1
|
Kapusterynska A, Bijani C, Paliwoda D, Vendier L, Bourdon V, Imbert N, Cojean S, Loiseau PM, Recchia D, Scoffone VC, Degiacomi G, Akhir A, Saxena D, Chopra S, Lubenets V, Baltas M. Mechanochemical Studies on Coupling of Hydrazines and Hydrazine Amides with Phenolic and Furanyl Aldehydes-Hydrazones with Antileishmanial and Antibacterial Activities. Molecules 2023; 28:5284. [PMID: 37446945 DOI: 10.3390/molecules28135284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Hydrazone compounds represent an important area of research that includes, among others, synthetic approaches and biological studies. A series of 17 hydrazones have been synthesized by mechanochemical means. The fragments chosen were phenolic and furanyl aldehydes coupled with 12 heterocyclic hydrazines or hydrazinamides. All compounds can be obtained quantitatively when operating on a planetary ball mill and a maximum reaction time of 180 min (6 cycles of 30 min each). Complete spectroscopic analyses of hydrazones revealed eight compounds (3-5, 8-11, 16) present in one geometric form, six compounds (1, 2, 13-15) present in two isomeric forms, and three compounds (6, 7, 12) where one rotation is restricted giving rise to two different forms. The single crystal X-ray structure of one of the hydrazones bearing the isoniazid fragment (8) indicates a crystal lattice consisting of two symmetry-independent molecules with different geometries. All compounds obtained were tested for anti-infectious and antibacterial activities. Four compounds (1, 3, 5 and 8) showed good activity against Mycobacterium tuberculosis, and one (7) was very potent against Staphylococcus aureus. Most interesting, this series of compounds displayed very promising antileishmanial activity. Among all, compound 9 exhibited an IC50 value of 0.3 µM on the Leishmania donovani intramacrophage amastigote in vitro model and a good selectivity index, better than miltefosine, making it worth evaluating in vivo.
Collapse
Affiliation(s)
- Anna Kapusterynska
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, 31077 Toulouse, France
| | - Christian Bijani
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, 31077 Toulouse, France
| | - Damian Paliwoda
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, 31077 Toulouse, France
| | - Laure Vendier
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, 31077 Toulouse, France
| | - Valérie Bourdon
- Technological and Expert Platform, Chemistry Institute of Toulouse ICT-UAR2599, University of Toulouse, CNRS, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
| | - Nicolas Imbert
- Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy, University Paris-Saclay, 91400 Orsay, France
| | - Sandrine Cojean
- Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy, University Paris-Saclay, 91400 Orsay, France
| | - Philippe Marie Loiseau
- Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy, University Paris-Saclay, 91400 Orsay, France
| | - Deborah Recchia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giulia Degiacomi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Abdul Akhir
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Deepanshi Saxena
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Vira Lubenets
- Department of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, S. Bandery, 12, 79013 Lviv, Ukraine
| | - Michel Baltas
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, 31077 Toulouse, France
| |
Collapse
|
2
|
Natural Salicylaldehyde for Fungal and Pre- and Post-Emergent Weed Control. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A sustainable, alternative weed control strategy is developed using salicylaldehyde (SA; 2-hydroxybenzaldehyde) as an active ingredient. SA is a natural, redox-active small molecule listed as a Generally Recognized As Safe food additive by the European Food Safety Authority and the United States Food and Drug Administration. The repurposing of SA determined that SA possesses both pre- and post-emergent herbicidal, fumigant activity, where the emitted SA from the source completely prevented the germination of plant seeds and/or the growth of the germinated plants. As a proof-of-concept, we developed agricultural byproducts (tree nutshell particles) as SA delivery vehicles to the soil, thus helping the growers’ sustainable byproduct recycling program, necessary for carbon sequestration. In plate assays, SA emitted from the nutshell vehicles (0.15 to 1.6 M) completely prevented the germination of six invasive or native weed seeds (monocots, dicots). In Magenta vessel assays, SA emitted from the nutshell vehicles (0.8 to 1.6 M) not only prevented the germination (pre-emergent) of Lagurus ovatus (Bunny Tails Grass) seeds but also inhibited the growth (post-emergent) of the germinated weeds. We determined further that soil covering (soil pasteurization) could be one of the practices to effectively deliver SA to the soil, whereby 1.6 M of SA emitted from the nutshell vehicles prevented the germination of the L. ovatus seeds maintained in soil trays covered with plastic tarp at 22 °C, while 0.8 M SA allowed partial (15%) germination of the weed seeds. Of note, SA also possesses an intrinsic antifungal activity that overcomes the tolerance of the stress signaling mutants of filamentous fungal pathogens (Aspergillus fumigatus, Penicillium expansum) to the phenylpyrrole fungicide fludioxonil. Environmental degradation data available in the public database indicate that, once released to the environment, SA will be broken down in the air by sunlight or microorganisms and, thus, is not built up in aquatic organisms. Altogether, SA can serve as a safe, potent pesticide (herbicidal, fungicidal) ingredient that promotes sustainable crop production by lowering the pesticide burden in fields.
Collapse
|
3
|
Lagoda IV, Yakunchikova EA, Drachyov IS, Grebenyuk AN, Martynenkov AA, Kuleshova LY, Kopanitsa MA, Ershov AY. Investigation of the Radioprotective Efficiency of Condensation Products of Thiol-Containing Hydrazides with Mono- and Disaccharides. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020120043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Jones G, Goswami SK, Kang H, Choi HS, Kim J. Combating iron overload: a case for deferoxamine-based nanochelators. Nanomedicine (Lond) 2020; 15:1341-1356. [PMID: 32429801 PMCID: PMC7304435 DOI: 10.2217/nnm-2020-0038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
While iron is a nutrient metal, iron overload can result in multiple organ failures. Iron chelators, such as deferoxamine, are commonly used to ameliorate iron overload conditions. However, their uses are limited due to poor pharmacokinetics and adverse effects. Many novel chelator formulations have been developed to overcome these drawbacks. In this review, we have discussed various nanochelators, including linear and branched polymers, dendrimers, polyrotaxane, micelles, nanogels, polymeric nanoparticles and liposomes. Although these research efforts have mainly been focused on nanochelators with longer half-lives, prolonged residence of polymers in the body could raise potential safety issues. We also discussed recent advances in nanochelation technologies, including mechanism-based, long-acting nanochelators.
Collapse
Affiliation(s)
- Gregory Jones
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Sumanta Kumar Goswami
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Mohamed Subarkhan MK, Ren L, Xie B, Chen C, Wang Y, Wang H. Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur J Med Chem 2019; 179:246-256. [PMID: 31255925 DOI: 10.1016/j.ejmech.2019.06.061] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/29/2022]
Abstract
Ruthenium complexes have attracted a surge of interest as anticancer drug candidates because of their low toxicity, diversity in mode-of-actions and non-cross drug resistance with conventional platinum-based agents. Despite remarkable advances, only a limited number of ruthenium complexes have been demonstrated to kill cancer cells and suppress metastasis simultaneously. Here, two organometallic tetranuclear Ru(II) arene complexes (Ru-1 and Ru-2) have been synthesized and evaluated for their in vitro activity against a panel of human cancer cell lines, including a cisplatin-resistant human lung cancer A549 cell line. A superior cytotoxic activity of the ruthenium complexes compared to cisplatin across distinct cell lines was observed. Further examination of the mechanism indicated that anticancer activity was accomplished by inducing apoptosis in cancer cells. In addition, we found that such compounds exhibited promising antimetastatic activity and reduced the invasiveness of cancer cells. Importantly, choosing Ru-1 as a target compound, a significantly enhanced safety profile relative to cisplatin in animals was validated, suggesting that these complexes can be used as promising candidates for cancer therapy and deserve further investigation.
Collapse
Affiliation(s)
- Mohamed Kasim Mohamed Subarkhan
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Lulu Ren
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Chao Chen
- College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Yuchen Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Hangxiang Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| |
Collapse
|
6
|
Jansová H, Kubeš J, Reimerová P, Štěrbová-Kovaříková P, Roh J, Šimůnek T. 2,6-Dihydroxybenzaldehyde Analogues of the Iron Chelator Salicylaldehyde Isonicotinoyl Hydrazone: Increased Hydrolytic Stability and Cytoprotective Activity against Oxidative Stress. Chem Res Toxicol 2018; 31:1151-1163. [DOI: 10.1021/acs.chemrestox.8b00165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hana Jansová
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jan Kubeš
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Petra Reimerová
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Petra Štěrbová-Kovaříková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Tomáš Šimůnek
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
7
|
Hrušková K, Potůčková E, Opálka L, Hergeselová T, Hašková P, Kovaříková P, Šimůnek T, Vávrová K. Structure-Activity Relationships of Nitro-Substituted Aroylhydrazone Iron Chelators with Antioxidant and Antiproliferative Activities. Chem Res Toxicol 2018; 31:435-446. [PMID: 29766723 DOI: 10.1021/acs.chemrestox.7b00324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aroylhydrazone iron chelators such as salicylaldehyde isonicotinoyl hydrazone (SIH) protect various cells against oxidative injury and display antineoplastic activities. Previous studies have shown that a nitro-substituted hydrazone, namely, NHAPI, displayed markedly improved plasma stability, selective antitumor activity, and moderate antioxidant properties. In this study, we prepared four series of novel NHAPI derivatives and explored their iron chelation activities, anti- or pro-oxidant effects, protection against model oxidative injury in the H9c2 cell line derived from rat embryonic cardiac myoblasts, cytotoxicities to the corresponding noncancerous H9c2 cells, and antiproliferative activities against the MCF-7 human breast adenocarcinoma and HL-60 human promyelocytic leukemia cell lines. Nitro substitution had both negative and positive effects on the examined properties, and we identified new structure-activity relationships. Naphthyl and biphenyl derivatives showed selective antiproliferative action, particularly in the breast adenocarcinoma MCF-7 cell line, where they exceeded the selectivity of the parent compound NHAPI. Of particular interest is a compound prepared from 2-hydroxy-5-methyl-3-nitroacetophenone and biphenyl-4-carbohydrazide, which protected cardiomyoblasts against oxidative injury at 1.8 ± 1.2 μM with 24-fold higher selectivity than SIH. These compounds will serve as leads for further structural optimization and mechanistic studies.
Collapse
Affiliation(s)
- Kateřina Hrušková
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| | - Eliška Potůčková
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| | - Lukáš Opálka
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| | - Tereza Hergeselová
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| | - Pavlína Hašková
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| | - Petra Kovaříková
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| | - Tomáš Šimůnek
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| | - Kateřina Vávrová
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| |
Collapse
|
8
|
Akam EA, Utterback RD, Marcero JR, Dailey HA, Tomat E. Disulfide-masked iron prochelators: Effects on cell death, proliferation, and hemoglobin production. J Inorg Biochem 2018; 180:186-193. [PMID: 29324291 PMCID: PMC5956897 DOI: 10.1016/j.jinorgbio.2017.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/20/2017] [Accepted: 12/24/2017] [Indexed: 10/18/2022]
Abstract
The iron metabolism of malignant cells, which is altered to ensure higher acquisition and utilization, motivates the investigation of iron chelation strategies in cancer treatment. In a prochelation approach aimed at increasing intracellular specificity, disulfide reduction/activation switches are incorporated on iron-binding scaffolds resulting in intracellularly activated scavengers. Herein, this strategy is applied to several tridentate donor sets including thiosemicarbazones, aroylhydrazones and semicarbazones. The novel prochelator systems are antiproliferative in breast adenocarcinoma cell lines (MCF-7 and metastatic MDA-MB-231) and do not result in the intracellular generation of oxidative stress. Consistent with iron deprivation, the tested prochelators lead to cell-cycle arrest at the G1/S interface and induction of apoptosis. Notably, although hemoglobin-synthesizing blood cells have the highest iron need in the human body, no significant impact on hemoglobin production was observed in the MEL (murine erythroleukemia) model of differentiating erythroid cells. This study provides new information on the intracellular effects of disulfide-based prochelators and indicates aroylhydrazone (AH1-S)2 as a promising prototype of a new class of antiproliferative prochelator systems.
Collapse
Affiliation(s)
- E A Akam
- Department of Chemistry and Biochemistry, The University of Arizona, United States
| | - R D Utterback
- Department of Chemistry and Biochemistry, The University of Arizona, United States
| | - J R Marcero
- Department of Microbiology and Department of Biochemistry and Molecular Biology, University of Georgia, United States
| | - H A Dailey
- Department of Microbiology and Department of Biochemistry and Molecular Biology, University of Georgia, United States
| | - E Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, United States.
| |
Collapse
|
9
|
Bures J, Jirkovska A, Sestak V, Jansova H, Karabanovich G, Roh J, Sterba M, Simunek T, Kovarikova P. Investigation of novel dexrazoxane analogue JR-311 shows significant cardioprotective effects through topoisomerase IIbeta but not its iron chelating metabolite. Toxicology 2017; 392:1-10. [PMID: 28941780 DOI: 10.1016/j.tox.2017.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/10/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
Novel dexrazoxane derivative JR-311 was prepared to investigate structure-activity relationships and mechanism(s) of protection against anthracycline cardiotoxicity. Its cardioprotective, antiproliferative, iron (Fe) chelation and inhibitory and/or depletory activities on topoisomerase IIbeta (TOP2B) were examined and compared with dexrazoxane. While in standard assay, JR-311 failed in both cardioprotection and depletion of TOP2B, its repeated administration to cell culture media led to depletion of TOP2B and significant protection of isolated rat neonatal ventricular cardiomyocytes from daunorubicin-induced damage. This effect was explained by a focused analytical investigation that revealed rapid JR-311 decomposition, resulting in negligible intracellular concentrations of the parent compound but high exposure of cells to the decomposition products, including Fe-chelating JR-H2. Although chemical instability is an obstacle for the development of JR-311, this study identified a novel dexrazoxane analogue with preserved pharmacodynamic properties, contributed to the investigation of structure-activity relationships and suggested that the cardioprotection of bis-dioxopiperazines is likely attributed to TOP2B activity of the parent compound rather than Fe chelation of their hydrolytic metabolites/degradation products. Moreover, this study highlights the importance of early stability testing during future development of novel dexrazoxane analogues.
Collapse
Affiliation(s)
- Jan Bures
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Anna Jirkovska
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Vit Sestak
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Hana Jansova
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Galina Karabanovich
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Martin Sterba
- Faculty of Medicine in Hradec Králové, Charles University, Šimkova 850, 500 03 Hradec Králové, Czech Republic
| | - Tomas Simunek
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Petra Kovarikova
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
10
|
Development of Sensitive Analytical (RP-HPLC-PDA, UV/VIS) Method for the Determination of N-Isonicotynoyl-N′-(2-Fluorobenzal)Hydrazone in Aqueous Phase. Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Martins NMR, Anbu S, Mahmudov KT, Ravishankaran R, Guedes da Silva MFC, Martins LMDRS, Karande AA, Pombeiro AJL. DNA and BSA binding and cytotoxic properties of copper(ii) and iron(iii) complexes with arylhydrazone of ethyl 2-cyanoacetate or formazan ligands. NEW J CHEM 2017. [DOI: 10.1039/c7nj00420f] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper(ii) and iron(iii) complexes with arylhydrazone of ethyl 2-cyanoacetate or formazan ligands show DNA and BSA binding and anticancer abilities.
Collapse
Affiliation(s)
- Nuno M. R. Martins
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa, Av. Rovisco Pais
- 1049-001 Lisbon
- Portugal
| | - Sellamuthu Anbu
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa, Av. Rovisco Pais
- 1049-001 Lisbon
- Portugal
| | - Kamran T. Mahmudov
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa, Av. Rovisco Pais
- 1049-001 Lisbon
- Portugal
| | | | - M. Fátima C. Guedes da Silva
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa, Av. Rovisco Pais
- 1049-001 Lisbon
- Portugal
| | - Luísa M. D. R. S. Martins
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa, Av. Rovisco Pais
- 1049-001 Lisbon
- Portugal
| | - Anjali A. Karande
- Department of Biochemistry
- Indian Institute of Science
- Bangalore-560 012
- India
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa, Av. Rovisco Pais
- 1049-001 Lisbon
- Portugal
| |
Collapse
|
12
|
Sestak V, Stariat J, Cermanova J, Potuckova E, Chladek J, Roh J, Bures J, Jansova H, Prusa P, Sterba M, Micuda S, Simunek T, Kalinowski DS, Richardson DR, Kovarikova P. Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents. Oncotarget 2016; 6:42411-28. [PMID: 26623727 PMCID: PMC4767442 DOI: 10.18632/oncotarget.6389] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/11/2015] [Indexed: 01/15/2023] Open
Abstract
Di(2-pyridyl)ketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di(2-pyridyl)ketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) are novel, highly potent and selective anti-tumor and anti-metastatic drugs. Despite their structural similarity, these agents differ in their efficacy and toxicity in-vivo. Considering this, a comparison of their pharmacokinetic and pharmaco/toxico-dynamic properties was conducted to reveal if these factors are involved in their differential activity. Both compounds were administered to Wistar rats intravenously (2 mg/kg) and their metabolism and disposition were studied using UHPLC-MS/MS. The cytotoxicity of both thiosemicarbazones and their metabolites was also examined using MCF-7, HL-60 and HCT116 tumor cells and 3T3 fibroblasts and H9c2 cardiac myoblasts. Their intracellular iron-binding ability was characterized by the Calcein-AM assay and their iron mobilization efficacy was evaluated. In contrast to DpC, Dp44mT undergoes rapid demethylation in-vivo, which may be related to its markedly faster elimination (T1/2 = 1.7 h for Dp44mT vs. 10.7 h for DpC) and lower exposure. Incubation of these compounds with cancer cells or cardiac myoblasts did not result in any significant metabolism in-vitro. The metabolism of Dp44mT in-vivo resulted in decreased anti-cancer activity and toxicity. In conclusion, marked differences in the pharmacology of Dp44mT and DpC were observed and highlight the favorable pharmacokinetics of DpC for cancer treatment.
Collapse
Affiliation(s)
- Vit Sestak
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jan Stariat
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jolana Cermanova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Eliska Potuckova
- Department of Biochemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jaroslav Chladek
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Jaroslav Roh
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jan Bures
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Hana Jansova
- Department of Biochemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Petr Prusa
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Martin Sterba
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Tomas Simunek
- Department of Biochemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Petra Kovarikova
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Aroylhydrazone iron chelators: Tuning antioxidant and antiproliferative properties by hydrazide modifications. Eur J Med Chem 2016; 120:97-110. [DOI: 10.1016/j.ejmech.2016.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/19/2016] [Accepted: 05/03/2016] [Indexed: 01/16/2023]
|
14
|
Design, Synthesis and Evaluation of Antiproliferative Activity of New Benzimidazolehydrazones. Molecules 2016; 21:molecules21050579. [PMID: 27144551 PMCID: PMC6273944 DOI: 10.3390/molecules21050579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/16/2022] Open
Abstract
The synthesis and antiproliferative activity of new benzimidazole derivatives bearing an hydrazone mojety at the 2-position is described. The new N′-(4-arylidene)-1H-benzo[d]imidazole-2-carbohydrazides were evaluated for their cytostatic activity toward the murine leukemia (L1210), human T-cell leukemia (CEM), human cervix carcinoma (HeLa) and human pancreas carcinoma cells (Mia Paca-2). A preliminary structure-activity relationship could be defined. Some of the compounds possess encouraging and consistent antiproliferative activity, having IC50 values in the low micromolar range.
Collapse
|