1
|
Breiteneder H, Kraft D. The History and Science of the Major Birch Pollen Allergen Bet v 1. Biomolecules 2023; 13:1151. [PMID: 37509186 PMCID: PMC10377203 DOI: 10.3390/biom13071151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The term allergy was coined in 1906 by the Austrian scientist and pediatrician Clemens Freiherr von Pirquet. In 1976, Dietrich Kraft became the head of the Allergy and Immunology Research Group at the Department of General and Experimental Pathology of the University of Vienna. In 1983, Kraft proposed to replace natural extracts used in allergy diagnostic tests and vaccines with recombinant allergen molecules and persuaded Michael Breitenbach to contribute his expertise in molecular cloning as one of the mentors of this project. Thus, the foundation for the Vienna School of Molecular Allergology was laid. With the recruitment of Heimo Breiteneder as a young molecular biology researcher, the work began in earnest, resulting in the publication of the cloning of the first plant allergen Bet v 1 in 1989. Bet v 1 has become the subject of a very large number of basic scientific as well as clinical studies. Bet v 1 is also the founding member of the large Bet v 1-like superfamily of proteins with members-based on the ancient conserved Bet v 1 fold-being present in all three domains of life, i.e., archaea, bacteria and eukaryotes. This suggests that the Bet v 1 fold most likely already existed in the last universal common ancestor. The biological function of this protein was probably related to lipid binding. However, during evolution, a functional diversity within the Bet v 1-like superfamily was established. The superfamily comprises 25 families, one of which is the Bet v 1 family, which in turn is composed of 11 subfamilies. One of these, the PR-10-like subfamily of proteins, contains almost all of the Bet v 1 homologous allergens from pollen and plant foods. Structural and functional comparisons of Bet v 1 and its non-allergenic homologs of the superfamily will pave the way for a deeper understanding of the allergic sensitization process.
Collapse
Affiliation(s)
- Heimo Breiteneder
- Division of Medical Biotechnology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietrich Kraft
- Division of Medical Biotechnology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Hendrich JM, Wangorsch A, Rödel K, Jacob T, Mahler V, Wöhrl BM. Allergenicity and IgE Recognition of New Dau c 1 Allergens from Carrot. Mol Nutr Food Res 2023; 67:e2200421. [PMID: 36458641 DOI: 10.1002/mnfr.202200421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/18/2022] [Indexed: 12/05/2022]
Abstract
SCOPE Carrot (Daucus carota) allergy is caused by the major carrot allergen Dau c 1, which is a mixture of several isoallergens and variants with sequence identities of >67% or >90%, respectively. However, little is known about the qualitative and quantitative composition of natural Dau c 1. METHODS AND RESULTS Mass spectrometry of isolated natural Dau c 1 reveals the existence of several yet unknown Dau c 1-like proteins. The study expresses four Dau c 1-like proteins in Escherichia coli. Two of the purified proteins, designated Dau c 1.0501 and 1.0601, exhibit sequence identities to Dau c 1.0101 and 1.0401 between 54% and 87%. They possess allergenic potential and are accepted as new isoallergens. One protein, designated as Dau c 1-like is >50% identical with the new isoallergens but exhibits no allergenicity. Sequence and structural comparisons of this protein with the known Dau c 1 isoallergens offer relevant clues about putative structural IgE epitopes. CONCLUSION Identification of new isoallergens and the identification of IgE epitopes may contribute to a more refined component resolved diagnosis and may lay ground for further epitope mapping and personalized targeted treatment approaches of carrot allergy in preclinical and clinical studies.
Collapse
Affiliation(s)
- Julian M Hendrich
- Lehrstuhl Biochemie IV - Biophysikalische Chemie, Universität Bayreuth, Universitätsstrasse 30, D-95447, Bayreuth, Germany
| | - Andrea Wangorsch
- Molecular Allergology, Paul-Ehrlich-Institut, D-63225, Langen, Germany
| | - Katharina Rödel
- Lehrstuhl Biochemie IV - Biophysikalische Chemie, Universität Bayreuth, Universitätsstrasse 30, D-95447, Bayreuth, Germany
| | - Thessa Jacob
- Lehrstuhl Biochemie IV - Biophysikalische Chemie, Universität Bayreuth, Universitätsstrasse 30, D-95447, Bayreuth, Germany
| | - Vera Mahler
- Division of Allergology, Paul-Ehrlich-Institut, D-63225, Langen, Germany
| | - Birgitta M Wöhrl
- Lehrstuhl Biochemie IV - Biophysikalische Chemie, Universität Bayreuth, Universitätsstrasse 30, D-95447, Bayreuth, Germany
| |
Collapse
|
3
|
Schmalz S, Mayr V, Shosherova A, Gepp B, Ackerbauer D, Sturm G, Bohle B, Breiteneder H, Radauer C. Isotype-specific binding patterns of serum antibodies to multiple conformational epitopes of Bet v 1. J Allergy Clin Immunol 2021; 149:1786-1794.e12. [PMID: 34740603 DOI: 10.1016/j.jaci.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Birch pollen is an important elicitor of respiratory allergy. The major allergen, Bet v 1, binds IgE exclusively via conformational epitopes. OBJECTIVE To identify Bet v 1-specific epitope repertoires of IgE and IgG from birch pollen-allergic and non-allergic subjects. METHODS Chimeric proteins were created by grafting individual epitope-sized, contiguous surface patches of Bet v 1 onto a non-allergenic structural homologue and expressed in Escherichia coli. Binding of IgE, IgG1 and IgG4 from sera of 30 birch pollen-allergic and 11 non-allergic subjects to Bet v 1, 13 chimeric proteins and four bacterial Bet v 1 homologues were measured by ELISA. The proportion of epitope-specific in total Bet v 1-specific IgE and the cross-reactivity of Bet v 1-specific IgE with bacterial homologues were determined by competitive ELISA. RESULTS Thirteen soluble, correctly folded chimeric proteins were produced. IgE from 27/30 birch pollen-allergic patients bound to 1-12 chimeric proteins (median 4.0) with patient-specific patterns. Three chimeras binding IgE from the majority of sera were identified, whose pgrafted patches overlapped with previously published epitopes. Patterns of IgG1 and IgG4 binding to the chimeric proteins did not correspond to the binding patterns of IgE. Sera of 19/30 birch pollen-allergic patients contained low amounts of IgE to bacterial homologues. Bacterial proteins were able to partially inhibit IgE binding to Bet v 1. CONCLUSION Epitopes recognized by Bet v 1-specific antibodies from birch pollen-allergic patients are specific to each patient and differ between IgE, IgG1 and IgG4.
Collapse
Affiliation(s)
- Stefanie Schmalz
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Vanessa Mayr
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Shosherova
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Barbara Gepp
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna Austria
| | - Daniela Ackerbauer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gunter Sturm
- Allergy Outpatient Clinic Reumannplatz, Vienna, Austria; Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Kamenik AS, Hofer F, Handle PH, Liedl KR. Dynamics Rationalize Proteolytic Susceptibility of the Major Birch Pollen Allergen Bet v 1. Front Mol Biosci 2020; 7:18. [PMID: 32154264 PMCID: PMC7045072 DOI: 10.3389/fmolb.2020.00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
Proteolytic susceptibility during endolysosomal degradation is decisive for allergic sensitization. In the major birch pollen allergen Bet v 1 most protease cleavage sites are located within its secondary structure elements, which are inherently inaccessible to proteases. The allergen thus must unfold locally, exposing the cleavage sites to become susceptible to proteolysis. Hence, allergen cleavage rates are presumed to be linked to their fold stability, i.e., unfolding probability. Yet, these locally unfolded structures have neither been captured in experiment nor simulation due to limitations in resolution and sampling time, respectively. Here, we perform classic and enhanced molecular dynamics (MD) simulations to quantify fold dynamics on extended timescales of Bet v 1a and two variants with higher and lower cleavage rates. Already at the nanosecond-timescale we observe a significantly higher flexibility for the destabilized variant compared to Bet v 1a and the proteolytically stabilized mutant. Estimating the thermodynamics and kinetics of local unfolding around an initial cleavage site, we find that the Bet v 1 variant with the highest cleavage rate also shows the highest probability for local unfolding. For the stabilized mutant on the other hand we only find minimal unfolding probability. These results strengthen the link between the conformational dynamics of allergen proteins and their stability during endolysosomal degradation. The presented approach further allows atomistic insights in the conformational ensemble of allergen proteins and provides probability estimates below experimental detection limits.
Collapse
Affiliation(s)
| | | | | | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Zhang Q, Yang J, Bautista J, Badithe A, Olson W, Liu Y. Epitope Mapping by HDX-MS Elucidates the Surface Coverage of Antigens Associated with High Blocking Efficiency of Antibodies to Birch Pollen Allergen. Anal Chem 2018; 90:11315-11323. [DOI: 10.1021/acs.analchem.8b01864] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Qian Zhang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, New York 10591, United States
| | - Janice Yang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, New York 10591, United States
| | - Joannie Bautista
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, New York 10591, United States
| | - Ashok Badithe
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, New York 10591, United States
| | - William Olson
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, New York 10591, United States
| | - Yashu Liu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, New York 10591, United States
| |
Collapse
|
6
|
Mazzucchelli G, Holzhauser T, Cirkovic Velickovic T, Diaz‐Perales A, Molina E, Roncada P, Rodrigues P, Verhoeckx K, Hoffmann‐Sommergruber K. Current (Food) Allergenic Risk Assessment: Is It Fit for Novel Foods? Status Quo and Identification of Gaps. Mol Nutr Food Res 2018; 62:1700278. [PMID: 28925060 PMCID: PMC5814866 DOI: 10.1002/mnfr.201700278] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/28/2017] [Indexed: 01/08/2023]
Abstract
Food allergies are recognized as a global health concern. In order to protect allergic consumers from severe symptoms, allergenic risk assessment for well-known foods and foods containing genetically modified ingredients is installed. However, population is steadily growing and there is a rising need to provide adequate protein-based foods, including novel sources, not yet used for human consumption. In this context safety issues such as a potential increased allergenic risk need to be assessed before marketing novel food sources. Therefore, the established allergenic risk assessment for genetically modified organisms needs to be re-evaluated for its applicability for risk assessment of novel food proteins. Two different scenarios of allergic sensitization have to be assessed. The first scenario is the presence of already known allergenic structures in novel foods. For this, a comparative assessment can be performed and the range of cross-reactivity can be explored, while in the second scenario allergic reactions are observed toward so far novel allergenic structures and no reference material is available. This review summarizes the current analytical methods for allergenic risk assessment, highlighting the strengths and limitations of each method and discussing the gaps in this assessment that need to be addressed in the near future.
Collapse
Affiliation(s)
- Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry – MolSysDepartment of ChemistryUniversity of LiegeLiegeBelgium
| | | | - Tanja Cirkovic Velickovic
- Center of Excellence for Molecular Food SciencesUniversity of Belgrade – Faculty of ChemistryBelgradeSerbia
- Ghent University Global CampusYeonsu‐guIncheonSouth Korea
| | | | | | - Paola Roncada
- Istituto Sperimentale Italiano Lazzaro SpallanzaniMilanoItaly
| | - Pedro Rodrigues
- CCMARCenter of Marine ScienceUniversity of AlgarveFaroPortugal
| | | | | |
Collapse
|
7
|
Tscheppe A, Breiteneder H. Recombinant Allergens in Structural Biology, Diagnosis, and Immunotherapy. Int Arch Allergy Immunol 2017; 172:187-202. [PMID: 28467993 DOI: 10.1159/000464104] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The years 1988-1995 witnessed the beginning of allergen cloning and the generation of recombinant allergens, which opened up new avenues for the diagnosis and research of human allergic diseases. Most crystal and solution structures of allergens have been obtained using recombinant allergens. Structural information on allergens allows insights into their evolutionary biology, illustrates clinically observed cross-reactivities, and makes the design of hypoallergenic derivatives for allergy vaccines possible. Recombinant allergens are widely used in molecule-based allergy diagnosis such as protein microarrays or suspension arrays. Recombinant technologies have been used to produce well-characterized, noncontaminated vaccine components with known biological activities including a variety of allergen derivatives with reduced IgE reactivity. Such recombinant hypoallergens as well as wild-type recombinant allergens have been used successfully in several immunotherapy trials for more than a decade to treat birch and grass pollen allergy. As a more recent application, the development of antibody repertoires directed against conformational epitopes during immunotherapy has been monitored by recombinant allergen chimeras. Although much progress has been made, the number and quality of recombinant allergens will undoubtedly increase and keep improving our knowledge in basic scientific investigations, diagnosis, and therapy of human allergic diseases.
Collapse
Affiliation(s)
- Angelika Tscheppe
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
8
|
The Evolution of Human Basophil Biology from Neglect towards Understanding of Their Immune Functions. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8232830. [PMID: 28078302 PMCID: PMC5204076 DOI: 10.1155/2016/8232830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/16/2016] [Indexed: 12/03/2022]
Abstract
Being discovered long ago basophils have been neglected for more than a century. During the past decade evidence emerged that basophils share features of innate and adaptive immunity. Nowadays, basophils are best known for their striking effector role in the allergic reaction. They hence have been used for establishing new diagnostic tests and therapeutic approaches and for characterizing natural and recombinant allergens as well as hypoallergens, which display lower or diminished IgE-binding activity. However, it was a long way from discovery in 1879 until identification of their function in hypersensitivity reactions, including adverse drug reactions. Starting with a historical background, this review highlights the modern view on basophil biology.
Collapse
|
9
|
Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae. Sci Rep 2016; 6:39256. [PMID: 27991536 PMCID: PMC5171800 DOI: 10.1038/srep39256] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/22/2016] [Indexed: 01/08/2023] Open
Abstract
Norcoclaurine synthase (NCS) catalyzes the enantioselective Pictet-Spengler condensation of dopamine and 4-hydroxyphenylacetaldehyde as the first step in benzylisoquinoline alkaloid (BIA) biosynthesis. NCS orthologs in available transcriptome databases were screened for variants that might improve the low yield of BIAs in engineered microorganisms. Databases for 21 BIA-producing species from four plant families yielded 33 assembled contigs with homology to characterized NCS genes. Predicted translation products generated from nine contigs consisted of two to five sequential repeats, each containing most of the sequence found in single-domain enzymes. Assembled contigs containing tandem domain repeats were detected only in members of the Papaveraceae family, including opium poppy (Papaver somniferum). Fourteen cDNAs were generated from 10 species, five of which encoded NCS orthologs with repeated domains. Functional analysis of corresponding recombinant proteins yielded six active NCS enzymes, including four containing either two, three or four repeated catalytic domains. Truncation of the first 25 N-terminal amino acids from the remaining polypeptides revealed two additional enzymes. Multiple catalytic domains correlated with a proportional increase in catalytic efficiency. Expression of NCS genes in Saccharomyces cereviseae also produced active enzymes. The metabolic conversion capacity of engineered yeast positively correlated with the number of repeated domains.
Collapse
|
10
|
Groh N, von Loetzen CS, Subbarayal B, Möbs C, Vogel L, Hoffmann A, Fötisch K, Koutsouridou A, Randow S, Völker E, Seutter von Loetzen A, Rösch P, Vieths S, Pfützner W, Bohle B, Schiller D. IgE and allergen-specific immunotherapy-induced IgG 4 recognize similar epitopes of Bet v 1, the major allergen of birch pollen. Clin Exp Allergy 2016; 47:693-703. [PMID: 27770477 DOI: 10.1111/cea.12835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) with birch pollen generates Bet v 1-specific immunoglobulin (Ig)G4 which blocks IgE-mediated hypersensitivity mechanisms. Whether IgG4 specific for Bet v 1a competes with IgE for identical epitopes or whether novel epitope specificities of IgG4 antibodies are developed is under debate. OBJECTIVE We sought to analyze the epitope specificities of IgE and IgG4 antibodies from sera of patients who received AIT. METHODS 15 sera of patients (13/15 received AIT) with Bet v 1a-specific IgE and IgG4 were analyzed. The structural arrangements of recombinant (r)Bet v 1a and rBet v 1a_11x , modified in five potential epitopes, were analyzed by circular dichroism and nuclear magnetic resonance spectroscopy. IgE binding to Bet v 1 was assessed by ELISA and mediator release assays. Competitive binding of monoclonal antibodies specific for Bet v 1a and serum IgE/IgG4 to rBet v 1a and serum antibody binding to a non-allergenic Bet v 1-type model protein presenting an individual epitope for IgE was analyzed in ELISA and western blot. RESULTS rBet v 1a_11x had a Bet v 1a - similar secondary and tertiary structure. Monomeric dispersion of rBet v 1a_11x was concentration and buffer-dependent. Up to 1500-fold increase in the EC50 for IgE-mediated mediator release induced by rBet v 1a_11x was determined. The reduction of IgE and IgG4 binding to rBet v 1a_11x was comparable in 67% (10/15) of sera. Bet v 1a-specific monoclonal antibodies inhibited binding of serum IgE and IgG4 to 66.1% and 64.9%, respectively. Serum IgE and IgG4 bound specifically to an individual epitope presented by our model protein in 33% (5/15) of sera. CONCLUSION AND CLINICAL RELEVANCE Patients receiving AIT develop Bet v 1a-specific IgG4 which competes with IgE for partly identical or largely overlapping epitopes. The similarities of epitopes for IgE and IgG4 might stimulate the development of epitope-specific diagnostics and therapeutics.
Collapse
Affiliation(s)
- N Groh
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - C S von Loetzen
- Department of Biopolymers, University of Bayreuth, Bayreuth, Germany
| | - B Subbarayal
- Department of Pathophysiology and Allergy Research and Christian Doppler Laboratory for Immunomodulation, Medical University of Vienna, Vienna, Austria
| | - C Möbs
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - L Vogel
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - A Hoffmann
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - K Fötisch
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - A Koutsouridou
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - S Randow
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - E Völker
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - P Rösch
- Department of Biopolymers, University of Bayreuth, Bayreuth, Germany
| | - S Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - W Pfützner
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - B Bohle
- Department of Pathophysiology and Allergy Research and Christian Doppler Laboratory for Immunomodulation, Medical University of Vienna, Vienna, Austria
| | - D Schiller
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
11
|
Husslik F, Nürnberg J, Seutter von Loetzen C, Mews T, Ballmer-Weber BK, Kleine-Tebbe J, Treudler R, Simon JC, Randow S, Völker E, Reuter A, Rösch P, Vieths S, Holzhauser T, Schiller D. The conformational IgE epitope profile of soya bean allergen Gly m 4. Clin Exp Allergy 2016; 46:1484-1497. [PMID: 27533495 DOI: 10.1111/cea.12796] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Birch pollen-related soya allergy is mediated by Gly m 4. Conformational IgE epitopes of Gly m 4 are unknown. OBJECTIVE To identify the IgE epitope profile of Gly m 4 in subjects with birch pollen-related soya allergy utilizing an epitope library presented by Gly m 4-type model proteins. METHODS Sera from patients with (n = 26) and without (n = 19) allergy to soya as determined by oral provocation tests were studied. Specific IgE (Bet v 1/Gly m 4) was determined by ImmunoCAP. A library of 59 non-allergenic Gly m 4-type model proteins harbouring individual and multiple putative epitopes for IgE was tested in IgE binding assays. Primary, secondary and tertiary protein structures were assessed by mass spectrometry, circular dichroism and nuclear magnetic resonance spectroscopy. RESULTS All subjects were sensitized to Gly m 4 and Bet v 1. Allergen-specific serum IgE levels ranged from 0.94 to > 100 kUA /L. The avidities of serum IgE were 5.06 ng (allergic) and 1.8 ng (tolerant) as determined by EC50 for IgE binding to Gly m 4. 96% (46/48) of the protein variants bound IgE. Model proteins had Gly m 4-type conformation and individual IgE binding clustered in six major surface areas. Gly m 4-specific IgE binding could be inhibited to up to 80% by model proteins harbouring individual IgE binding sites in an epitope-wise equimolar fashion. Receiver operating curve analysis revealed an area under fitted curve of up to 0.88 for model proteins and 0.66 for Gly m 4. CONCLUSION AND CLINICAL RELEVANCE Serum levels and avidity of Gly m 4-specific IgE do not correlate with clinical reactivity to soya. Six IgE-binding areas, represented by 23 amino acids, account for more than 80% of total IgE binding capacity of Gly m 4. Model proteins may be used for epitope-resolved diagnosis to differentiate birch-soya allergy from clinical tolerance.
Collapse
Affiliation(s)
- F Husslik
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - J Nürnberg
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - T Mews
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - B K Ballmer-Weber
- Centre for Dermatology and Allergology, Kantonsspital Luzern, Luzern, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - R Treudler
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| | - J-C Simon
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| | - S Randow
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - E Völker
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - A Reuter
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - P Rösch
- Department of Biopolymers, University of Bayreuth, Bayreuth, Germany
| | - S Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - T Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - D Schiller
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany.
| |
Collapse
|
12
|
Folded or Not? Tracking Bet v 1 Conformation in Recombinant Allergen Preparations. PLoS One 2015; 10:e0132956. [PMID: 26186356 PMCID: PMC4506129 DOI: 10.1371/journal.pone.0132956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/20/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recombinant Bet v 1a (rBet v 1a) has been used in allergy research for more than three decades, including clinical application of so-called hypoallergens. Quantitative IgE binding to rBet v 1a depends on its native protein conformation, which might be compromised upon heterologous expression, purification, or mutational engineering of rBet v 1a. OBJECTIVE To correlate experimental/theoretical comparisons of IgE binding of defined molar ratios of folded/misfolded recombinant Bet v 1a variants and to determine accuracy and precision of immuno- and physicochemical assays routinely used to assess the quality of recombinant allergen preparations. METHODS rBet v 1a and its misfolded variant rBet v 1aS112P/R145P were heterologously expressed and purified from Escherichia coli. Structural integrities and oligomerisation of the recombinant allergens were evaluated by 1H-nuclear magnetic resonance (1H-NMR), circular dichroism (CD) spectroscopy, and dynamic light scattering (DLS). IgE binding of defined combinations of rBet v 1a and rBet v 1aS112P/R145P was assessed using immunoblotting (IB), enzyme-linked immunosorbent assay (ELISA) and mediator release (MR) of humanized rat basophilic leukemia cells sensitized with serum IgE of subjects allergic to birch pollen. Experimental and theoretically expected results of the analyses were compared. RESULTS 1H-NMR spectra of rBet v 1a and rBet v 1aS112P/R145P demonstrate a native and highly disordered protein conformations, respectively. The CD spectra suggested typical alpha-helical and beta-sheet secondary structure content of rBet v 1a and random coil for rBet v 1aS112P/R145P. The hydrodynamic radii (RH) of 2.49 ± 0.39 nm (rBet v 1a) and 3.1 ± 0.56 nm (rBet v 1aS112P/R145P) showed monomeric dispersion of both allergens in solution. Serum IgE of birch pollen allergic subjects bound to 0.1% rBet v 1a in the presence of 99.9% of non-IgE binding rBet v 1aS112P/R145P. Immunoblot analysis overestimated, whereas ELISA and mediator release assay underestimated the actual quantity of IgE-reactive rBet v 1a in mixtures of rBet v 1a/rBet v 1aS112P/R145P with a molar ratio of rBet v 1a ≤ 10%. CONCLUSION Valid conclusions on quantitative IgE binding of recombinant Bet v 1a preparations depend on the accuracy and precision of physico- and immunochemical assays with which natively folded allergen is detected.
Collapse
|