1
|
Yadav N, Francis AP, Priya VV, Patil S, Mustaq S, Khan SS, Alzahrani KJ, Banjer HJ, Mohan SK, Mony U, Rajagopalan R. Polysaccharide-Drug Conjugates: A Tool for Enhanced Cancer Therapy. Polymers (Basel) 2022; 14:polym14050950. [PMID: 35267773 PMCID: PMC8912870 DOI: 10.3390/polym14050950] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most widespread deadly diseases, following cardiovascular disease, worldwide. Chemotherapy is widely used in combination with surgery, hormone and radiation therapy to treat various cancers. However, chemotherapeutic drugs can cause severe side effects due to non-specific targeting, poor bioavailability, low therapeutic indices, and high dose requirements. Several drug carriers successfully overcome these issues and deliver drugs to the desired sites, reducing the side effects. Among various drug delivery systems, polysaccharide-based carriers that target only the cancer cells have been developed to overcome the toxicity of chemotherapeutics. Polysaccharides are non-toxic, biodegradable, hydrophilic biopolymers that can be easily modified chemically to improve the bioavailability and stability for delivering therapeutics into cancer tissues. Different polysaccharides, such as chitosan, alginates, cyclodextrin, pullulan, hyaluronic acid, dextran, guar gum, pectin, and cellulose, have been used in anti-cancer drug delivery systems. This review highlights the recent progress made in polysaccharides-based drug carriers in anti-cancer therapy.
Collapse
Affiliation(s)
- Neena Yadav
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (N.Y.); (A.P.F.)
| | - Arul Prakash Francis
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (N.Y.); (A.P.F.)
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Institute of Medical & Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India; (V.V.P.); (U.M.)
| | - Veeraraghavan Vishnu Priya
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Institute of Medical & Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India; (V.V.P.); (U.M.)
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (S.P.); (S.S.K.)
| | - Shazia Mustaq
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sameer Saeed Khan
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (S.P.); (S.S.K.)
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia; (K.J.A.); (H.J.B.)
| | - Hamsa Jameel Banjer
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia; (K.J.A.); (H.J.B.)
| | - Surapaneni Krishna Mohan
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills & Research Institute & Simulation, Panimalar Medical College Hospital, Varadharajapuram, Poonamallee, Chennai 600123, India;
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Institute of Medical & Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India; (V.V.P.); (U.M.)
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (N.Y.); (A.P.F.)
- Correspondence: ; Tel.: +91-(96)-7784-7337
| |
Collapse
|
2
|
Dalla Pietà A, Carpanese D, Grigoletto A, Tosi A, Dalla Santa S, Pedersen GK, Christensen D, Meléndez-Alafort L, Barbieri V, De Benedictis P, Pasut G, Montagner IM, Rosato A. Hyaluronan is a natural and effective immunological adjuvant for protein-based vaccines. Cell Mol Immunol 2021; 18:1197-1210. [PMID: 33762685 PMCID: PMC8093216 DOI: 10.1038/s41423-021-00667-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/01/2021] [Indexed: 02/01/2023] Open
Abstract
One of the main goals of vaccine research is the development of adjuvants that can enhance immune responses and are both safe and biocompatible. We explored the application of the natural polymer hyaluronan (HA) as a promising immunological adjuvant for protein-based vaccines. Chemical conjugation of HA to antigens strongly increased their immunogenicity, reduced booster requirements, and allowed antigen dose sparing. HA-based bioconjugates stimulated robust and long-lasting humoral responses without the addition of other immunostimulatory compounds and proved highly efficient when compared to other adjuvants. Due to its intrinsic biocompatibility, HA allowed the exploitation of different injection routes and did not induce inflammation at the inoculation site. This polymer promoted rapid translocation of the antigen to draining lymph nodes, thus facilitating encounters with antigen-presenting cells. Overall, HA can be regarded as an effective and biocompatible adjuvant to be exploited for the design of a wide variety of vaccines.
Collapse
Affiliation(s)
- Anna Dalla Pietà
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | | | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Anna Tosi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Silvia Dalla Santa
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | | | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Vito Barbieri
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Paola De Benedictis
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
| | | | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
3
|
Grigoletto A, Tedeschini T, Canato E, Pasut G. The evolution of polymer conjugation and drug targeting for the delivery of proteins and bioactive molecules. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1689. [PMID: 33314717 DOI: 10.1002/wnan.1689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Polymer conjugation can be considered one of the leading approaches within the vast field of nanotechnology-based drug delivery systems. In fact, such technology can be exploited for delivering an active molecule, such as a small drug, a protein, or genetic material, or it can be applied to other drug delivery systems as a strategy to improve their in vivo behavior or pharmacokinetic activities such as prolonging the half-life of a drug, conferring stealth properties, providing external stimuli responsiveness, and so on. If on the one hand, polymer conjugation with biotech drug is considered the linchpin of the protein delivery field boasting several products in clinical use, on the other, despite dedicated research, conjugation with low molecular weight drugs has not yet achieved the milestone of the first clinical approval. Some of the primary reasons for this debacle are the difficulties connected to achieving selective targeting to diseased tissue, organs, or cells, which is the main goal not only of polymer conjugation but of all delivery systems of small drugs. In light of the need to achieve better drug targeting, researchers are striving to identify more sophisticated, biocompatible delivery approaches and to open new horizons for drug targeting methodologies leading to successful clinical applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Tommaso Tedeschini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Elena Canato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr Polym 2020; 251:117103. [PMID: 33142641 DOI: 10.1016/j.carbpol.2020.117103] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/29/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022]
Abstract
The polysaccharide-based biomaterials hyaluronic acid (HA) and chondroitin sulfate (CS) have aroused great interest for use in drug delivery systems for tumor therapy, as they have outstanding biocompatibility and great targeting ability for cluster determinant 44 (CD44). In addition, modified HA and CS can self-assemble into micelles or micellar nanoparticles (NPs) for targeted drug delivery. This review discusses the formation of HA- and CS-based NPs, and various types of CS-based NPs including CS-drug conjugates, CS-polymer NPs, CS-small molecule NPs, polyelectrolyte nanocomplexes (PECs), CS-metal NPs, and nanogels. We then focus on the applications of HA- and CS-based NPs in tumor chemotherapy, gene therapy, photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), and immunotherapy. Finally, this review is expected to provide guidelines for the development of various HA- and CS-based NPs used in multiple cancer therapies.
Collapse
|
5
|
Colorectal Peritoneal Metastases: A Systematic Review of Current and Emerging Trends in Clinical and Translational Research. Gastroenterol Res Pract 2019; 2019:5180895. [PMID: 31065262 PMCID: PMC6466888 DOI: 10.1155/2019/5180895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal peritoneal metastases (CPM) are associated with abbreviated survival and significantly impaired quality of life. In patients with CPM, radical multimodality treatment consisting of cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) has demonstrated oncological superiority over systemic chemotherapy alone. In highly selected patients undergoing CRS + HIPEC, overall survival of over 60% has been reported in some series. These are patients in whom the disease burden is limited and where the diagnosis is made at an early stage in the disease course. Early diagnosis and a deeper understanding of the biological mechanisms that regulate CPM are critical to refining patient selection for radical treatment, personalising therapeutic approaches, enhancing prognostication, and ultimately improving long-term survivorship. In the present study, we outline three broad themes which represent critical future research targets in CPM: (1) enhanced radiological strategies for early detection and staging; (2) identification and validation of translational biomarkers for diagnostic, prognostic, and therapeutic deployment; and (3) development of optimized approaches for surgical cytoreduction as well as more precise strategies for intraperitoneal drug selection and delivery. Herein, we provide a contemporary narrative review of the state of the art in these three areas. A systematic review in accordance with PRISMA guidelines was undertaken on all English language studies published between 2007 and 2017. In vitro and animal model studies were deemed eligible for inclusion in the sections pertaining to biomarkers and therapeutic optimisation, as these areas of research currently remain in the early stages of development. Acquired data were then divided into hierarchical thematic categories (imaging modalities, translational biomarkers (diagnostic/prognostic/therapeutic), and delivery techniques) and subcategories. An interactive sunburst figure is provided for intuitive interrogation of the CPM research landscape.
Collapse
|
6
|
Kim JH, Moon MJ, Kim DY, Heo SH, Jeong YY. Hyaluronic Acid-Based Nanomaterials for Cancer Therapy. Polymers (Basel) 2018; 10:polym10101133. [PMID: 30961058 PMCID: PMC6403826 DOI: 10.3390/polym10101133] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/22/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022] Open
Abstract
Hyaluronic acid (HA) is a nonsulfated glycosaminoglycan and a major component of the extracellular matrix. HA is overexpressed by numerous tumor cells, especially tumor-initiating cells. HA-based nanomaterials play in importance role in drug delivery systems. HA is used in various types of nanomaterials including micelle, polymersome, hydrogel, and inorganic nanoparticle formulations. Many experiments show that HA-based nanomaterials can serve as a platform for targeted chemotherapy, gene therapy, immunotherapy, and combination therapy with good potential for future biomedical applications in cancer treatment.
Collapse
Affiliation(s)
- Jin Hong Kim
- Department of Surgery, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Myeong Ju Moon
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| | - Dong Yi Kim
- Department of Surgery, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Suk Hee Heo
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| |
Collapse
|
7
|
Gao N, Bozeman EN, Qian W, Wang L, Chen H, Lipowska M, Staley CA, Wang YA, Mao H, Yang L. Tumor Penetrating Theranostic Nanoparticles for Enhancement of Targeted and Image-guided Drug Delivery into Peritoneal Tumors following Intraperitoneal Delivery. Theranostics 2017; 7:1689-1704. [PMID: 28529645 PMCID: PMC5436521 DOI: 10.7150/thno.18125] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/15/2017] [Indexed: 11/18/2022] Open
Abstract
The major obstacles in intraperitoneal (i.p.) chemotherapy of peritoneal tumors are fast absorption of drugs into the blood circulation, local and systemic toxicities, inadequate drug penetration into large tumors, and drug resistance. Targeted theranostic nanoparticles offer an opportunity to enhance the efficacy of i.p. therapy by increasing intratumoral drug delivery to overcome resistance, mediating image-guided drug delivery, and reducing systemic toxicity. Herein we report that i.p. delivery of urokinase plasminogen activator receptor (uPAR) targeted magnetic iron oxide nanoparticles (IONPs) led to intratumoral accumulation of 17% of total injected nanoparticles in an orthotopic mouse pancreatic cancer model, which was three-fold higher compared with intravenous delivery. Targeted delivery of near infrared dye labeled IONPs into orthotopic tumors could be detected by non-invasive optical and magnetic resonance imaging. Histological analysis revealed that a high level of uPAR targeted, PEGylated IONPs efficiently penetrated into both the peripheral and central tumor areas in the primary tumor as well as peritoneal metastatic tumor. Improved theranostic IONP delivery into the tumor center was not mediated by nonspecific macrophage uptake and was independent from tumor blood vessel locations. Importantly, i.p. delivery of uPAR targeted theranostic IONPs carrying chemotherapeutics, cisplatin or doxorubicin, significantly inhibited the growth of pancreatic tumors without apparent systemic toxicity. The levels of proliferating tumor cells and tumor vessels in tumors treated with the above theranostic IONPs were also markedly decreased. The detection of strong optical signals in residual tumors following i.p. therapy suggested the feasibility of image-guided surgery to remove drug-resistant tumors. Therefore, our results support the translational development of i.p. delivery of uPAR-targeted theranostic IONPs for image-guided treatment of peritoneal tumors.
Collapse
|
8
|
Montagner IM, Merlo A, Carpanese D, Dalla Pietà A, Mero A, Grigoletto A, Loregian A, Renier D, Campisi M, Zanovello P, Pasut G, Rosato A. A site-selective hyaluronan-interferonα2a conjugate for the treatment of ovarian cancer. J Control Release 2016; 236:79-89. [DOI: 10.1016/j.jconrel.2016.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/16/2022]
|
9
|
Dosio F, Arpicco S, Stella B, Fattal E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev 2016; 97:204-36. [PMID: 26592477 DOI: 10.1016/j.addr.2015.11.011] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/06/2023]
Abstract
Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results.
Collapse
|
10
|
Liang J, Jiang D, Noble PW. Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev 2016; 97:186-203. [PMID: 26541745 PMCID: PMC4753080 DOI: 10.1016/j.addr.2015.10.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Accumulation and turnover of extracellular matrix is a hallmark of tissue injury, repair and remodeling in human diseases. Hyaluronan is a major component of the extracellular matrix and plays an important role in regulating tissue injury and repair, and controlling disease outcomes. The function of hyaluronan depends on its size, location, and interactions with binding partners. While fragmented hyaluronan stimulates the expression of an array of genes by a variety of cell types regulating inflammatory responses and tissue repair, cell surface hyaluronan provides protection against tissue damage from the environment and promotes regeneration and repair. The interactions of hyaluronan and its binding proteins participate in the pathogenesis of many human diseases. Thus, targeting hyaluronan and its interactions with cells and proteins may provide new approaches to developing therapeutics for inflammatory and fibrosing diseases. This review focuses on the role of hyaluronan in biological and pathological processes, and as a potential therapeutic target in human diseases.
Collapse
Affiliation(s)
- Jiurong Liang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|