1
|
Huang J, Jin S, Guo R, Wu W, Yang C, Qin Y, Chen Q, He X, Qu J, Yang Z. Histone lysine demethylase KDM5B facilitates proliferation and suppresses apoptosis in human acute myeloid leukemia cells through the miR-140-3p/BCL2 axis. RNA (NEW YORK, N.Y.) 2024; 30:435-447. [PMID: 38296629 PMCID: PMC10946434 DOI: 10.1261/rna.079865.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
The histone lysine demethylase KDM5B is frequently up-regulated in various human cancer cells. However, its expression and functional role in human acute myeloid leukemia (AML) cells remain unclear. Here, we found that the expression level of KDM5B is high in primary human AML cells. We have demonstrated that knocking down KDM5B leads to apoptosis and impairs proliferation in primary human AML and some human AML cell lines. We further identified miR-140-3p as a downstream target gene of KDM5B. KDM5B expression was inversely correlated with the miR-140-3p level in primary human AML cells. Molecular studies showed that silencing KDM5B enhanced H3K4 trimethylation (H3K4me3) at the promoter of miR-140-3p, leading to high expression of miR-140-3p, which in turn inhibited B-cell CLL/lymphoma 2 (BCL2) expression. Finally, we demonstrate that the defective proliferation induced by KDM5B knockdown (KD) can be rescued with the miR-140-3p inhibitor or enhanced by combining KDM5B KD with a BCL2 inhibitor. Altogether, our data support the conclusion that KDM5B promotes tumorigenesis in human AML cells through the miR-140-3p/BCL2 axis. Targeting the KDM5B/miR-140-3p/BCL2 pathway may hold therapeutic promise for treating human AML.
Collapse
Affiliation(s)
- Jiaojuan Huang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Wu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chengxuan Yang
- Department of Galactophore, Xinxiang First People's Hospital, Xinxiang 453000, China
| | - Yali Qin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingchuan Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ximiao He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Qu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
miR-342-3p Inhibits Acute Myeloid Leukemia Progression by Targeting SOX12. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1275141. [PMID: 36120594 PMCID: PMC9477626 DOI: 10.1155/2022/1275141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022]
Abstract
Background It is well known that microRNAs (miRNAs) interfere with the progression of various human malignancies. This article is aimed at exploring the regulating role of miR-342-3p in acute myeloid leukemia (AML) and its mechanism. Methods We used the Gene Expression Omnibus (GEO) database to determine miR-342-3p differential expression patterns in AML patients' plasma and cells as well as healthy individuals' plasma and T cells. Quantitative real-time PCR and Western blotting were performed for plasma and cell miR-342-3p and SRY-related high-mobility-group box (SOX12) expression quantification, and cell counting kit-8 assay and flow cytometry were used for the determination of AML cell growth, cycle, and apoptosis. A dual-luciferase reporter gene assay was further carried out to identify the targeted association between miR-342-3p and SOX12 mRNA 3′UTR after prediction by a bioinformatics website. Pearson's correlation analysis was performed to analyze the connection between miR-342-3p and SOX12 expressions. The LinkedOmics database was utilized to explore the downstream pathways in which SOX12 was enriched. Results Evidently downregulated plasma miR-342-3p and markedly elevated SOX12 were observed in AML patients versus healthy individuals. miR-342-3p mimics suppressed AML cell growth, enhanced apoptosis, and induced G0/G1 phase arrest; conversely, enhanced capacity of AML cells to proliferate, suppressed apoptosis, and accelerated cell cycle were observed after treatment with miR-342-3p inhibitors. SOX12 was confirmed as miR-342-3p's target gene. Overexpressing or knocking down SOX12 reversed miR-342-3p's impacts on AML cell growth, apoptosis, and cycle. Upregulated SOX12 was positively related to DNA replication and RNA polymerase signaling pathways. Conclusion miR-342-3p affects apoptosis of AML cells and their ability to proliferate via targeted regulation of SOX12.
Collapse
|
3
|
Lv M, Zhu S, Peng H, Cheng Z, Zhang G, Wang Z. B-cell acute lymphoblastic leukemia-related microRNAs: uncovering their diverse and special roles. Am J Cancer Res 2021; 11:1104-1120. [PMID: 33948348 PMCID: PMC8085864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is a common type of hematologic malignancy characterized by the uncontrolled growth of immature B lymphocytes. Genomics, transcriptomics, and proteomics at different levels contribute to early diagnosis and can thereby provide better treatment for cancer. MicroRNAs (miRNAs) are conducive to the diagnosis and treatment of patients with B-ALL. Moreover, evidence suggests that runaway miRNAs and exosomes containing miRNA may be involved in the occurrence of B-ALL, which can then be used as potential biomarkers. This review summarizes the role of miRNAs in the pathogenesis, diagnosis, prognosis, and treatment of B-ALL.
Collapse
Affiliation(s)
- Mengqi Lv
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Institute of Molecular Hematology, Central South UniversityChangsha, Hunan, China
| | - Shicong Zhu
- Department of Geriatrics, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Institute of Molecular Hematology, Central South UniversityChangsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Institute of Molecular Hematology, Central South UniversityChangsha, Hunan, China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Institute of Molecular Hematology, Central South UniversityChangsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Institute of Molecular Hematology, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
4
|
Li C, Zhao T, Nie L, Zou Y, Zhang Q. MicroRNA-223 decreases cell proliferation, migration, invasion, and enhances cell apoptosis in childhood acute lymphoblastic leukemia via targeting Forkhead box O 1. Biosci Rep 2020; 40:BSR20200485. [PMID: 32964916 PMCID: PMC7538682 DOI: 10.1042/bsr20200485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Acute lymphoblastic leukemia (ALL) is a frequent malignancy in childhood. The present study was aimed to investigate the effect of miR-223 in ALL and its underlying molecular mechanisms. METHODS The mRNA expression of miR-223 and FOXO1 was detected by qRT-RCR in ALL children. The correlation between miR-223 and clinical indexes of ALL was determined. CCRF-CEM and NALM-6 cells were transfected with miR-223 mimic and miR-223 inhibitor, respectively. The proliferation, apoptosis, invasion and migration of CCRF-CEM and NALM-6 cells were measured by MTT, flow cytometry and transwell assay. The protein expression of FOXO1 was detected by Western blot. Additionally, dual-luciferase reporter and RNA pull-down assay were performed to investigate the target gene of miR-223 and validate their targeting relationship. RESULTS The mRNA expression of miR-223 was markedly down-regulated in ALL, but FOXO1 was up-regulated. The protein expression of FOXO1 was highly expressed in CCRF-CEM and NALM-6 cells. The expression of miR-223 was related to WBC, PLT, RBC and risk stratification. Overexpression of miR-223 not only inhibited cell proliferation, migration and invasion, but also induced cell apoptosis. Importantly, FOXO1 was a target gene of miR-223 in ALL cells. Silencing of FOXO1 reversed the effects of miR-223 inhibitor on cell proliferation, migration, invasion and apoptosis in ALL. CONCLUSIONS miR-223 could inhibit cell proliferation, migration and invasion, and promote apoptosis by targeting FOXO1 in ALL.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Pediatrics, The First Affiliated Hospital of Jiamusi University, No. 348 dexiang Street, Jiamusi City, Heilongjiang Province 154002, China
| | - Tana Zhao
- Department of Pediatrics, The First Affiliated Hospital of Jiamusi University, No. 348 dexiang Street, Jiamusi City, Heilongjiang Province 154002, China
| | - Lei Nie
- Department of Pediatrics, The First Affiliated Hospital of Jiamusi University, No. 348 dexiang Street, Jiamusi City, Heilongjiang Province 154002, China
| | - Yanhong Zou
- Department of Pediatrics, The First Affiliated Hospital of Jiamusi University, No. 348 dexiang Street, Jiamusi City, Heilongjiang Province 154002, China
| | - Quan Zhang
- Department of Gastroenterology, Jiamusi Central Hospital, No. 256, Zhongshan Street, Xiangyang District, Jiamusi City, Heilongjiang Province 154002, China
| |
Collapse
|
5
|
Long Noncoding RNA NRAV Promotes Respiratory Syncytial Virus Replication by Targeting the MicroRNA miR-509-3p/Rab5c Axis To Regulate Vesicle Transportation. J Virol 2020; 94:JVI.00113-20. [PMID: 32102886 PMCID: PMC7199404 DOI: 10.1128/jvi.00113-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/21/2020] [Indexed: 12/26/2022] Open
Abstract
The mechanism of interaction between RSV and host noncoding RNAs is not fully understood. In this study, we found that the expression of long noncoding RNA (lncRNA) negative regulator of antiviral response (NRAV) was reduced in RSV-infected patients, and overexpression of NRAV facilitated RSV production in vitro, suggesting that the reduction of NRAV in RSV infection was part of the host antiviral response. We also found that NRAV competed with vesicle protein Rab5c for microRNA miR509-3p in cytoplasm to promote RSV vesicle transport and accelerate RSV proliferation, thereby improving our understanding of the pathogenic mechanism of RSV infection. Respiratory syncytial virus (RSV) is an enveloped RNA virus which is responsible for approximately 80% of lower respiratory tract infections in children. Current lines of evidence have supported the functional involvement of long noncoding RNA (lncRNA) in many viral infectious diseases. However, the overall biological effect and clinical role of lncRNAs in RSV infection remain unclear. In this study, lncRNAs related to respiratory virus infection were obtained from the lncRNA database, and we collected 144 clinical sputum specimens to identify lncRNAs related to RSV infection. Quantitative PCR (qPCR) detection indicated that the expression of lncRNA negative regulator of antiviral response (NRAV) in RSV-positive patients was significantly lower than that in uninfected patients, but lncRNA psoriasis-associated non-protein coding RNA induced by stress (PRINS), nuclear paraspeckle assembly transcript 1 (NEAT1), and Nettoie Salmonella pas Theiler’s (NeST) showed no difference in vivo and in vitro. Meanwhile, overexpression of NRAV promoted RSV proliferation in A549 and BEAS-2B cells, and vice versa, indicating that the downregulation of NRAV was part of the host antiviral defense. RNA fluorescent in situ hybridization (FISH) confirmed that NRAV was mainly located in the cytoplasm. Through RNA sequencing, we found that Rab5c, which is a vesicle transporting protein, showed the same change trend as NRAV. Subsequent investigation revealed that NRAV was able to favor RSV production indirectly by sponging microRNA miR-509-3p so as to release Rab5c and facilitate vesicle transportation. The study provides a new insight into virus-host interaction through noncoding RNA, which may contribute to exploring potential antivirus targets for respiratory virus. IMPORTANCE The mechanism of interaction between RSV and host noncoding RNAs is not fully understood. In this study, we found that the expression of long noncoding RNA (lncRNA) negative regulator of antiviral response (NRAV) was reduced in RSV-infected patients, and overexpression of NRAV facilitated RSV production in vitro, suggesting that the reduction of NRAV in RSV infection was part of the host antiviral response. We also found that NRAV competed with vesicle protein Rab5c for microRNA miR509-3p in cytoplasm to promote RSV vesicle transport and accelerate RSV proliferation, thereby improving our understanding of the pathogenic mechanism of RSV infection.
Collapse
|
6
|
Zhang W, Ji W, Li T, Liu T, Zhao X. MiR-145 functions as a tumor suppressor in Papillary Thyroid Cancer by inhibiting RAB5C. Int J Med Sci 2020; 17:1992-2001. [PMID: 32788878 PMCID: PMC7415399 DOI: 10.7150/ijms.44723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) accounts for the largest proportion of thyroid cancers; and its morbidity rate has dramatically increased in recent decades. However, the pathogenesis mechanisms of PTC are still not clear. This study aimed to reveal that miR-145 acts as an antitumor miRNA in the progression of PTC. In the present study, the expression of miR-145 was analyzed in 57 paired PTC patient samples. The relationship between clinicopathological features and miR-145 expression were also defined. The tumor suppressive function of miR-145 on PTC cell metastasis, proliferation and apoptosis were revealed in vitro. Also, we used dual luciferase reporter assay to define the relationship of miR-145 and RAB5C. RAB5C was reported to participate in cell invasion and cell motility. We found that miR-145 was downregulated in PTCs, which was negatively correlated with PTC progression and metastasis. MiR-145 inhibited PTC migration, proliferation and promoted apoptosis by directly suppresing RAB5C. In conclusion, miR-145 functions as a tumor suppressor in PTC by inhibiting RAB5C. MiR-145 and RAB5C are potential therapeutic targets in therapy of aggressive PTC cases.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Wenyue Ji
- Department of Otolaryngology head and neck surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tianshu Li
- Department of Otolaryngology head and neck surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ting Liu
- Department of Otolaryngology head and neck surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xudong Zhao
- Department of Otolaryngology head and neck surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| |
Collapse
|
7
|
Tapeh BEG, Alivand MR, Solali S. The role of microRNAs in acute lymphoblastic leukaemia: From biology to applications. Cell Biochem Funct 2019; 38:334-346. [PMID: 31833074 DOI: 10.1002/cbf.3466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) that are characterized by small, noncoding RNA have an essential role in the pathogenesis of human diseases, including cancer. Furthermore, miRNAs, as a new paradigm of epigenetic regulators, play an important role in normal development and cellular function. This literature review summarizes the recurrent mechanism of gene regulation through miRNAs and, consequently, the impact of regulated genes on different cellular processes, including proliferation, metastasis, prognosis, and apoptosis. Additionally, what is important to note is that the expression of miRNAs in various cancer cells is different, and miRNAs have various target genes in various cancers. Accordingly, a proper understanding of gene regulation by miRNAs contributes to new perspectives in miRNA-based therapeutic strategies. SIGNIFICANCE OF THE STUDY: MiRNAs are considered as a crucial regulator of gene expression. The genes also play an important role in the expression of miRNAs; as a result, there is a relationship between them. In recent years, targeted therapy with miRNAs has been a significant challenge. Studying the mechanisms through which miRNAs regulate various cancer cell processes, including apoptosis, proliferation, and metastasis, is very critical in the treatment of cancer through miRNAs. Definitely, a proper understanding of the impacts of aberrant expression of miRNAs on cancer cell processes leads to new therapeutic strategies in the targeted therapy with miRNAs.
Collapse
Affiliation(s)
- Behnam Emamgolizadeh Gurt Tapeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Division of Hematology and Blood Banking, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Hu ZQ, Rao CL, Tang ML, zhang Y, Lu XX, Chen JG, Mao C, Deng L, Li Q, Mao XH. Rab32 GTPase, as a direct target of miR-30b/c, controls the intracellular survival of Burkholderia pseudomallei by regulating phagosome maturation. PLoS Pathog 2019; 15:e1007879. [PMID: 31199852 PMCID: PMC6594657 DOI: 10.1371/journal.ppat.1007879] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/26/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
Burkholderia pseudomallei is a gram-negative, facultative intracellular bacterium, which causes a disease known as melioidosis. Professional phagocytes represent a crucial first line of innate defense against invading pathogens. Uptake of pathogens by these cells involves the formation of a phagosome that matures by fusing with early and late endocytic vesicles, resulting in killing of ingested microbes. Host Rab GTPases are central regulators of vesicular trafficking following pathogen phagocytosis. However, it is unclear how Rab GTPases interact with B. pseudomallei to regulate the transport and maturation of bacterial-containing phagosomes. Here, we showed that the host Rab32 plays an important role in mediating antimicrobial activity by promoting phagosome maturation at an early phase of infection with B. pseudomallei. And we demonstrated that the expression level of Rab32 is increased through the downregulation of the synthesis of miR-30b/30c in B. pseudomallei infected macrophages. Subsequently, we showed that B. pseudomallei resides temporarily in Rab32-positive compartments with late endocytic features. And Rab32 enhances phagosome acidification and promotes the fusion of B. pseudomallei-containing phagosomes with lysosomes to activate cathepsin D, resulting in restricted intracellular growth of B. pseudomallei. Additionally, Rab32 mediates phagosome maturation depending on its guanosine triphosphate/guanosine diphosphate (GTP/GDP) binding state. Finally, we report the previously unrecognized role of miR-30b/30c in regulating B. pseudomallei-containing phagosome maturation by targeting Rab32 in macrophages. Altogether, we provide a novel insight into the host immune-regulated cellular pathway against B. pseudomallei infection is partially dependent on Rab32 trafficking pathway, which regulates phagosome maturation and enhances the killing of this bacterium in macrophages.
Collapse
Affiliation(s)
- Zhi-qiang Hu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cheng-long Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Meng-ling Tang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu zhang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiao-xue Lu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian-gao Chen
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chan Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Deng
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xu-hu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
9
|
Thayer JA, Awad O, Hegdekar N, Sarkar C, Tesfay H, Burt C, Zeng X, Feldman RA, Lipinski MM. The PARK10 gene USP24 is a negative regulator of autophagy and ULK1 protein stability. Autophagy 2019; 16:140-153. [PMID: 30957634 PMCID: PMC6984603 DOI: 10.1080/15548627.2019.1598754] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent studies indicate a causative relationship between defects in autophagy and dopaminergic neuron degeneration in Parkinson disease (PD). However, it is not fully understood how autophagy is regulated in the context of PD. Here we identify USP24 (ubiquitin specific peptidase 24), a gene located in the PARK10 (Parkinson disease 10 [susceptibility]) locus associated with late onset PD, as a novel negative regulator of autophagy. Our data indicate that USP24 regulates autophagy by affecting ubiquitination and stability of the ULK1 protein. Knockdown of USP24 in cell lines and in human induced-pluripotent stem cells (iPSC) differentiated into dopaminergic neurons resulted in elevated ULK1 protein levels and increased autophagy flux in a manner independent of MTORC1 but dependent on the class III phosphatidylinositol 3-kinase (PtdIns3K) activity. Surprisingly, USP24 knockdown also improved neurite extension and/or maintenance in aged iPSC-derived dopaminergic neurons. Furthermore, we observed elevated levels of USP24 in the substantia nigra of a subpopulation of idiopathic PD patients, suggesting that USP24 may negatively regulate autophagy in PD. Abbreviations: Bafilomycin/BafA: bafilomycin A1; DUB: deubiquitinating enzyme; iPSC: induced pluripotent stem cells; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; nt: non-targeting; PD: Parkinson disease; p-ATG13: phospho-ATG13; PtdIns3P: phosphatidylinositol 3-phosphate; RPS6: ribosomal protein S6; SNPs: single nucleotide polymorphisms; TH: tyrosine hydroxylase; USP24: ubiquitin specific peptidase 24
Collapse
Affiliation(s)
- Julia A Thayer
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ola Awad
- Department of Microbiology and Immunology
| | - Nivedita Hegdekar
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chinmoy Sarkar
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Henok Tesfay
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cameran Burt
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Marta M Lipinski
- Department of Anesthesiology & Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Chen J, Hu B, Wang W, Qian XJ, Shan BJ, He YF. A six-microRNA signature to predict outcomes of patients with gastric cancer. FEBS Open Bio 2019; 9:538-547. [PMID: 30868062 PMCID: PMC6396146 DOI: 10.1002/2211-5463.12593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) is a common gastrointestinal tumor with poor prognosis. However, conventional prognostic factors cannot accurately predict the outcomes of GC patients. Therefore, there remains a need to identify novel predictive markers to improve prognosis. In this study, we obtained microRNA expression profiles of 385 GC patients from The Cancer Genome Atlas. We performed Cox regression analysis to identify overall survival‐related microRNA and then constructed a microRNA signature‐based prognostic model. The accuracy of the model was evaluated and validated through Kaplan–Meier survival analysis and time‐dependent receiver operating characteristic (ROC) curve analysis. The independent prognostic value of the model was assessed by multivariate Cox regression analysis. Enrichment analysis was performed to explore potential functions of the prognostic microRNA. Finally, a prognostic model based on a six‐microRNA (miRNA‐100, miRNA‐374a, miRNA‐509‐3, miRNA‐668, miRNA‐549, and miRNA‐653) signature was developed. Further analysis in the training, test, and complete The Cancer Genome Atlas set showed the model can distinguish between high‐risk and low‐risk patients and predict 3‐year and 5‐year survival. The six‐microRNA signature was also an independent prognostic marker, and enrichment analysis suggested that the microRNA may be involved in cell cycle and mitosis. These results demonstrated that the model based on the six‐microRNA signature can be used to accurately predict the prognosis of GC patients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| | - Bing Hu
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| | - Wei Wang
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| | - Xiao-Jun Qian
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| | - Ben-Jie Shan
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| | - Yi-Fu He
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| |
Collapse
|
11
|
Mardani R, Jafari Najaf Abadi MH, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, Gheibi Hayat SM, Motieian M, Pourghadamyari H. MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol 2018; 234:8465-8486. [PMID: 30515779 DOI: 10.1002/jcp.27776] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Leukemia is known as a progressive malignant disease, which destroys the blood-forming organs and results in adverse effects on the proliferation and development of leukocytes and their precursors in the blood and bone marrow. There are four main classes of leukemia including acute leukemia, chronic leukemia, myelogenous leukemia, and lymphocytic leukemia. Given that a variety of internal and external factors could be associated with the initiation and progression of different types of leukemia. One of the important factors is epigenetic regulators such as microRNAs (miRNAs) and long noncoding RNAs (ncRNA). MiRNAs are short ncRNAs which act as tumor suppressor (i.e., miR-15, miR-16, let-7, and miR-127) or oncogene (i.e., miR-155, miR-17-92, miR-21, miR-125b, miR-93, miR-143-p3, miR-196b, and miR-223) in leukemia. It has been shown that deregulation of these molecules are associated with the initiation and progression of leukemia. Hence, miRNAs could be used as potential therapeutic candidates in the treatment of patients with leukemia. Moreover, increasing evidence revealed that miRNAs could be used as diagnostic and prognostic biomarkers in monitoring patients in early stages of disease or after received chemotherapy regimen. It seems that identification and development of new miRNAs could pave to the way to the development new therapeutic platforms for patients with leukemia. Here, we summarized various miRNAs as tumor suppressor and oncogene which could be introduced as therapeutic targets in treatment of leukemia.
Collapse
Affiliation(s)
- Rajab Mardani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahsa Motieian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Borujen, Iran
| | - Amir Bayat
- Hematology, Oncology, and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cell and Molecular Biology, College of Science, Kish International Campus, University of Tehran, Kish, Iran
| | - Alireza Farsinezhad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahtab Motieian
- Department of Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New York, New York
| | - Hossein Pourghadamyari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Tu Z, Xiong J, Xiao R, Shao L, Yang X, Zhou L, Yuan W, Wang M, Yin Q, Wu Y, Pan S, Leng J, Jiang D, He C, Zhang Q. Loss of miR-146b-5p promotes T cell acute lymphoblastic leukemia migration and invasion via the IL-17A pathway. J Cell Biochem 2018; 120:5936-5948. [PMID: 30362152 DOI: 10.1002/jcb.27882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
Metastatic disease remains the primary cause of death for individuals with T cell acute lymphoblastic leukemia (T-ALL). microRNAs (miRNAs) play important roles in the pathogenesis of T-ALL by inhibiting gene expression at posttranscriptional levels. The goal of the current project is to identify any significant miRNAs in T-ALL metastasis. We observed miR-146b-5p to be downregulated in T-ALL patients and cell lines, and bioinformatics analysis implicated miR-146b-5p in the hematopoietic system. miR-146b-5p inhibited the migration and invasion in T-ALL cells. Interleukin-17A (IL-17A) was predicted to be a target of miR-146b-5p; this was confirmed by luciferase assays. Interestingly, T-ALL patients and cell lines secreted IL-17A and expressed the IL-17A receptor (IL-17RA). IL-17A/IL-17RA interactions promoted strong T-ALL cell migration and invasion responses. Gene set enrichment analysis (GSEA) and quantitative polymerase chain reaction (qPCR) analysis indicated that matrix metallopeptidase-9 (MMP9), was a potential downstream effector of IL-17A activation, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling was also implicated in this process. Moreover, IL-17A activation promoted T-ALL cell metastasis to the liver in IL17A -/- mouse models. These results indicate that reduced miR-146b-5p expression in T-ALL may lead to the upregulation of IL-17A, which then promotes T-ALL cell migration and invasion by upregulating MMP9 via NF-κB signaling.
Collapse
Affiliation(s)
- Zhenbo Tu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ruijing Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiangyong Yang
- Department of Bioengineering, Hubei University of Technology Engineering and Technology College, Wuhan, China
| | - Lu Zhou
- Department of Hematology, Taihe Hospital, Shiyan, China
| | - Wen Yuan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Meng Wang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qian Yin
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yingjie Wu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shan Pan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Leng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Daozi Jiang
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunjiang He
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Ke CC, Lin YH, Wang YY, Wu YY, Chen MF, Ku WC, Chiang HS, Lai TH. TBC1D21 Potentially Interacts with and Regulates Rap1 during Murine Spermatogenesis. Int J Mol Sci 2018; 19:ijms19113292. [PMID: 30360518 PMCID: PMC6274753 DOI: 10.3390/ijms19113292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 12/18/2022] Open
Abstract
Few papers have focused on small guanosine triphosphate (GTP)-binding proteins and their regulation during spermatogenesis. TBC1D21 genes (also known as male germ cell RAB GTPase-activating protein MGCRABGAP) are related to sterility, as determined through cDNA microarray testing of human testicular tissues exhibiting spermatogenic defects. TBC1D21 is a protein specifically expressed in the testes that exhibits specific localizations of elongating and elongated spermatids during mammalian spermiogenesis. Furthermore, through co-immunoprecipitation (co-IP) and nano liquid chromatography–tandem mass spectrometry (nano LC–MS/MS), Rap1 has been recognized as a potential TBC1D21 interactor. This study determined the possible roles of Rap1 and TBC1D21 during mammalian spermiogenesis. First, the binding ability between Rap1 and TBC1D21 was verified using co-IP. Second, the stronger signals of Rap1 expressed in elongating and elongated murine spermatids extracted from testicular sections, namely spermatogonia, spermatocytes, and round spermatids, were compared. Third, Rap1 and TBC1D21 exhibited similar localizations at postacrosomal regions of spermatids and at the midpieces of mature sperms, through isolated male germ cells. Fourth, the results of an activating Rap1 pull-down assay indicated that TBC1D21 overexpression inactivates Rap1 activity in cell models. In conclusion, TBC1D21 may interact with and potentially regulate Rap1 during murine spermatogenesis.
Collapse
Affiliation(s)
- Chih-Chun Ke
- PhD Program in Nutrition & Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
- Department of Urology, En Chu Kong Hospital, New Taipei City 23702, Taiwan.
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Ya-Yun Wang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Ying-Yu Wu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan County 33305, Taiwan.
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Han-Sun Chiang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Tsung-Hsuan Lai
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 10630, Taiwan.
- Institute of Systems Biology and Bioinformatics, National Central University, Jhongli City, Taoyuan County 32001, Taiwan.
| |
Collapse
|
14
|
Minchenko OH, Kharkova AP, Hnatiuk OS. ERN1 modifies the effect of glutamine deprivation on tumor growth related factors expression in U87 glioma cells. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.03.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
15
|
Targeting epigenetic pathway with gold nanoparticles for acute myeloid leukemia therapy. Biomaterials 2018; 167:80-90. [PMID: 29554483 DOI: 10.1016/j.biomaterials.2018.03.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 12/20/2022]
Abstract
Leukemia remains a fatal disease for most patients and novel therapeutic strategies are urgently needed. Aberrant DNA methylation is an epigenetic modification that is important in the initiation and progression of leukemia. Here, we demonstrated NCL/miR-221/NFκB/DNMT1 axis as a new molecular pathway promoting aggressive acute myeloid leukemia (AML) leukemogenesis and successfully designed and prepared a nuclear localization signal (NLS) peptide-targeted gold nanoparticles with co-loaded anti-221 and AS1411 (NPsN-AS1411/a221), which can specifically target NCL/miR-221/NFκB/DNMT1 signaling pathway in AML. NPsN-AS1411/a221 synergistically abrogate endogenous miR-221 promoting cancerous growth by inhibiting the expression of p27Kip1 suppressor gene, as well as effectively deregulate the DNMT1 expression through NFκB signaling which led to a reduction of global DNA methylation and the restoration of tumor suppressor p15INK4B via its promoter DNA hypomethylation. Functionally, NPsN-AS1411/a221 remarkably blockage leukemia proliferation and clonogenic potential in NCL/miR-221/NFκB/DNMT1 positive AML cell lines. More importantly, NPsN-AS1411/a221 cooperatively extend the overall survival, lower the white blood cells, reverse splenomegaly, inhibit blasts in bone marrow and metastatic to lung in a preclinical AML animal model. Altogether, our studies provide a proof of concept for multiple-functional drug delivery system that based on the specific gene network involved in tumor growth, and highlight the clinical potential of NCL/miR-221/NFκB/DNMT1-targeted AML nanotherapy.
Collapse
|
16
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
17
|
Du P, Luan X, Liao Y, Mu Y, Yuan Y, Xu J, Zhang J. MicroRNA-509-3p inhibits cell proliferation and invasion via downregulation of X-linked inhibitor of apoptosis in glioma. Oncol Lett 2018; 15:1307-1312. [PMID: 29399183 DOI: 10.3892/ol.2017.7390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/07/2017] [Indexed: 01/16/2023] Open
Abstract
Malignant glioma is an aggressive type of cancer. Increasing evidence has suggested that microRNAs (miRs) regulate gene expression post-transcriptionally to affect cancer development and progression. Aberrant expression of miR-509-3p has been reported in cancer studies. However, the expression and mechanism of its function in glioma remains unclear. The present study demonstrated that miR-509-3p was downregulated in glioma tissue samples relative to non-tumor tissues, and that low miR-509-3p expression was associated with a reduced overall survival time. Functional studies revealed that the overexpression of miR-509-3p inhibited cell proliferation, induced apoptosis and suppressed cell migration and invasion via negatively regulating the expression of X-linked inhibitor of apoptosis. The data therefore suggested that miR-509-3p serves an important role in the development and progression of glioma, implicating its possible application in clinical practice as a biomarker and a potential novel therapeutic target.
Collapse
Affiliation(s)
- Peng Du
- Department of Neurosurgery, the Second Affiliated Hospital, Xinjiang Medical University, Ürümqi, Uygur Autonomous Region 830063, P.R. China
| | - Xinping Luan
- Department of Neurosurgery, the Second Affiliated Hospital, Xinjiang Medical University, Ürümqi, Uygur Autonomous Region 830063, P.R. China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yiti Mu
- Department of Neurosurgery, the Second Affiliated Hospital, Xinjiang Medical University, Ürümqi, Uygur Autonomous Region 830063, P.R. China
| | - Yang Yuan
- Department of Neurosurgery, the Second Affiliated Hospital, Xinjiang Medical University, Ürümqi, Uygur Autonomous Region 830063, P.R. China
| | - Jingxuan Xu
- Department of Neurosurgery, the Second Affiliated Hospital, Xinjiang Medical University, Ürümqi, Uygur Autonomous Region 830063, P.R. China
| | - Jingjing Zhang
- Department of Neurosurgery, the Second Affiliated Hospital, Xinjiang Medical University, Ürümqi, Uygur Autonomous Region 830063, P.R. China
| |
Collapse
|
18
|
Khosravi A, Alizadeh S, Jalili A, Shirzad R, Saki N. The impact of Mir-9 regulation in normal and malignant hematopoiesis. Oncol Rev 2018; 12:348. [PMID: 29774136 PMCID: PMC5939831 DOI: 10.4081/oncol.2018.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-9 (MiR-9) dysregulation has been observed in various cancers. Recently, MiR-9 is considered to have a part in hematopoiesis and hematologic malignancies. However, its importance in blood neoplasms is not yet well defined. Thus, this study was conducted in order to assess the significance of MiR-9 role in the development of hematologic neoplasia, prognosis, and treatment approaches. We have shown that a large number of MiR-9 targets (such as FOXOs, SIRT1, CCND1, ID2, CCNG1, Ets, and NFkB) play essential roles in leukemogenesis and that it is overexpressed in different leukemias. Our findings indicated MiR-9 downregulation in a majority of leukemias. However, its overexpression was reported in patients with dysregulated MiR-9 controlling factors (such as MLLr). Additionally, prognostic value of MiR-9 has been reported in some types of leukemia. This study generally emphasizes on the critical role of MiR-9 in hematologic malignancies as a prognostic factor and a therapeutic target.
Collapse
Affiliation(s)
- Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medi-cine, Tehran
| | - Shaban Alizadeh
- Hematology Department, Allied Medical School, Tehran University of Medical Sciences, Tehran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology at Cell Science Re-search Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran
| | - Reza Shirzad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jun-dishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
20
|
Zhang H, Zhang C, Feng R, Zhang H, Gao M, Ye L. Investigating the microRNA-mRNA regulatory network in acute myeloid leukemia. Oncol Lett 2017; 14:3981-3988. [PMID: 28989535 PMCID: PMC5620483 DOI: 10.3892/ol.2017.6686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/25/2017] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a common myelogenous malignancy in adults that is often characterized by disease relapse. The pathophysiological mechanism of AML has not yet been elucidated. The present study aimed to identify the crucial microRNAs (miRNAs/miRs) and target genes in AML, and to uncover the potential oncogenic mechanism of AML. miRNA and mRNA expression-profiling microarray datasets were downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed and a regulatory network between miRNAs and target genes was constructed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used to predict the biological functions of the differentially expressed genes. Reverse transcription-quantitative polymerase chain reaction analysis was employed to verify the expression levels of miRNAs and target genes in AML patient samples. A total of 86 differentially expressed miRNAs and 468 differentially expressed mRNAs between AML and healthy blood samples were identified. In total, 47 miRNAs and 401 mRNAs were found to be upregulated, and 39 miRNAs and 67 mRNAs were found to be downregulated in AML. A total of 223 miRNA-target genes pairs were subjected to the construction of a regulatory network. Differentially expressed target genes were significantly enriched in the Wnt signaling pathway (hsa04310), melanogenesis (hsa04916) and pathways in cancer (hsa05200). Significantly differentially expressed miRNAs and genes, including hsa-miR-155, hsa-miR-192, annexin A2 (ANXA2), frizzled class receptor 3 (FZD3), and pleomorphic adenoma gene 1 (PLAG1), may serve essential roles in AML oncogenesis. Overall, hsa-miR-155, hsa-miR-192, ANXA2, FZD3 and PLAG1 may be associated with the development of AML via the involvement of the Wnt signaling pathway, melanogenesis and other cancer-associated signaling pathways.
Collapse
Affiliation(s)
- Haiguo Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Hematology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Chengfang Zhang
- Department of Clinical Laboratory, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Rui Feng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Hematology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Haixia Zhang
- Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Min Gao
- Department of Clinical Laboratory, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Ling Ye
- Department of Hematology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
21
|
Schmidt O, Weyer Y, Fink MJ, Müller M, Weys S, Bindreither M, Teis D. Regulation of Rab5 isoforms by transcriptional and post-transcriptional mechanisms in yeast. FEBS Lett 2017; 591:2803-2815. [PMID: 28792590 PMCID: PMC5637908 DOI: 10.1002/1873-3468.12785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022]
Abstract
Rab5 GTPases are master regulators of early endosome biogenesis and transport. The genome of Saccharomyces cerevisiae encodes three Rab5 proteins: Vps21, the major isoform, Ypt52 and Ypt53. Here, we show that Vps21 is the most abundant Rab5 protein and Ypt53 is the least abundant. In stressed cells, Ypt53 levels increase but never exceed that of Vps21. Its induction requires the transcription factors Crz1 and Gis1. In growing cells, the expression of Ypt53 is suppressed by post-transcriptional mechanisms mediated by the untranslated regions of the YPT53 mRNA. Based on genetic experiments, these sequences appear to stimulate deadenylation, Pat1-activated decapping and Xrn1-mediated mRNA degradation. Once this regulation is bypassed, Ypt53 protein levels surpass Vps21, and Ypt53 is sufficient to maintain endosomal function and cell growth.
Collapse
Affiliation(s)
- Oliver Schmidt
- Division of Cell Biology, BiocenterMedical University of InnsbruckAustria
| | - Yannick Weyer
- Division of Cell Biology, BiocenterMedical University of InnsbruckAustria
| | - Matthias J. Fink
- Division of Cell Biology, BiocenterMedical University of InnsbruckAustria
| | - Martin Müller
- Division of Cell Biology, BiocenterMedical University of InnsbruckAustria
| | - Sabine Weys
- Division of Cell Biology, BiocenterMedical University of InnsbruckAustria
| | | | - David Teis
- Division of Cell Biology, BiocenterMedical University of InnsbruckAustria
| |
Collapse
|
22
|
Verma JK, Rastogi R, Mukhopadhyay A. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494. PLoS Pathog 2017. [PMID: 28650977 PMCID: PMC5501680 DOI: 10.1371/journal.ppat.1006459] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several intracellular pathogens arrest the phagosome maturation in the host cells to avoid transport to lysosomes. In contrast, the Leishmania containing parasitophorous vacuole (PV) is shown to recruit lysosomal markers and thus Leishmania is postulated to be residing in the phagolysosomes in macrophages. Here, we report that Leishmania donovani specifically upregulates the expression of Rab5a by degrading c-Jun via their metalloprotease gp63 to downregulate the expression of miR-494 in THP-1 differentiated human macrophages. Our results also show that miR-494 negatively regulates the expression of Rab5a in cells. Subsequently, L. donovani recruits and retains Rab5a and EEA1 on PV to reside in early endosomes and inhibits transport to lysosomes in human macrophages. Similarly, we have also observed that Leishmania PV also recruits Rab5a by upregulating its expression in human PBMC differentiated macrophages. However, the parasite modulates the endosome by recruiting Lamp1 and inactive pro-CathepsinD on PV via the overexpression of Rab5a in infected cells. Furthermore, siRNA knockdown of Rab5a or overexpression of miR-494 in human macrophages significantly inhibits the survival of the parasites. These results provide the first mechanistic insights of parasite-mediated remodeling of endo-lysosomal trafficking to reside in a specialized early endocytic compartment.
Collapse
|
23
|
Qin X, Wang J, Wang X, Liu F, Jiang B, Zhang Y. Targeting Rabs as a novel therapeutic strategy for cancer therapy. Drug Discov Today 2017; 22:1139-1147. [PMID: 28390930 DOI: 10.1016/j.drudis.2017.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/18/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Rab GTPases constitute the largest family of small GTPases. Rabs regulate not only membrane trafficking but also cell signaling, growth and survival, and development. Increasingly, Rabs and their effectors are shown to be overexpressed or subject to loss-of-function mutations in a variety of disease settings, including cancer progression. This review provides an overview of dysregulated Rab proteins in cancer, and highlights the signaling and secretory pathways in which they operate, with the aim of identifying potential avenues for therapeutic intervention. Recent progress and perspectives for direct and/or indirect targeting of Rabs are also summarized.
Collapse
Affiliation(s)
- Xiaoyu Qin
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Jiongyi Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Xinxin Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Bin Jiang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| | - Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
24
|
Lin YH, Ke CC, Wang YY, Chen MF, Chen TM, Ku WC, Chiang HS, Yeh CH. RAB10 Interacts with the Male Germ Cell-Specific GTPase-Activating Protein during Mammalian Spermiogenesis. Int J Mol Sci 2017; 18:ijms18010097. [PMID: 28067790 PMCID: PMC5297731 DOI: 10.3390/ijms18010097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 01/23/2023] Open
Abstract
According to recent estimates, 2%–15% of couples are sterile, and approximately half of the infertility cases are attributed to male reproductive factors. However, the reasons remain undefined in approximately 25% of male infertility cases, and most infertility cases exhibit spermatogenic defects. Numerous genes involved in spermatogenesis still remain unknown. We previously identified Male Germ Cells Rab GTPase-Activating Proteins (MGCRABGAPs) through cDNA microarray analysis of human testicular tissues with spermatogenic defects. MGCRABGAP contains a conserved RABGAP catalytic domain, TBC (Tre2/Bub2/Cdc16). RABGAP family proteins regulate cellular function (e.g., cytoskeletal remodeling, vesicular trafficking, and cell migration) by inactivating RAB proteins. MGCRABGAP is a male germ cell-specific protein expressed in elongating and elongated spermatids during mammalian spermiogenesis. The purpose of this study was to identify proteins that interact with MGCRABGAP during mammalian spermiogenesis using a proteomic approach. We found that MGCRABGAP exhibited GTPase-activating bioability, and several MGCRABGAP interactors, possible substrates (e.g., RAB10, RAB5C, and RAP1), were identified using co-immunoprecipitation (co-IP) and nano liquid chromatography-mass spectrometry/mass spectrometry (nano LC-MS/MS). We confirmed the binding ability between RAB10 and MGCRABGAP via co-IP. Additionally, MGCRABGAP–RAB10 complexes were specifically colocalized in the manchette structure, a critical structure for the formation of spermatid heads, and were slightly expressed at the midpiece of mature spermatozoa. Based on these results, we propose that MGCRABGAP is involved in mammalian spermiogenesis by modulating RAB10.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Chih-Chun Ke
- Department of Urology, En Chu Kong Hospital, New Taipei City 23702, Taiwan.
| | - Ya-Yun Wang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Tsung-Ming Chen
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan.
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Han-Sun Chiang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Chung-Hsin Yeh
- Division of Urology, Department of Surgery, Shin-Kong Wu-Su Memorial Hospital, Taipei 11101, Taiwan.
| |
Collapse
|
25
|
MiR-509-5p suppresses the proliferation, migration, and invasion of non-small cell lung cancer by targeting YWHAG. Biochem Biophys Res Commun 2017; 482:935-941. [DOI: 10.1016/j.bbrc.2016.11.136] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/25/2016] [Indexed: 11/22/2022]
|
26
|
MicroRNA-1301-Mediated RanGAP1 Downregulation Induces BCR-ABL Nuclear Entrapment to Enhance Imatinib Efficacy in Chronic Myeloid Leukemia Cells. PLoS One 2016; 11:e0156260. [PMID: 27228340 PMCID: PMC4881950 DOI: 10.1371/journal.pone.0156260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/11/2016] [Indexed: 12/18/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease. Imatinib (IM), the first line treatment for CML, is excessively expensive and induces various side effects in CML patients. Therefore, it is essential to investigate a new strategy for improving CML therapy. Our immunoblot data revealed that RanGTPase activating protein 1 (RanGAP1) protein levels increased by approximately 30-fold in K562 cells compared with those in normal cells. RanGAP1 is one of the important components of RanGTPase system, which regulates the export of nuclear protein. However, whether RanGAP1 level variation influences BCR-ABL nuclear export is still unknown. In this report, using shRNA to downregulate RanGAP1 expression level augmented K562 cell apoptosis by approximately 40% after treatment with 250 nM IM. Immunofluorescence assay also indicated that three-fold of nuclear BCR-ABL was detected. These data suggest that BCR-ABL nuclear entrapment induced by RanGAP1 downregulation can be used to improve IM efficacy. Moreover, our qRT-PCR data indicated a trend of inverse correlation between the RanGAP1 and microRNA (miR)-1301 levels in CML patients. MiR-1301, targeting the RanGAP1 3' untranslated region, decreased by approximately 100-fold in K562 cells compared with that in normal cells. RanGAP1 downregulation by miR-1301 transfection impairs BCR-ABL nuclear export to increase approximately 60% of cell death after treatment of 250 nM IM. This result was almost the same as treatment with 1000 nM IM alone. Furthermore, immunofluorescence assay demonstrated that Tyr-99 of nuclear P73 was phosphorylated accompanied with nuclear entrapment of BCR-ABL after transfection with RanGAP1 shRNA or miR-1301 in IM-treated K562 cells. Altogether, we demonstrated that RanGAP1 downregulation can mediate BCR-ABL nuclear entrapment to activate P73-dependent apoptosis pathway which is a novel strategy for improving current IM treatment for CML.
Collapse
|
27
|
Lou Z, Casali P, Xu Z. Regulation of B Cell Differentiation by Intracellular Membrane-Associated Proteins and microRNAs: Role in the Antibody Response. Front Immunol 2015; 6:537. [PMID: 26579118 PMCID: PMC4620719 DOI: 10.3389/fimmu.2015.00537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022] Open
Abstract
B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes, and autophagosomes) and protein factors specifically associated with these membranes, including Rab7, Atg5, and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, class switch DNA recombination (CSR)/somatic hypermutation (SHM), and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation, and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulating AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.
Collapse
Affiliation(s)
- Zheng Lou
- Department of Microbiology and Immunology, School of Medicine, The University of Texas Health Science Center , San Antonio, TX , USA
| | - Paolo Casali
- Department of Microbiology and Immunology, School of Medicine, The University of Texas Health Science Center , San Antonio, TX , USA
| | - Zhenming Xu
- Department of Microbiology and Immunology, School of Medicine, The University of Texas Health Science Center , San Antonio, TX , USA
| |
Collapse
|