated serum protein, total triglyceride and total cholesterol in serum. In liver, the levels of glycogen content, glutathione peroxidase and superoxide dismutase activities and lipid peroxidation were recovered by PEP fractions. The histological analysis indicated that PEP fractions could protect the tissue structures of pancreas, liver and kidney from diabetic damages. In kidney, PEP fractions decreased the mesangial matrix index and inhibited the expression of transforming growth factor-β1. PEP95 showed stronger antidiabetic activity than PEP60 and PEP80. PEP95-DS was separated from PEP95 by DEAE-cellulose and Sephadex G-100 column chromatography. The chemical characteristics of PEP95-DS were evaluated. The average molecular weight of PEP95-DS was 11.4kDa, and it was composed of mannose: rhamnose: glucosamine: glucose: galactose: xylose: arabinose was 5.4:1.7:8.5:160.7:11.8:1:2.7. Furthermore, the spectral characteristics of PEP95-DS were analyzed. Our results indicated PEP could be used as a function ingredient in foods to prevent oxidation and diabetes.
Collapse
Affiliation(s)
- Qingyu Ma
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Ling Yuan
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Yongliang Zhuang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| |
Collapse
|
12
|
Kou L, Du M, Liu P, Zhang B, Zhang Y, Yang P, Shang M, Wang X. Anti-Diabetic and Anti-Nephritic Activities of Grifola frondosa Mycelium Polysaccharides in Diet-Streptozotocin-Induced Diabetic Rats Via Modulation on Oxidative Stress. Appl Biochem Biotechnol 2018; 187:310-322. [PMID: 29943275 DOI: 10.1007/s12010-018-2803-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/03/2018] [Indexed: 01/22/2023]
Abstract
Grifola frondosa is an edible fungus with a variety of potential pharmacological activities. This study investigates the hypoglycemic, anti-diabetic nephritic, and antioxidant properties of G. frondosa polysaccharides in diet-streptozotocin-induced diabetic rats. After a 4-week treatment with 100 mg/kg of metformin and 200 mg/kg of one of four different G. frondosa polysaccharide mixtures (especially GFPS3 and GFPS4), diabetic rats had enhanced body weight and suppressed plasma glucose, indicating the hypoglycemic activities of the G. frondosa polysaccharides. G. frondosa polysaccharides regulated the level of serum creatinine, blood urea nitrogen, N-acetyl-β-D-glucosaminidase, and albuminuria; inhibited the serum levels of interleukin (IL)-2, IL-6, and TNF-α; and enhanced the serum levels of matrix metalloproteinase 9 and interferon-α, confirming their anti-diabetic nephritic activities. G. frondosa polysaccharides ameliorated the pathological alterations in the kidneys of diabetic rats. Moreover, G. frondosa polysaccharides modulated the serum levels of oxidant factors such as superoxide dismutase, glutathione peroxidase, catalase, malondialdehyde, and reactive oxygen species, revealing their antioxidant properties. Furthermore, the administration of G. frondosa polysaccharides inhibited nuclear factor kappa B activities in the serum and kidneys. All of the data revealed that the activation of nuclear factor kappa B plays a central role in G. frondosa polysaccharide-mediated anti-diabetic and anti-nephritic activities.
Collapse
Affiliation(s)
- Ling Kou
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Mingzhao Du
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China.
| | - Peijing Liu
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Baohai Zhang
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Yizhi Zhang
- Department of Neurology, the Second Hospital of Jilin University, Jilin University, Changchun, 130041, China
| | - Ping Yang
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Mengyuan Shang
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Xiaodong Wang
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
13
|
Bertelli R, Bonanni A, Caridi G, Canepa A, Ghiggeri GM. Molecular and Cellular Mechanisms for Proteinuria in Minimal Change Disease. Front Med (Lausanne) 2018; 5:170. [PMID: 29942802 PMCID: PMC6004767 DOI: 10.3389/fmed.2018.00170] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Minimal Change Disease (MCD) is a clinical condition characterized by acute nephrotic syndrome, no evident renal lesions at histology and good response to steroids. However, frequent recurrence of the disease requires additional therapies associated with steroids. Such multi-drug dependence and frequent relapses may cause disease evolution to focal and segmental glomerulosclerosis (FSGS) over time. The differences between the two conditions are not well defined, since molecular mechanisms may be shared by the two diseases. In some cases, genetic analysis can make it possible to distinguish MCD from FSGS; however, there are cases of overlap. Several hypotheses on mechanisms underlying MCD and potential molecular triggers have been proposed. Most studies were conducted on animal models of proteinuria that partially mimic MCD and may be useful to study glomerulosclerosis evolution; however, they do not demonstrate a clear-cut separation between MCD and FSGS. Puromycin Aminonucleoside and Adriamycin nephrosis are models of glomerular oxidative damage, characterized by loss of glomerular basement membrane polyanions resembling MCD at the onset and, at more advanced stages, by glomerulosclerosis resembling FSGS. Also Buffalo/Mna rats present initial lesions of MCD, subsequently evolving to FSGS; this mechanism of renal damage is clearer since this rat strain inherits the unique characteristic of overexpressing Th2 cytokines. In Lipopolysaccharide nephropathy, an immunological condition of renal toxicity linked to B7-1(CD80), mice develop transient proteinuria that lasts a few days. Overall, animal models are useful and necessary considering that they reproduce the evolution from MCD to FSGS that is, in part, due to persistence of proteinuria. The role of T/Treg/Bcells on human MCD has been discussed. Many cytokines, immunomodulatory mechanisms, and several molecules have been defined as a specific cause of proteinuria. However, the hypothesis of a single cell subset or molecule as cause of MCD is not supported by research and an interactive process seems more logical. The implication or interactive role of oxidants, Th2 cytokines, Th17, Tregs, B7-1(CD80), CD40/CD40L, c-Mip, TNF, uPA/suPAR, Angiopoietin-like 4 still awaits a definitive confirmation. Whole genome sequencing studies could help to define specific genetic features that justify a definition of MCD as a “clinical-pathology-genetic entity.”
Collapse
Affiliation(s)
| | | | | | - Alberto Canepa
- Nephrology, Dialysis, Transplantation Unit, Integrated Department of Pediatrics and Hemato-Oncology Sciences, Istituto Giannina Gaslini IRCCS, Genoa, Italy
| | - G M Ghiggeri
- Laboratory of Molecular Nephrology, Genoa, Italy.,Nephrology, Dialysis, Transplantation Unit, Integrated Department of Pediatrics and Hemato-Oncology Sciences, Istituto Giannina Gaslini IRCCS, Genoa, Italy
| |
Collapse
|
14
|
γδT Cells Exacerbate Podocyte Injury via the CD28/B7-1-Phosphor-SRC Kinase Pathway. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5647120. [PMID: 29862277 PMCID: PMC5976931 DOI: 10.1155/2018/5647120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/08/2018] [Accepted: 04/08/2018] [Indexed: 01/25/2023]
Abstract
Primary nephrotic syndrome (PNS) is a devastating pediatric disorder. However, its mechanism remains unclear. Previous studies detected B7-1 in podocytes; meanwhile, γδT cells play pivotal roles in immune diseases. Therefore, this study aimed to assess whether and how γδT cells impact podocytes via the CD28/B7-1 pathway. WT and TCRδ−/− mice were assessed. LPS was used to induce nephropathy. Total γδT and CD28+γδT cells were quantitated in mouse spleen and kidney samples. B7-1 and phosphor-SRC levels in the kidney were detected as well. In vitro, γδT cells from the mouse spleen were cocultured with mouse podocytes, and apoptosis rate and phosphor-SRC expression in podocytes were assessed. Compared with control mice, WT mice with LPS nephropathy showed increased amounts of γδT cells in the kidney. Kidney injury was alleviated in TCRδ−/− mice. Meanwhile, B7-1 and phosphor-SRC levels were increased in the kidney from WT mice with LPS nephropathy. CD28+γδT cells were decreased, indicating CD28 may play a role in LPS nephropathy. Immunofluorescence colocalization analysis revealed a tight association of γδT cells with B7-1 in the kidney. High B7-1 expression was detected in podocytes treated with LPS. Podocytes cocultured with γδT cells showed higher phosphor-SRC and apoptosis rate than other cell groups. Furthermore, CD28/B7-1 blockage with CTLA4-Ig in vitro relieved podocyte injury. γδT cells exacerbate podocyte injury via CD28/B7-1 signaling, with downstream involvement of phosphor-SRC. The CD28/B7-1 blocker CTLA4-Ig prevented progressive podocyte injury, providing a potential therapeutic tool for PNS.
Collapse
|
15
|
Ravani P, Bertelli E, Gill S, Ghiggeri GM. Clinical trials in minimal change disease. Nephrol Dial Transplant 2017; 32:i7-i13. [PMID: 28391333 DOI: 10.1093/ndt/gfw235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/22/2016] [Indexed: 12/14/2022] Open
Abstract
Minimal change disease (MCD) is a pathological condition characterized by subtle glomerular lesions causing massive and reversible proteinuria that is usually steroid sensitive. Recurrence of symptoms of active disease following successful treatment (including proteinuria, oedema and oliguria) and steroid toxicity requires the use of other drugs to attain or maintain remission. Unresolved MCD is considered the initial step in the pathological pathway leading to focal and segmental glomerulosclerosis (FSGS). Historically, cyclophosphamide, chlorambucil, mycophenolate and calcineurin inhibitors have been utilized with success in MCD; however, the chronic nature of the disease and the toxicity of long-term use of these medications has pushed the development of new therapies. Synthetic corticotropin (adrenocorticotropic hormone) and anti-CD20 monoclonal antibodies, for example, are currently under investigation in clinical trials. In addition, these new interventions have dramatically impacted our understanding of the mechanisms of the disease. Phase II-IV clinical trials targeting new mechanisms and/or molecules are in progress. The list is long and includes drugs blocking the adaptive immune system (abatacept and anti-CD40 antibodies), as well as retinoids and the sialic acid precursor N-acetyl-D-mannosamine (ManNAc), two agents that affect the sieving properties of the glomerular basement membrane. Other drugs are being tested against FSGS and, if successful, could also be utilized against MCD. Clinical trials currently in progress should furnish a proper solution to what appears to be a solvable problem.
Collapse
Affiliation(s)
- Pietro Ravani
- Division of Nephrology, Faculty of Medicine, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - Enrica Bertelli
- Division of Nephrology, Dialysis, Transplantation, Giannina Gaslini Children's Hospital, Genoa, Italy.,Laboratory on Pathophysiology of Uremia, Giannina Gaslini Children's Hospital, Largo Gerolamo Gaslini 5, Genoa, Italy
| | - Simardeep Gill
- Division of Nephrology, Faculty of Medicine, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation, Giannina Gaslini Children's Hospital, Genoa, Italy.,Laboratory on Pathophysiology of Uremia, Giannina Gaslini Children's Hospital, Largo Gerolamo Gaslini 5, Genoa, Italy
| |
Collapse
|
16
|
Loss of the podocyte glucocorticoid receptor exacerbates proteinuria after injury. Sci Rep 2017; 7:9833. [PMID: 28852159 PMCID: PMC5575043 DOI: 10.1038/s41598-017-10490-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Nephrotic syndrome is a common disorder in adults and children whose etiology is largely unknown. Glucocorticoids remain the mainstay of therapy in most cases, though their mechanism of action remains poorly understood. Emerging evidence suggests that immunomodulatory therapies used in nephrotic syndrome directly target the podocytes. To study how steroids directly affect the podocytes in the treatment of proteinuria, we created a mouse model with podocyte-specific deletion of the glucocorticoid receptor. The podocyte-specific glucocorticoid receptor (GR) knockout mice had similar renal function and protein excretion compared to wild type. However, after glomerular injury induced by either LPS or nephrotoxic serum, the podocyte GR knockout mice demonstrated worsened proteinuria compared to wild type. Ultrastructural examination of podocytes confirmed more robust foot process effacement in the knockout animals. Expression of several key slit diaphragm protein was down regulated in pGR KO mice. Primary podocytes isolated from wild type and podocyte GR knockout mice showed similar actin stress fiber staining patterns in unstimulated conditions. Yet, when exposed to LPS, GR knockout podocytes demonstrated fewer stress fibers and impaired migration compared to wild type podocytes. We conclude that the podocyte glucocorticoid receptor is important for limiting proteinuria in settings of podocyte injury.
Collapse
|
17
|
Wang J, Hu W, Li L, Huang X, Liu Y, Wang D, Teng L. Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes. PLoS One 2017; 12:e0180476. [PMID: 28662169 PMCID: PMC5491251 DOI: 10.1371/journal.pone.0180476] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/15/2017] [Indexed: 12/24/2022] Open
Abstract
This study evaluated the effects of Inonotus obliquus polysaccharides (IOs) on diabetes and other underlying mechanisms related to inflammatory factors and oxidative stress in a mouse model of streptozotocin (STZ)-induced diabetes. Four weeks administration of metformin (120 mg/kg) and IO1-4 (50%-80% alcohol precipitation), or IO5 (total 80% alcohol precipitation) at doses of 50 mg/kg reverses the abnormal changes of bodyweights and fasting blood glucose levels of diabetic mice. IOs significantly increased the insulin and pyruvate kinase levels in serum, and improved the synthesis of glycogen, especially for IO5. IOs restored the disturbed serum levels of superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde. The down-regulation of interleukin-2 receptor, matrix metalloproteinase-9, and the enhancement of interleukin-2 in serum of diabetic mice were significantly attenuated by IOs. Histologic and morphology examinations showed that IOs repaired the damage on kidney tissues, inhibited inflammatory infiltrate and extracellular matrix deposit injuries in diabetic mice. Compared with untreated diabetic mice, IOs decreased the expression of phosphor-NF-κB in the kidneys. These results show that IOs treatment attenuated diabetic and renal injure in STZ-induced diabetic mice, possibly through the modulation of oxidative stress and inflammatory factors. These results provide valuable evidences to support the use of I. obliquus as a hypoglycemic functional food and/or medicine.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wenji Hu
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Lanzhou Li
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xinping Huang
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yange Liu
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, Jilin, China
- Zhuhai College of Jilin University, Zhuhai, Guangdong, China
- * E-mail: (DW); (LT)
| | - Lirong Teng
- School of Life Sciences, Jilin University, Changchun, Jilin, China
- Zhuhai College of Jilin University, Zhuhai, Guangdong, China
- * E-mail: (DW); (LT)
| |
Collapse
|
18
|
Song J, Wang Y, Liu C, Huang Y, He L, Cai X, Lu J, Liu Y, Wang D. Cordyceps militaris fruit body extract ameliorates membranous glomerulonephritis by attenuating oxidative stress and renal inflammation via the NF-κB pathway. Food Funct 2016; 7:2006-15. [PMID: 27008597 DOI: 10.1039/c5fo01017a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Membranous glomerulonephritis (MGN) is a common pathogenesis of nephritic syndrome in adult patients. Nuclear factor kappa B (NF-κB) serves as the main transcription factor for the inflammatory response mediated nephropathy. Cordyceps militaris, containing various pharmacological components, has been used as a kind of crude drug and folk tonic food for improving immunity and reducing inflammation. The current study aims to investigate the renoprotective activity of Cordyceps militaris aqueous extract (CM) in the cationic bovine serum albumin (C-BSA)-induced rat model of membranous glomerulonephritis. Significant renal dysfunction was observed in MGN rats; comparatively, 4-week CM administration strongly decreased the levels of 24 h urine protein, total cholesterol, triglyceride, blood urea nitrogen and serum creatinine, and increased the levels of serum albumin and total serum protein. Strikingly, recovery of the kidney histological architecture was noted in CM-treated MGN rats. A significant improvement in the glutathione peroxidase and superoxide dismutase levels, and a reduced malondialdehyde concentration were observed in the serum and kidney of CM-treated rats. Altered levels of inflammatory cytokines including interleukins, monocyte chemoattractant protein-1, intercellular adhesion molecule 1, vascular adhesion molecule 1, tumor necrosis factor-α, 6-keto-prostaglandin F1α, and nuclear transcriptional factor subunit NF-κB p65 reverted to normal levels upon treatment with CM. The present data suggest that CM protects rats against membranous glomerulonephritis via the normalization of NF-κB activity, thereby inhibiting oxidative damage and reducing inflammatory cytokine levels, which further provide experimental evidence in support of the clinical use of CM as an effective renoprotective agent.
Collapse
Affiliation(s)
- Jingjing Song
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Yingwu Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Chungang Liu
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Yan Huang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110015, China
| | - Liying He
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110015, China
| | - Xueying Cai
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Jiahui Lu
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Yan Liu
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
19
|
Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat Med 2016; 23:100-106. [PMID: 27941791 DOI: 10.1038/nm.4242] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022]
Abstract
Excess levels of protein in urine (proteinuria) is a hallmark of kidney disease that typically occurs in conjunction with diabetes, hypertension, gene mutations, toxins or infections but may also be of unknown cause (idiopathic). Systemic soluble urokinase plasminogen activator receptor (suPAR) is a circulating factor implicated in the onset and progression of chronic kidney disease (CKD), such as focal segmental glomerulosclerosis (FSGS). The cellular source(s) of elevated suPAR associated with future and progressing kidney disease is unclear, but is likely extra-renal, as the pathological uPAR is circulating and FSGS can recur even after a damaged kidney is replaced with a healthy donor organ. Here we report that bone marrow (BM) Gr-1lo immature myeloid cells are responsible for the elevated, pathological levels of suPAR, as evidenced by BM chimera and BM ablation and cell transfer studies. A marked increase of Gr-1lo myeloid cells was commonly found in the BM of proteinuric animals having high suPAR, and these cells efficiently transmit proteinuria when transferred to healthy mice. In accordance with the results seen in suPAR-associated proteinuric animal models, in which kidney damage is caused not by local podocyte-selective injury but more likely by systemic insults, a humanized xenograft model of FSGS resulted in an expansion of Gr-1lo cells in the BM, leading to high plasma suPAR and proteinuric kidney disease. Together, these results identify suPAR as a functional connection between the BM and the kidney, and they implicate BM immature myeloid cells as a key contributor to glomerular dysfunction.
Collapse
|
20
|
Antidiabetic and Antinephritic Activities of Aqueous Extract of Cordyceps militaris Fruit Body in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9685257. [PMID: 27274781 PMCID: PMC4870376 DOI: 10.1155/2016/9685257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/16/2016] [Accepted: 04/07/2016] [Indexed: 01/23/2023]
Abstract
Cordyceps militaris has long been used as a crude drug and folk tonic food in East Asia. The present study aims to evaluate the antidiabetic and antinephritic effects of the aqueous extract of the Cordyceps militaris fruit body (CM) in diet-streptozotocin- (STZ-) induced diabetic rats. During four weeks of continuous oral administration of CM at doses of 0.5, 1.0, and 2.0 g/kg and metformin at 100 mg/kg, the fasting blood glucose and bodyweight of each rat were monitored. Hypoglycemic effects of CM on diabetic rats were indicated by decreases in plasma glucose, food and water intake, and urine output. The hypolipidemic activity of CM was confirmed by the normalization of total cholesterol, triglycerides, and low- and high-density lipoprotein cholesterol in diabetic rats. Inhibitory effects on albuminuria, creatinine, urea nitrogen, and n-acetyl-β-d-glucosaminidase verified CM's renal protective activity in diabetic rats. Furthermore, CM exerted beneficial modulation of inflammatory factors and oxidative enzymes. Compared with untreated diabetic rats, CM decreased the expression of phosphor-AKT and phosphor-GSK-3β in the kidneys. Altogether, via attenuating oxidative stress, CM displayed antidiabetic and antinephritic activities in diet-STZ-induced diabetic rats.
Collapse
|
21
|
Lycium barbarum Polysaccharide Mediated the Antidiabetic and Antinephritic Effects in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats via Regulation of NF-κB. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3140290. [PMID: 27200371 PMCID: PMC4856889 DOI: 10.1155/2016/3140290] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/06/2016] [Indexed: 12/21/2022]
Abstract
Lycium barbarum, extensively utilized as a medicinal plant in China for years, exhibits antitumor, immunoregulative, hepatoprotective, and neuroprotective properties. The present study aims to investigate the hyperglycemic and antidiabetic nephritic effects of polysaccharide which is separated from Lycium barbarum (LBPS) in high-fat diet-streptozotocin- (STZ-) induced rat models. The reduced bodyweight and enhanced blood glucose concentration in serum were observed in diabetic rats, and they were significantly normalized to the healthy level by 100 mg/kg of metformin (Met) and LBPS at doses of 100, 250, and 500 mg/kg. LBPS inhibited albuminuria and blood urea nitrogen concentration and serum levels of inflammatory factors including IL-2, IL-6, TNF-α, IFN-α, MCP-1, and ICAM-1 compared with diabetic rats, and it indicates the protection on renal damage. Furthermore, the activities of SOD and GSH-Px in serum were enhanced strikingly by LBPS which suggests its antioxidation effects. LBPS, compared with nontreated diabetic rats, inhibited the expression of phosphor-nuclear factors kappa B (NF-κB) and inhibitor kappa B alpha in kidney tissues. Collectively, LBPS possesses antidiabetic and antinephritic effects related to NF-κB-mediated antioxidant and antiinflammatory activities.
Collapse
|
22
|
Bertelli R, Bonanni A, Di Donato A, Cioni M, Ravani P, Ghiggeri GM. Regulatory T cells and minimal change nephropathy: in the midst of a complex network. Clin Exp Immunol 2015; 183:166-74. [PMID: 26147676 DOI: 10.1111/cei.12675] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2015] [Indexed: 12/16/2022] Open
Abstract
Minimal change nephrosis (MCN) is an important cause of morbidity in children. In spite of successful therapies having been developed in the last three decades, most aspects related to pathogenesis still remain poorly defined. Evolution in basic immunology and results deriving from animal models of the disease suggest a complex interaction of factors and cells starting from activation of innate immunity and continuing with antigen presentation. Oxidants, CD80 and CD40/CD40L have probably a relevant role at the start. Studies in animal models and in human beings also suggest the possibility that the same molecules (i.e. CD80, CD40) are expressed by podocytes under inflammatory stimuli, representing a direct potential mechanism for proteinuria. B and T cells could play a relevant role this contest. Implication of B cells is suggested indirectly by studies utilizing anti-CD20 monoclonal antibodies as the main therapy. The role of regulatory T cells (Tregs ) is supported mainly by results in animal models of nephrotic syndrome (i.e. adriamycin, puromycin, lipopolysaccharide), showing a protective effect of direct Treg infusion or stimulation by interleukin 2 (IL-2). Limited studies have also shown reduced amounts of circulating Tregs in patients with active MCN cells. The route from bench to bedside would be reduced if results from animal models were confirmed in human pathology. The expansion of Tregs with recombinant IL-2 and new anti-CD20 monoclonal antibodies is the beginning. Blocking antigen-presenting cells with cytotoxic T lymphocyte antigen (CTLA-4)-Ig fusion molecules inhibiting CD80 and/or with blockers of CD40-CD40 ligand interaction represent potential new approaches. The hope is that evolution in therapies of MCN could fill a gap lasting 30 years.
Collapse
Affiliation(s)
- R Bertelli
- Laboratory on Physiopathology of Uremia, Children's Hospital, Genoa, Italy.,Division of Nephrology, Dialysis, Transplantation, Giannina Gaslini Children's Hospital, Genoa, Italy
| | - A Bonanni
- Laboratory on Physiopathology of Uremia, Children's Hospital, Genoa, Italy.,Division of Nephrology, Dialysis, Transplantation, Giannina Gaslini Children's Hospital, Genoa, Italy
| | - A Di Donato
- Laboratory on Physiopathology of Uremia, Children's Hospital, Genoa, Italy.,Division of Nephrology, Dialysis, Transplantation, Giannina Gaslini Children's Hospital, Genoa, Italy
| | - M Cioni
- Laboratory on Physiopathology of Uremia, Children's Hospital, Genoa, Italy.,Division of Nephrology, Dialysis, Transplantation, Giannina Gaslini Children's Hospital, Genoa, Italy
| | - P Ravani
- Division of Nephrology, University of Calgary, Calgary, Canada
| | - G M Ghiggeri
- Laboratory on Physiopathology of Uremia, Children's Hospital, Genoa, Italy.,Division of Nephrology, Dialysis, Transplantation, Giannina Gaslini Children's Hospital, Genoa, Italy
| |
Collapse
|
23
|
Bonanni A, Bertelli R, Rossi R, Bruschi M, Di Donato A, Ravani P, Ghiggeri GM. A Pilot Study of IL2 in Drug-Resistant Idiopathic Nephrotic Syndrome. PLoS One 2015; 10:e0138343. [PMID: 26413873 PMCID: PMC4587361 DOI: 10.1371/journal.pone.0138343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/26/2015] [Indexed: 12/02/2022] Open
Abstract
Tregs infusion reverts proteinuria and reduces renal lesions in most animal models of nephrotic syndrome (i.e. Buffalo/Mna, Adriamycin, Promycin, LPS). IL2 up-regulates Tregs and may be an alternative to cell-therapy in this setting. To evaluate a potential role of IL2 as Tregs inducer and proteinuria lowering agent in human nephrotic syndrome we treated 5 nephrotic patients with 6 monthly cycles of low-dose IL2 (1x106 U/m2 first month, 1.5x106 U/m2 following months). The study cohort consisted of 5 children (all boys, 11–17 years) resistant to all the available treatments (i.e. steroids, calcineurin inhibitors, mycophenolate, Rituximab). Participants had Focal Segmental Glomerulosclerosis (3 cases) or Minimal Change Nephropathy (2 cases). IL2 was safe in all but one patient who had an acute asthma attack after the first IL2 dose and did not receive further doses. Circulating Tregs were stably increased (>10%) during the whole study period in 2 cases while were only partially modified in the other two children who started with very low levels and partially responded to single IL2 Proteinuria and renal function were not modified by IL2 at any phase of the study. We concluded that low-dose IL2 given in monthly pulses is safe and modifies the levels of circulating Tregs. This drug may not be able to lower proteinuria or affect renal function in children with idiopathic nephrotic syndrome. We were unable to reproduce in humans the effects of IL2 described in rats and mice reducing de facto the interest on this drug in nephrotic syndrome.
Collapse
Affiliation(s)
- Alice Bonanni
- Division of Nephrology, Dialysis, Transplantation and Laboratory on Physiopathology of Uremia, Giannina Gaslini Children Hospital, Genoa, Italy
| | - Roberta Bertelli
- Division of Nephrology, Dialysis, Transplantation and Laboratory on Physiopathology of Uremia, Giannina Gaslini Children Hospital, Genoa, Italy
| | - Roberta Rossi
- Division of Nephrology, Dialysis, Transplantation and Laboratory on Physiopathology of Uremia, Giannina Gaslini Children Hospital, Genoa, Italy
| | - Maurizio Bruschi
- Division of Nephrology, Dialysis, Transplantation and Laboratory on Physiopathology of Uremia, Giannina Gaslini Children Hospital, Genoa, Italy
| | - Armando Di Donato
- Division of Nephrology, Dialysis, Transplantation and Laboratory on Physiopathology of Uremia, Giannina Gaslini Children Hospital, Genoa, Italy
| | - Pietro Ravani
- Division of Nephrology, University of Calgary, 1403-29th Street NW, Calgary, Alberta, T2N 2T9, Canada
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation and Laboratory on Physiopathology of Uremia, Giannina Gaslini Children Hospital, Genoa, Italy
- * E-mail:
| |
Collapse
|
24
|
Fine-tuning of NFκB by glycogen synthase kinase 3β directs the fate of glomerular podocytes upon injury. Kidney Int 2015; 87:1176-90. [PMID: 25629551 PMCID: PMC4449834 DOI: 10.1038/ki.2014.428] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 12/28/2022]
Abstract
NFκB is regulated by a myriad of signaling cascades including glycogen synthase kinase (GSK) 3β and plays a Janus role in podocyte injury. In vitro, lipopolysaccharide or adriamycin elicited podocyte injury and cytoskeletal disruption, associated with NFκB activation and induced expression of NFκB target molecules, including pro-survival Bcl-xL and podocytopathic mediators like MCP-1, cathepsin L and B7-1. Broad range inhibition of NFκB diminished the expression of all NFκB target genes, restored cytoskeleton integrity, but potentiated apoptosis. In contrast, blockade of GSK3β by lithium or TDZD-8, mitigated the expression of podocytopathic mediators, ameliorated podocyte injury, but barely affected Bcl-xL expression or sensitized apoptosis. Mechanistically, GSK3β was sufficient and essential for RelA/p65 phosphorylation specifically at serine 467, which specifies the expression of selective NFκB target molecules, including podocytopathic mediators, but not Bcl-xL. In vivo, lithium or TDZD-8 therapy improved podocyte injury and proteinuria in mice treated with lipopolysaccharide or adriamycin, concomitant with suppression of podocytopathic mediators but retained Bcl-xL in glomerulus. Broad range inhibition of NFκB conferred similar but much weakened antiproteinuric and podoprotective effects accompanied with a blunted glomerular expression of Bcl-xL and marked podocyte apoptosis. Thus, the GSK3β dictated fine-tuning of NFκB may serve as a novel therapeutic target for podocytopathy.
Collapse
|