1
|
Yang J, Chen Y, Li X, Qin H, Bao J, Wang C, Dong X, Xu D. Complex Interplay Between Metabolism and CD4 + T-Cell Activation, Differentiation, and Function: a Novel Perspective for Atherosclerosis Immunotherapy. Cardiovasc Drugs Ther 2024; 38:1033-1046. [PMID: 37199882 DOI: 10.1007/s10557-023-07466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Atherosclerosis is a complex pathological process that results from the chronic inflammatory reaction of the blood vessel wall and involves various immune cells and cytokines. An imbalance in the proportion and function of the effector CD4+ T-cell (Teff) and regulatory T-cell (Treg) subsets is an important cause of the occurrence and development of atherosclerotic plaques. Teff cells depend on glycolytic metabolism and glutamine catabolic metabolism for energy, while Treg cells mainly rely on fatty acid oxidation (FAO), which is crucial for determining the fate of CD4+ T cells during differentiation and maintaining their respective immune functions. Here, we review recent research achievements in the field of immunometabolism related to CD4+ T cells, focusing on the cellular metabolic pathways and metabolic reprogramming involved in the activation, proliferation, and differentiation of CD4+ T cells. Subsequently, we discuss the important roles of mTOR and AMPK signaling in regulating CD4+ T-cell differentiation. Finally, we evaluated the links between CD4+ T-cell metabolism and atherosclerosis, highlighting the potential of targeted modulation of CD4+ T-cell metabolism in the prevention and treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Yanying Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Huali Qin
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Jinghui Bao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Chunfang Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiaochen Dong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
2
|
Hasegawa Y, Noll AL, Lang DJ, Akfaly EM, Liu Z, Bolling BW. Low-fat yogurt consumption maintains biomarkers of immune function relative to nondairy control food in women with elevated BMI: A randomized controlled crossover trial. Nutr Res 2024; 129:1-13. [PMID: 39153426 DOI: 10.1016/j.nutres.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
Yogurt consumption may help reduce chronic inflammation associated with obesity. However, the underlying mechanism(s) by which yogurt consumption modulates the immune system have not been validated in human intervention studies. We hypothesized that 4-week yogurt consumption (12 oz/day) attenuates systemic inflammation by modulating the proportion of circulating T helper (Th) 17 and regulatory T (Treg) cells in adult women with elevated body mass index (BMI). To test the hypothesis, we conducted a randomized crossover dietary intervention study consisted of a 4-week dietary intervention in which participants consumed 12 oz of either low-fat dairy yogurt or a soy pudding control snack per day, with a 4-week washout between treatments. Thirty-nine healthy adult women with a BMI between 25 and 40 kg/m2 were enrolled and 20 completed the study. Changes in the biometrics, circulating T cells, and markers of systemic and colonic inflammation were assessed between the 2 treatment groups, as well as 24-hour diet recalls were conducted at baseline and following each treatment. The primary study outcome, the change in the proportion of circulating Th17 cells, was unaffected by the treatments. Secondary outcome measures, circulating Treg, Th17, and markers of chronic inflammation, were maintained by yogurt treatment, whereas circulating Treg was increased and interleukin-10 was reduced by control snack treatment. However, circulating Treg changes were not associated with changes to other biomarkers of inflammation, implying other immune cells and/or tissues may mediate circulating biomarkers of chronic inflammation. This study was approved by the University of Wisconsin-Madison institutional review board and registered at ClinicalTrials.gov NCT04149418.
Collapse
Affiliation(s)
- Yu Hasegawa
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrea L Noll
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Lang
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth M Akfaly
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhenhua Liu
- School of Public Health & Health Science, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Bradley W Bolling
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Chang S, Wang Z, An T. T-Cell Metabolic Reprogramming in Atherosclerosis. Biomedicines 2024; 12:1844. [PMID: 39200308 PMCID: PMC11352190 DOI: 10.3390/biomedicines12081844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Atherosclerosis is a key pathological basis for cardiovascular diseases, significantly influenced by T-cell-mediated immune responses. T-cells differentiate into various subtypes, such as pro-inflammatory Th1/Th17 and anti-inflammatory Th2/Treg cells. The imbalance between these subtypes is critical for the progression of atherosclerosis (AS). Recent studies indicate that metabolic reprogramming within various microenvironments can shift T-cell differentiation towards pro-inflammatory or anti-inflammatory phenotypes, thus influencing AS progression. This review examines the roles of pro-inflammatory and anti-inflammatory T-cells in atherosclerosis, focusing on how their metabolic reprogramming regulates AS progression and the associated molecular mechanisms of mTOR and AMPK signaling pathways.
Collapse
Affiliation(s)
| | | | - Tianhui An
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.C.); (Z.W.)
| |
Collapse
|
4
|
Zhang T, Huo H, Zhang Y, Tao J, Yang J, Rong X, Yang Y. Th17 cells: A new target in kidney disease research. Int Rev Immunol 2024; 43:263-279. [PMID: 38439681 DOI: 10.1080/08830185.2024.2321901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 03/06/2024]
Abstract
Type 17 T helper (Th17) cells, which are a subtype of CD4+ T helper cells, secrete pro-inflammatory cytokines such as IL-17A, IL-17F, IL-21, IL-22, and GM-CSF, which play crucial roles in immune defence and protection against fungal and extracellular pathogen invasion. However, dysfunction of Th17 cell immunity mediates inflammatory responses and exacerbates tissue damage. This pathological process initiated by Th17 cells is common in kidney diseases associated with renal injury, such as glomerulonephritis, lupus nephritis, IgA nephropathy, hypertensive nephropathy, diabetic kidney disease and acute kidney injury. Therefore, targeting Th17 cells to treat kidney diseases has been a hot topic in recent years. This article reviews the mechanisms of Th17 cell-mediated inflammation and autoimmune responses in kidney diseases and discusses the related clinical drugs that modulate Th17 cell fate in kidney disease treatment.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yinghui Zhang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie Tao
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junzheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, The R&D Center of Drug for Renal Diseases, Consun Pharmaceutical Group, Guangzhou, Guangdong, China
| | - Xianglu Rong
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Khansalar S, Faghih Z, Barani S, Kalani M, Ataollahi MR, Mohammadi Z, Namdari S, Kalantar K. IFN-γ, IL-17, IL-22 + CD4 + subset in patients with hepatitis C virus and correlation with clinical factor. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:43-52. [PMID: 38496355 PMCID: PMC10944356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND CD4+ T cell responses in HCV infection have a crucial role in the immunopathology of hepatitis C virus (HCV) infection. Our aim was to investigate the frequency of Th1, Th17, and Th22 cells in HCV-infected patients and elucidate their role in the progression of the disease. METHODS Twenty-six HCV-infected patients and 26 healthy individuals were recruited. Peripheral blood mononuclear cells (PBMCs) were stained to separate CD4, IFN-γ, IL-17, and IL-22 producing cells using flow cytometry. RESULTS Results showed that the mean expression of IL-22 in CD4+ T cells was significantly lower in HCV-infected patients compared to healthy controls. About correlation with clinical factor and T subsets, a negative correlation between the frequency of CD4+ IFN-γ+ cells and Thyroxine level (T4) was observed in the patients. The data showed a positive link between thyroid-stimulating hormone (TSH), cholesterol levels, and the frequency of Th17 cells. In addition, a positive correlation was seen between serum creatinine level with both Th1 and Th17. Ultimately, it was found that there was a positive link between viral burden and IL-17+ IL-22+ cells and a negative correlation between viral load and pure Th22. CONCLUSIONS Our findings indicate that Th22 cells may play a part in the immunopathology of HCV and show the associations between Thelper subsets and the clinical signs of the disease.
Collapse
Affiliation(s)
- Soolmaz Khansalar
- Department of Immunology, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
| | - Shaghik Barani
- Department of Immunology, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
| | - Mehdi Kalani
- Department of Immunology, Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical SciencesShiraz, Iran
| | | | - Zeinab Mohammadi
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | - Sepideh Namdari
- Department of Immunology, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical SciencesShiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical SciencesShiraz, Iran
- Department of Bacteriology and Immunology and The Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University HospitalHelsinki, Finland
| |
Collapse
|
6
|
Li X, Chen W, Ren J, Gao X, Zhao Y, Song T, Fu K, Zheng Y, Yang J. Effects of curcumin on non-alcoholic fatty liver disease: A scientific metrogy study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155241. [PMID: 38128395 DOI: 10.1016/j.phymed.2023.155241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases encountered in clinical practice. Curcumin can alleviate insulin resistance, inhibit oxidative stress response, reduce inflammation, reduce liver fat deposition, and effectively improve NAFLD through various modalities, inhibiting the progression into cirrhosis and fibrosis. PURPOSE To explore the current status, hot spots, and developing trends of curcumin in NAFLD treatment through quantitative scientific analysis to serve as a reference for subsequent studies. STUDY DESIGN A comprehensive analysis of the mechanism of action of curcumin in the treatment of NAFLD and methods to increase curcumin bioavailability using bibliometric analysis and literature review. METHODS This study used VOSviewer software to analyze the literature related to curcumin treatment of NAFLD in the Web of Science (WOS) core set database. A comprehensive and in-depth review was conducted based on the results of scientific econometric research and literature review. RESULTS The review observed that curcumin can activate various signaling pathways such as AMPK and NF-κB to inhibit oxidative stress and apoptosis, thereby reflecting its pharmacological effects: lowering lipid, anti-inflammatory, reducing insulin resistance, and anti-fibrosis. These mechanisms improve or even reverse the complex pathological features of lipid metabolism disorders associated with NAFLD. Curcumin also can potentially serve as a primary regulatory target for treating hepatic steatosis using gut microbiota. However, these pharmacological effects of curcumin were limited owing to its low bioavailability. CONCLUSION This review discusses NAFLD treatment with curcumin, analyzes the reasons for its low bioavailability, and introduces models for studying and methods for improving curcumin bioavailability. As research on NAFLD grows, future research should capture the trend of basic research, pay attention to clinical research, and continuously explore the therapeutic potential of curcumin.
Collapse
Affiliation(s)
- Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weisan Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinchen Gao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tianbao Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kun Fu
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300120, China
| | - Yanchao Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jinlong Yang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Mori H, Svegliati Baroni G, Marzioni M, Di Nicola F, Santori P, Maroni L, Abenavoli L, Scarpellini E. Farnesoid X Receptor, Bile Acid Metabolism, and Gut Microbiota. Metabolites 2022; 12:647. [PMID: 35888771 PMCID: PMC9320384 DOI: 10.3390/metabo12070647] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD) are characterized by the concepts of lipo- and glucotoxicity. NAFLD is characterized by the accumulation of different lipidic species within the hepatocytes. Bile acids (BA), derived from cholesterol, and conjugated and stored in the gallbladder, help the absorption/processing of lipids, and modulate host inflammatory responses and gut microbiota (GM) composition. The latter is the new "actor" that links the GI tract and liver in NAFLD pathogenesis. In fact, the discovery and mechanistic characterization of hepatic and intestinal farnesoid X receptor (FXR) shed new light on the gut-liver axis. We conducted a search on the main medical databases for original articles, reviews, meta-analyses of randomized clinical trials, and case series using the following keywords, their acronyms, and their associations: farnesoid X receptor, bile acids metabolism, gut microbiota, dysbiosis, and liver steatosis. Findings on the synthesis, metabolism, and conjugation processes of BAs, and their action on FXR, change the understanding of NAFLD physiopathology. In detail, BAs act as ligands to several FXRs with GM modulation. On the other hand, the BAs pool is modulated by GM, thus, regulating FXRs functioning in the frame of liver fat deposition and fibrosis development. In conclusion, BAs passed from their role of simple lipid absorption and metabolism agents to messengers between the gut and liver, modulated by GM.
Collapse
Affiliation(s)
- Hideki Mori
- T.A.R.G.I.D., Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | | | - Marco Marzioni
- Gastroenterology Clinic; Università Politecnica delle Marche, 60121 Ancona, Italy; (M.M.); (L.M.)
| | - Francesca Di Nicola
- Hepatology Outpatient Clinic and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy; (F.D.N.); (P.S.)
| | - Pierangelo Santori
- Hepatology Outpatient Clinic and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy; (F.D.N.); (P.S.)
| | - Luca Maroni
- Gastroenterology Clinic; Università Politecnica delle Marche, 60121 Ancona, Italy; (M.M.); (L.M.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Emidio Scarpellini
- T.A.R.G.I.D., Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Hepatology Outpatient Clinic and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy; (F.D.N.); (P.S.)
| |
Collapse
|
8
|
Louie AY, Tingling J, Dray E, Hussain J, McKim DB, Swanson KS, Steelman AJ. Dietary Cholesterol Causes Inflammatory Imbalance and Exacerbates Morbidity in Mice Infected with Influenza A Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2523-2539. [PMID: 35577367 DOI: 10.4049/jimmunol.2100927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022]
Abstract
Influenza is a common cause of pneumonia-induced hospitalization and death, but how host factors function to influence disease susceptibility or severity has not been fully elucidated. Cellular cholesterol levels may affect the pathogenesis of influenza infection, as cholesterol is crucial for viral entry and replication, as well as immune cell proliferation and function. However, there is still conflicting evidence on the extent to which dietary cholesterol influences cholesterol metabolism. In this study, we examined the effects of a high-cholesterol diet in modulating the immune response to influenza A virus (IAV) infection in mice. Mice were fed a standard or a high-cholesterol diet for 5 wk before inoculation with mouse-adapted human IAV (Puerto Rico/8/1934), and tissues were collected at days 0, 4, 8, and 16 postinfection. Cholesterol-fed mice exhibited dyslipidemia characterized by increased levels of total serum cholesterol prior to infection and decreased triglycerides postinfection. Cholesterol-fed mice also displayed increased morbidity compared with control-fed mice, which was neither a result of immunosuppression nor changes in viral load. Instead, transcriptomic analysis of the lungs revealed that dietary cholesterol caused upregulation of genes involved in viral-response pathways and leukocyte trafficking, which coincided with increased numbers of cytokine-producing CD4+ and CD8+ T cells and infiltrating dendritic cells. Morbidity as determined by percent weight loss was highly correlated with numbers of cytokine-producing CD4+ and CD8+ T cells as well as granulocytes. Taken together, dietary cholesterol promoted IAV morbidity via exaggerated cellular immune responses that were independent of viral load.
Collapse
Affiliation(s)
- Allison Y Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Joseph Tingling
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Evan Dray
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jamal Hussain
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Daniel B McKim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL; .,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
9
|
Wang G, Su Z, Li H, Xiao L, Li C, Lian G. The role of metabolism in Th17 cell differentiation and autoimmune diseases. Int Immunopharmacol 2021; 103:108450. [PMID: 34954561 DOI: 10.1016/j.intimp.2021.108450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 12/24/2022]
Abstract
T helper 17 cells (Th17) have been associated with the pathogenesis of autoimmune and inflammatory diseases, which makes them become a sharp focus when the researchers are seeking therapeutic target for these diseases. A growing body of evidence has suggested that cellular metabolism dictates Th17 cell differentiation and effector function. Moreover, various studies have disclosed that metabolism is linked to the occurrence of autoimmune diseases. In this article, we reviewed the most recent findings regarding the importance of metabolism in Th17 cell differentiation and autoimmune diseases and also discussed the modulation mechanisms of glycolysis, fatty acid and cholesterol synthesis, and amino acids metabolism for Th17 cell differentiation. This review summarized the potential therapeutic or preventing strategies for Th17 cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Guang Wang
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zehong Su
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education.
| | - Hui Li
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Li Xiao
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chengyue Li
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Gaojian Lian
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
10
|
Carranza-Trejo AM, Vetvicka V, Vistejnova L, Kralickova M, Montufar EB. Hepatocyte and immune cell crosstalk in non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2021; 15:783-796. [PMID: 33557653 DOI: 10.1080/17474124.2021.1887730] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Nonalcoholic fatty liver disease (NAFLD) is the most widespread chronic liver disease in the world. It can evolve into nonalcoholic steatohepatitis (NASH) where inflammation and hepatocyte ballooning are key participants in the determination of this steatotic state.Areas covered: To provide a systematic overview and current understanding of the role of inflammation in NAFLD and its progression to NASH, the function of the cells involved, and the activation pathways of the innate immunity and cell death; resulting in inflammation and chronic liver disease. A PubMed search was made with relevant articles together with relevant references were included for the writing of this review.Expert opinion: Innate and adaptive immunity are the key players in the NAFLD progression; some of the markers presented during NAFLD are also known to be immunity biomarkers. All cells involved in NAFLD and NASH are known to have immunoregulatory properties and their imbalance will completely change the cytokine profile and form a pro-inflammatory microenvironment. It is necessary to fully answer the question of what initiators and metabolic imbalances are particularly important, considering sterile inflammation as the architect of the disease. Due to the shortage of elucidation of NASH progression, we discuss in this review, how inflammation is a key part of this development and we presume the targets should lead to inflammation and oxidative stress treatment.
Collapse
Affiliation(s)
| | - Vaclav Vetvicka
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Lucie Vistejnova
- Biomedical Centre, Medical Faculty in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milena Kralickova
- Biomedical Centre, Medical Faculty in Pilsen, Charles University, Pilsen, Czech Republic
| | - Edgar B Montufar
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
11
|
The Effect of Lipid Metabolism on CD4 + T Cells. Mediators Inflamm 2021; 2021:6634532. [PMID: 33505215 PMCID: PMC7806377 DOI: 10.1155/2021/6634532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
CD4+ T cells play a vital role in the adaptive immune system and are involved in the pathogenesis of many diseases, including cancer, autoimmune diseases, and chronic inflammation. As an important mechanism for energy storage, a lot of researches have clarified that metabolism imbalance interacts with immune disorder, and one leads to the other. Lipid metabolism has close relationship with CD4+ T cells. In this review, we discuss fatty acid, cholesterol, prostaglandin, and phospholipid metabolism in CD4+ T cell subsets. Fatty acid β-oxidation (FAO) is activated in Th17 cell to support the proinflammatory function. Cholesterol promotes Th1, Th2, and Treg cell differentiation. In addition to glucose metabolism, lipid metabolism is also very important for immunity. Here, it is highlighted that lipid metabolism regulates CD4+ T cell differentiation and function and is related to diseases.
Collapse
|
12
|
Shan J, Jin H, Xu Y. T Cell Metabolism: A New Perspective on Th17/Treg Cell Imbalance in Systemic Lupus Erythematosus. Front Immunol 2020; 11:1027. [PMID: 32528480 PMCID: PMC7257669 DOI: 10.3389/fimmu.2020.01027] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
The Th17/T-regulatory (Treg) cell imbalance is involved in the occurrence and development of organ inflammation in systemic lupus erythematosus (SLE). Metabolic pathways can regulate T cell differentiation and function, thus contributing to SLE inflammation. Increasingly, data have shown metabolism influences and reprograms the Th17/Treg cell balance, and the metabolic pattern of T cells is different in SLE. Notably, metabolic characteristics of SLE T cells, such as enhanced glycolysis, lipid synthesis, glutaminolysis, and highly activated mTOR, all favored Th17 differentiation and function, which underlie the Th17/Treg cell imbalance in SLE patients. Targeting metabolic pathways to reverse Th17/Treg imbalance offer a promising method for SLE therapy.
Collapse
Affiliation(s)
- Juan Shan
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Hong Jin
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yan Xu
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
13
|
Wan Z, Zhou Z, Liu Y, Lai Y, Luo Y, Peng X, Zou W. Regulatory T cells and T helper 17 cells in viral infection. Scand J Immunol 2020; 91:e12873. [PMID: 32090360 DOI: 10.1111/sji.12873] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Abstract
CD4+ T cells are the central element of the adaptive immune responses and protect the body from a variety of pathogens. Starting from naive cells, CD4+ T cells can differentiate into various effector cell subsets with specialized functions including T helper (Th) 1, Th2, Th17, regulatory T (Treg) and T follicular helper (Tfh) cells. Among them, Tregs and Th17 cells show a strong plasticity allowing the functional adaptation to various physiological and pathological environments during immune responses. Although they are derived from the same precursor cells and their differentiation pathways are interrelated, the terminally differentiated cells have totally opposite functions. Studies have shown that Tregs and Th17 cells have rather complex interplays in viral infection: Th17 cells may contribute to immune activation and disease progression while Tregs may inhibit this process and play a key role in the maintenance of immune homoeostasis, possibly at the cost of compromised viral control. In this review, we take respiratory syncytial virus (RSV), hepatitis B virus (HBV)/hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections as examples to discuss these interplays and their impacts on disease progression in viral infection.
Collapse
Affiliation(s)
- Zhikai Wan
- Medical College of Nanchang University, Nanchang, China
| | - Zhifeng Zhou
- Medical College of Nanchang University, Nanchang, China
| | - Yao Liu
- Medical College of Nanchang University, Nanchang, China
| | - Yuhan Lai
- Medical College of Nanchang University, Nanchang, China
| | - Yuan Luo
- Medical College of Nanchang University, Nanchang, China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Zou
- Department of Infectious Diseases, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Méndez-Sánchez N, Valencia-Rodriguez A, Vera-Barajas A, Abenavoli L, Scarpellini E, Ponciano-Rodriguez G, Wang DQH. The mechanism of dysbiosis in alcoholic liver disease leading to liver cancer. ACTA ACUST UNITED AC 2020; 6. [PMID: 32582865 PMCID: PMC7313221 DOI: 10.20517/2394-5079.2019.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, alcoholic liver disease (ALD) is one of the most prevalent chronic liver diseases worldwide, representing one of the main etiologies of cirrhosis and hepatocellular carcinoma (HCC). Although we do not know the exact mechanisms by which only a selected group of patients with ALD progress to the final stage of HCC, the role of the gut microbiota within the progression to HCC has been intensively studied in recent years. To date, we know that alcohol-induced gut dysbiosis is an important feature of ALD with important repercussions on the severity of this disease. In essence, an increased metabolism of ethanol in the gut induced by an excessive alcohol consumption promotes gut dysfunction and bacterial overgrowth, setting a leaky gut. This causes the translocation of bacteria, endotoxins, and ethanol metabolites across the enterohepatic circulation reaching the liver, where the recognition of the pathogen-associated molecular patterns via specific Toll-like receptors of liver cells will induce the activation of the nuclear factor kappa-B pathway, which releases pro-inflammatory cytokines and chemokines. In addition, the mitogenic activity of hepatocytes will be promoted and cellular apoptosis will be inhibited, resulting in the development of HCC. In this context, it is not surprising that microbiota-regulating drugs have proven effectiveness in prolonging the overall survival of patients with HCC, making attractive the implementation of these drugs as co-adjuvant for HCC treatment.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico.,Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | - Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia" Viale Europa, Catanzaro 88100, Italy
| | - Emidio Scarpellini
- Clinical Nutrition Unit, and Internal Medicine Unit, "Madonna del Soccorso" General Hospital, Via Luciano Manara 7, San Benedetto del Tronto (AP) 63074, Italy
| | - Guadalupe Ponciano-Rodriguez
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
15
|
Shokri S, Mahmoudvand S, Taherkhani R, Farshadpour F, Jalalian FA. Complexity on modulation of NF-κB pathways by hepatitis B and C: A double-edged sword in hepatocarcinogenesis. J Cell Physiol 2019; 234:14734-14742. [PMID: 30741410 DOI: 10.1002/jcp.28249] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Nuclear factor-κB (NF-κB), a family of master regulated dimeric transcription factors, signaling transduction pathways are active players in the cell signaling that control vital cellular processes, including cell growth, proliferation, differentiation, apoptosis, morphogenesis, angiogenesis, and immune responses. Nevertheless, aberrant regulation of the NF-κB signaling pathways has been associated with a significant number of human cancers. In fact, NF-κB acts as a double-edged sword in the vital cellular processes and carcinogenesis. This review provides an overview on the modulation of the NF-κB signaling pathways by proteins of hepatitis B and C viruses. One of the major NF-κB events that are modulated by these viruses is the induction of hepatocellular carcinoma. Given the central function of NF-κB in carcinogenesis, it has turned out to be a considerable therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Somayeh Shokri
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Mahmoudvand
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Taherkhani
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Farshadpour
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farid Azizi Jalalian
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
16
|
González-Aldaco K, Torres-Reyes LA, Ojeda-Granados C, José-Ábrego A, Fierro NA, Román S. Immunometabolic Effect of Cholesterol in Hepatitis C Infection: Implications in Clinical Management and Antiviral Therapy. Ann Hepatol 2018; 17:908-919. [PMID: 30600305 DOI: 10.5604/01.3001.0012.7191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) is a lipid-enveloped virion particle that causes infection to the liver, and as part of its life cycle, it disrupts the host lipid metabolic machinery, particularly the cholesterol synthesis pathway. The innate immune response generated by liver resident immune cells is responsible for successful viral eradication. Unfortunately, most patients fail to eliminate HCV and progress to chronic infection. Chronic infection is associated with hepatic fat accumulation and inflammation that triggers fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Despite that the current direct-acting antiviral agents have increased the cure rate of HCV infection, viral genotype and the host genetic background influence both the immune response and lipid metabolism. In this context, recent evidence has shown that cholesterol and its derivatives such as oxysterols might modulate and potentialize the hepatic innate immune response generated against HCV. The impairment of the HCV life cycle modulated by serum cholesterol could be relevant for the clinical management of HCV-infected patients before and after treatment. Alongside, cholesterol levels are modulated either by genetic variations in IL28B, ApoE, and LDLR or by dietary components. Indeed, some nutrients such as unsaturated fatty acids have demonstrated to be effective against HCV replication. Thus, cholesterol modifications may be considered as a new adjuvant strategy for HCV infection therapy by providing a biochemical tool that guides treatment decisions, an improved treatment response and favoring viral clearance. Herein, the mechanisms by which cholesterol contributes to the immune response against HCV infection and how genetic and environmental factors may affect this role are reviewed.
Collapse
Affiliation(s)
- Karina González-Aldaco
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde" and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Luis A Torres-Reyes
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde" and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Claudia Ojeda-Granados
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde" and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alexis José-Ábrego
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde" and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Nora A Fierro
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde" and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sonia Román
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde" and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
17
|
Adoptive Transfers of CD4 +CD25 + Tregs Raise Foxp3 Expression and Alleviate Mouse Enteritis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9064073. [PMID: 30364052 PMCID: PMC6186320 DOI: 10.1155/2018/9064073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/25/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
Abstract
CD4+CD25+Foxp3+ Tregs control the immune response and maintain immune homeostasis. This study examined whether Tregs can affect mouse enteritis and the Foxp3 (Forkhead transcription factor) transcriptional pathway. Mouse CD4+CD25+ Treg cells were labelled using CFSE (5,6-carboxyfluorescein diacetate succinimidyl ester) and transferred to enteritis model mice. The mice were randomly divided into an enteritis group, a Treg-infusion group, a Treg-inhibiting group, and a control group. Histopathology, ELISA, flow cytometry, western blot, immunohistochemistry, and immunofluorescence were performed. Our results demonstrated that CD4+CD25+ Tregs were successfully transferred. The disease activity index (DAI) scores in the Tregs-infusion group were lower than those of the enteritis and Tregs-inhibiting groups. The number of goblet cells and inflammatory cells was reduced, and the levels of IL-1β, TNF-α, NO, and PGE2 were significantly decreased in the Tregs-infusion group compared to those in the enteritis group (p<0.05). The number of CD4+CD25+Foxp3+ Tregs and CD4+IL-17A+ Th17 cells in the mesenteric lymph nodes differed significantly from the enteritis and Tregs-inhibiting groups (p<0.05). There were more Foxp3+ Tregs and Smad3 and NFAT2 infiltrated into the duodenum after adoptive transfer of CD4+CD25+ Tregs, which was a significant difference relative to the enteritis group (p<0.05). This study demonstrated that adoptive transfer of CD4+CD25+ Tregs can decrease mouse enteritis. Foxp3 expression may be improved through the Smad3 and NFAT2 signalling pathways.
Collapse
|
18
|
Andersen CJ. Impact of Dietary Cholesterol on the Pathophysiology of Infectious and Autoimmune Disease. Nutrients 2018; 10:E764. [PMID: 29899295 PMCID: PMC6024721 DOI: 10.3390/nu10060764] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/02/2018] [Accepted: 06/11/2018] [Indexed: 01/02/2023] Open
Abstract
Cellular cholesterol metabolism, lipid raft formation, and lipoprotein interactions contribute to the regulation of immune-mediated inflammation and response to pathogens. Lipid pathways have been implicated in the pathogenesis of bacterial and viral infections, whereas altered lipid metabolism may contribute to immune dysfunction in autoimmune diseases, such as systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. Interestingly, dietary cholesterol may exert protective or detrimental effects on risk, progression, and treatment of different infectious and autoimmune diseases, although current findings suggest that these effects are variable across populations and different diseases. Research evaluating the effects of dietary cholesterol, often provided by eggs or as a component of Western-style diets, demonstrates that cholesterol-rich dietary patterns affect markers of immune inflammation and cellular cholesterol metabolism, while additionally modulating lipoprotein profiles and functional properties of HDL. Further, cholesterol-rich diets appear to differentially impact immunomodulatory lipid pathways across human populations of variable metabolic status, suggesting that these complex mechanisms may underlie the relationship between dietary cholesterol and immunity. Given the Dietary Guidelines for Americans 2015⁻2020 revision to no longer include limitations on dietary cholesterol, evaluation of dietary cholesterol recommendations beyond the context of cardiovascular disease risk is particularly timely. This review provides a comprehensive and comparative analysis of significant and controversial studies on the role of dietary cholesterol and lipid metabolism in the pathophysiology of infectious disease and autoimmune disorders, highlighting the need for further investigation in this developing area of research.
Collapse
|
19
|
Jetten AM, Takeda Y, Slominski A, Kang HS. Retinoic acid-related Orphan Receptor γ (RORγ): connecting sterol metabolism to regulation of the immune system and autoimmune disease. CURRENT OPINION IN TOXICOLOGY 2018; 8:66-80. [PMID: 29568812 DOI: 10.1016/j.cotox.2018.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cholesterol and its metabolites are bioactive lipids that interact with and regulate the activity of various proteins and signaling pathways that are implicated in the control of a variety of physiological and pathological processes. Recent studies revealed that retinoic acid-related orphan receptors, RORα and γ, members of the ligand-dependent nuclear receptor superfamily, exhibit quite a wide binding specificity for a number of sterols. Several cholesterol intermediates and metabolites function as natural ligands of RORα and RORγ and act as agonists or inverse agonists. Changes in cholesterol homeostasis that alter the level or type of sterol metabolites in cells, can either enhance or inhibit ROR transcriptional activity that subsequently result in changes in the physiological processes regulated by RORs, including various immune responses and metabolic pathways. Consequently, this might negatively or positively impact pathologies, in which RORs are implicated, such as autoimmune disease, inflammation, metabolic syndrome, cancer, and several neurological disorders. Best studied are the links between cholesterol metabolism, RORγt activity, and their regulation of Th17 differentiation and autoimmune disease. The discovery that Th17-dependent inflammation is significantly attenuated in RORγ-deficient mice in several experimental autoimmune disease models, initiated a search for ROR modulators that led to the identification of a number of small molecular weight RORγ inverse agonists. The inverse agonists suppress Th17 differentiation and IL-17 production and protect against autoimmunity. Together, these studies suggest that RORγt may provide an attractive therapeutic target in the management of several (inflammatory) diseases.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yukimasa Takeda
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Andrzej Slominski
- Department of Dermatology, Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
20
|
Zhou Y, Ding YL, Zhang JL, Zhang P, Wang JQ, Li ZH. Alpinetin improved high fat diet-induced non-alcoholic fatty liver disease (NAFLD) through improving oxidative stress, inflammatory response and lipid metabolism. Biomed Pharmacother 2018; 97:1397-1408. [DOI: 10.1016/j.biopha.2017.10.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022] Open
|
21
|
Chronic hepatitis C liver microenvironment: role of the Th17/Treg interplay related to fibrogenesis. Sci Rep 2017; 7:13283. [PMID: 29038590 PMCID: PMC5643436 DOI: 10.1038/s41598-017-13777-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022] Open
Abstract
The role of the different lymphocyte populations in liver microenvironment of chronic hepatitis C (CHC) patients is still matter of debate. Since Th17 and Treg have opposite functions, their balance could affect disease progression. The aim was to explore liver microenvironment and its peripheral blood counterpart in adult CHC patients. CD4+ lymphocytes were predominant in the liver, with high Foxp3+ but low IL-17A+ frequency. IL-17A+ lymphocytes and IL-17A+/Foxp3+ ratio displayed association with advanced fibrosis (p = 0.0130; p = 0.0236, respectively), while Foxp3+ lymphocytes and IL-10 expression level inversely correlated with fibrosis severity (p = 0.0381, p = 0.0398, respectively). TGF-β/IL-6 ratio correlated with IL-17A+/Foxp3+ ratio (p = 0.0036, r = 0.5944) and with IL-17A+ lymphocytes (p = 0.0093; r = 0.5203). TNF-α and TGF-β were associated with hepatitis severity (p = 0.0409, p = 0.0321). Peripheral blood lymphocyte frequency was not associated with liver damage. There are functionally different immune cell populations actively involved in liver damage, but the liver cytokine milieu actually drives the pathogenesis. The intrahepatic Foxp3+ lymphocytes predominance beside the low IL-17A+ lymphocytes frequency, delineate a skewed IL-17A+/Foxp3+ balance towards Foxp3+ lymphocytes. However, the IL-17A+ lymphocytes association with advanced fibrosis denotes their role in the pathogenesis. Therefore, the interplay between Th17 and Treg conditions liver fibrogenesis.
Collapse
|
22
|
Paquissi FC. Immunity and Fibrogenesis: The Role of Th17/IL-17 Axis in HBV and HCV-induced Chronic Hepatitis and Progression to Cirrhosis. Front Immunol 2017; 8:1195. [PMID: 29033929 PMCID: PMC5626935 DOI: 10.3389/fimmu.2017.01195] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
Cirrhosis is a common final pathway for most chronic liver diseases; representing an increasing burden worldwide and is associated with increased morbidity and mortality. Current evidence has shown that, after an initial injury, the immune response has a significant participation in the ongoing damage, and progression from chronic viral hepatitis (CVH) to cirrhosis, driving the activation and maintenance of main fibrogenic pathways. Among immune deregulations, those related to the subtype 17 of T helper lymphocytes (Th17)/interleukin-17 (IL-17) axis have been recognized as key immunopathological and prognostic elements in patients with CVH. The Th17/IL-17 axis has been found involved in several points of fibrogenesis chain from the activation of stellate cells, increased expression of profibrotic factors as TGF-β, promotion of the myofibroblastic or epithelial–mesenchymal transition, stimulation of the synthesis of collagen, and induction of imbalance between matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). It also promotes the recruitment of inflammatory cells and increases the expression of proinflammatory cytokines such as IL-6 and IL-23. So, the Th17/IL-17 axis is simultaneously the fuel and the flame of a sustained proinflammatory and profibrotic environment. This work aims to present the immunopathologic and prognostic role of the Th17/IL-17 axis and related pathways in fibrogenesis and progression to cirrhosis in patients with liver disease due to hepatitis B virus (HBV) and hepatitis C virus (HCV).
Collapse
|
23
|
Zou JY, Su CH, Luo HH, Lei YY, Zeng B, Zhu HS, Chen ZG. Curcumin converts Foxp3+ regulatory T cells to T helper 1 cells in patients with lung cancer. J Cell Biochem 2017; 119:1420-1428. [DOI: 10.1002/jcb.26302] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/20/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Jian Y. Zou
- Department of Thoracic SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Chun H. Su
- Department of Thoracic SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Hong H. Luo
- Department of Thoracic SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yi Y. Lei
- Department of Thoracic SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Bo Zeng
- Department of Thoracic SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Hao S. Zhu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Zhen G. Chen
- Department of Cardiothoracic SurgeryHuangpu Branch of The First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
24
|
Preveden T, Scarpellini E, Milić N, Luzza F, Abenavoli L. Gut microbiota changes and chronic hepatitis C virus infection. Expert Rev Gastroenterol Hepatol 2017. [PMID: 28621554 DOI: 10.1080/17474124.2017.1343663] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection is a global health problem with 150 million infected people worldwide. Liver can be greatly affected by changes in gut microbiota due to increased intestinal permeability with passage of microbial antigens into the liver through the portal circulation. The concept of 'gut-liver' axis is important to understand the pathophysiology of several liver diseases. Several recent studies also revealed that an altered gut microbiota can be implicated in the pathogenesis of HCV-induced chronic liver disease (CHC). Areas covered: An overview of intestinal microflora composition, host reaction during CHC, and a description of relevant clinical trials on the use of probiotics in this field. Expert commentary: HCV patients gut microbiota composition is stable over liver disease stages. This is a unique example of gut disbiosis stability vs. NAFLD, HBV, HIV, and HCV co-infected patients. The impact of HCV infection on intestinal permeability allows gut disbiosis starting, maintenance and its proinflammatory effect until liver cirrhosis and HCC development. HCV eradication has unraveled the strong impact of gut microbiota unbalance on liver disease development with possible future implications for probiotics use to change the natural history of cirrhosis progression.
Collapse
Affiliation(s)
- Tomislav Preveden
- a Faculty of Medicine, Clinic for Infectious Diseases , University of Novi Sad , Novi Sad , Serbia
| | - Emidio Scarpellini
- b Division of Gastroenterology , La Sapienza University, Umberto I University Hospital , Rome , Italy
| | - Natasa Milić
- c Faculty of Medicine, Department of Pharmacy , University of Novi Sad , Novi Sad , Serbia
| | - Francesco Luzza
- d Department of Health Sciences , University Magna Graecia , Catanzaro , Italy
| | - Ludovico Abenavoli
- a Faculty of Medicine, Clinic for Infectious Diseases , University of Novi Sad , Novi Sad , Serbia.,d Department of Health Sciences , University Magna Graecia , Catanzaro , Italy
| |
Collapse
|
25
|
Świderska M, Jaroszewicz J, Stawicka A, Parfieniuk-Kowerda A, Chabowski A, Flisiak R. The interplay between Th17 and T-regulatory responses as well as adipokines in the progression of non-alcoholic fatty liver disease. Clin Exp Hepatol 2017; 3:127-134. [PMID: 29062902 PMCID: PMC5649483 DOI: 10.5114/ceh.2017.68466] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic progressive liver disease, coupled with metabolic syndrome, which may progress to non-alcoholic steatohepatitis (NASH). Diabetes, obesity, hypertension, hypercholesterolemia, and hypertriglyceridemia are considered to be the most common causes leading to the incidence of NAFLD. It is assumed that the accumulation of lipid deposits in hepatocytes leads to production of proinflammatory cytokines that triggers the development of liver inflammation. Regulatory T cells (Tregs) play a critical role in regulating inflammatory processes in NASH, while T helper type 17 (Th17) might functionally oppose Treg-mediated responses. In addition, important mediators of hepatic steatosis are fatty hormones known as adipokines. We aimed to describe the significance and interaction between Treg and Th17-related cytokines as well as adipokines in pathogenesis and its potential use as biomarkers of NAFLD, especially with respect to progression to NASH.
Collapse
Affiliation(s)
- Magdalena Świderska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia, Bytom, Poland
| | - Agnieszka Stawicka
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Parfieniuk-Kowerda
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
26
|
Hepatic Immune Microenvironment in Alcoholic and Nonalcoholic Liver Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6862439. [PMID: 28852648 PMCID: PMC5567444 DOI: 10.1155/2017/6862439] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/06/2017] [Indexed: 01/18/2023]
Abstract
Many types of innate (natural killer cells, natural killer T cells, and Kupffer cells/macrophages) and adaptive (T cells and B cells) immune cells are enriched within the liver and function in liver physiology and pathology. Liver pathology is generally induced by two types of immunologic insults: failure to eliminate antigens derived from the gastrointestinal tract which are important for host defense and an impaired tissue protective tolerance mechanism that helps reduce the negative outcomes of immunopathology. Accumulating evidence from the last several decades suggests that hepatic immune cells play an important role in the pathogenesis of alcoholic and nonalcoholic liver injury and inflammation in humans and mice. Here, we focus on the roles of innate and adaptive immune cells in the development and maintenance of alcoholic liver disease and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Additionally, the pathogenesis of liver disease and new therapeutic targets for preventing and treating alcoholic liver disease and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis are discussed.
Collapse
|
27
|
He B, Wu L, Xie W, Shao Y, Jiang J, Zhao Z, Yan M, Chen Z, Cui D. The imbalance of Th17/Treg cells is involved in the progression of nonalcoholic fatty liver disease in mice. BMC Immunol 2017. [PMID: 28646856 PMCID: PMC5483270 DOI: 10.1186/s12865-017-0215-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common, chronic liver disease worldwide. Recent studies have shown that T helper (Th) 17 and regulatory T (Treg) cells play critical roles in various disorders of liver inflammation. Here, we explored the value of polyene phosphatidylcholine capsules (PPC) for regulating the imbalance of Th17/Treg cells in the pathogenesis of mice with NAFLD. Methods C57BL/6 mice were randomly divided into three groups as follows:normal diet (ND), high-fat diet (HF),and HF plus PPC(HF + PPC). The frequencies of splenic Th17 and Treg cells were measured by flow cytometry, and their related cytokines were analyzed by CBA and real-time PCR. Results At the end of 24 weeks, mice in the HF group had a higher frequency of intrahepatic Th17 cells,and a lower proportion of Treg cells compared with the ND group. The levels of Th17 cell-related cytokines (IL-6, IL-17 and IL-23) in serum and in liver tisse were increased,and the hepatic mRNA levels of RORγt, STAT3 and IL-6 were also increased. By contrast,the FoxP3 mRNA level was decreased in the HF group. Moreover, significant pathological and biochemical changes in the liver, as well as serum biochemical changes, were found in mice with NAFLD. Interestingly, following treatment with PPC, the levels of liver inflammation,frequencies of Th17/Treg cells and associated cytokines,and biochemical data were significantly altered. Conclusion These findings demonstrate a critical role for PPC in partially attenuating liver inflammatory responses in mice with NAFLD that involves the imbalance of Treg/Th17 cells and associated cytokines.
Collapse
Affiliation(s)
- Beihui He
- Laboratory of Digestive Disease, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54,Youdian Road, Hangzhou, 310006, Zhejiang Province, People's Republic of China
| | - Liyan Wu
- Laboratory of Digestive Disease, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54,Youdian Road, Hangzhou, 310006, Zhejiang Province, People's Republic of China
| | - Wei Xie
- Department of Equipment, the Third People's Hospital of Hangzhou, 38,Westlake Road, Hangzhou, 310009, People's Republic of China
| | - Yitong Shao
- The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Jianping Jiang
- Department of Preparation Center, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54,Youdian Road, Hangzhou, 310006, Zhejiang Province, People's Republic of China
| | - Zhenzhong Zhao
- Department of Gastroenterology, the Second People's Hospital of Yuhang District of Hangzhou, 80,Anle Road, Yuhang District of Hangzhou, 311100, People's Republic of China
| | - Maoxiang Yan
- Laboratory of Digestive Disease, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54,Youdian Road, Hangzhou, 310006, Zhejiang Province, People's Republic of China
| | - Zhiyun Chen
- Laboratory of Digestive Disease, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54,Youdian Road, Hangzhou, 310006, Zhejiang Province, People's Republic of China.
| | - Dawei Cui
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| |
Collapse
|
28
|
Wang K, Dong H, Qi Y, Pei Z, Yi S, Yang X, Zhao Y, Meng F, Yu S, Zhou T, Hu G. Lactobacillus casei regulates differentiation of Th17/Treg cells to reduce intestinal inflammation in mice. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2017; 81:122-128. [PMID: 28408780 PMCID: PMC5370538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/08/2016] [Indexed: 06/07/2023]
Abstract
In order to study the ability of Lactobacillus casei to ameliorate murine enteritis, 18 mice were randomly divided into 3 groups: the enteritis group, intervention group, and control group. The interleukin (IL)-6 and transforming growth factor-β (TGF)-β content in mouse peripheral blood and duodenum was detected using an enzyme-linked immunosorbent assay (ELISA). The number of CD4+CD25+Foxp3+ T-regulatory cells (Tregs) and CD4+IL-17A+ Th17 cells in the mesenteric lymph nodes (MLN) and spleen were detected using flow cytometry, and quantitative reverse transcription polymerase chain reaction (PCR) and western blot analysis were used to measure Foxp3 and retinoid-related orphan receptor-γ (RORγt) mRNA and protein expression in the MLN. Histological changes in the duodenum were observed. Results indicate that in the intervention group, IL-6 content in mouse peripheral blood and duodenum was significantly lower than in the enteritis group (P < 0.05), while TGF-β content was significantly increased compared to the enteritis group (P < 0.05). For the intervention group, the percentages of CD4+CD25+Foxp3+ Tregs in spleen and MLN were increased (P < 0.05), while the percentages of CD4+IL-17A+ Th17 cells were decreased compared to the enteritis group (P < 0.05). The expression of Foxp3 mRNA and protein in the intervention group was higher than in the enteritis group, while RORγt mRNA and protein were significantly lower (P < 0.05). After mice in the enteritis group were treated with L. casei, duodenal inflammation was relieved. This study demonstrated that L. casei could have possible implications for the enterotoxigenic Escherichia coli (ETEC) induced intestinal inflammation by regulating the ratio imbalance of Th17/Treg cells.
Collapse
Affiliation(s)
- Kai Wang
- College of Animal Science and Technology (Wang, Qi, Pei, Yi, Yang, Zhao, Meng, Yu, Hu); College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun (Dong); College of Animal Husbandry & Veterinary, Jinzhou Medical University, Renmin Street, No. 48, Section 5, Jinzhou 121001, China (Zhou)
| | - Hao Dong
- College of Animal Science and Technology (Wang, Qi, Pei, Yi, Yang, Zhao, Meng, Yu, Hu); College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun (Dong); College of Animal Husbandry & Veterinary, Jinzhou Medical University, Renmin Street, No. 48, Section 5, Jinzhou 121001, China (Zhou)
| | - Yu Qi
- College of Animal Science and Technology (Wang, Qi, Pei, Yi, Yang, Zhao, Meng, Yu, Hu); College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun (Dong); College of Animal Husbandry & Veterinary, Jinzhou Medical University, Renmin Street, No. 48, Section 5, Jinzhou 121001, China (Zhou)
| | - Zhihua Pei
- College of Animal Science and Technology (Wang, Qi, Pei, Yi, Yang, Zhao, Meng, Yu, Hu); College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun (Dong); College of Animal Husbandry & Veterinary, Jinzhou Medical University, Renmin Street, No. 48, Section 5, Jinzhou 121001, China (Zhou)
| | - Shushuai Yi
- College of Animal Science and Technology (Wang, Qi, Pei, Yi, Yang, Zhao, Meng, Yu, Hu); College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun (Dong); College of Animal Husbandry & Veterinary, Jinzhou Medical University, Renmin Street, No. 48, Section 5, Jinzhou 121001, China (Zhou)
| | - Xiaojie Yang
- College of Animal Science and Technology (Wang, Qi, Pei, Yi, Yang, Zhao, Meng, Yu, Hu); College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun (Dong); College of Animal Husbandry & Veterinary, Jinzhou Medical University, Renmin Street, No. 48, Section 5, Jinzhou 121001, China (Zhou)
| | - Yanli Zhao
- College of Animal Science and Technology (Wang, Qi, Pei, Yi, Yang, Zhao, Meng, Yu, Hu); College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun (Dong); College of Animal Husbandry & Veterinary, Jinzhou Medical University, Renmin Street, No. 48, Section 5, Jinzhou 121001, China (Zhou)
| | - Fanxing Meng
- College of Animal Science and Technology (Wang, Qi, Pei, Yi, Yang, Zhao, Meng, Yu, Hu); College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun (Dong); College of Animal Husbandry & Veterinary, Jinzhou Medical University, Renmin Street, No. 48, Section 5, Jinzhou 121001, China (Zhou)
| | - Shouping Yu
- College of Animal Science and Technology (Wang, Qi, Pei, Yi, Yang, Zhao, Meng, Yu, Hu); College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun (Dong); College of Animal Husbandry & Veterinary, Jinzhou Medical University, Renmin Street, No. 48, Section 5, Jinzhou 121001, China (Zhou)
| | - Tiezhong Zhou
- College of Animal Science and Technology (Wang, Qi, Pei, Yi, Yang, Zhao, Meng, Yu, Hu); College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun (Dong); College of Animal Husbandry & Veterinary, Jinzhou Medical University, Renmin Street, No. 48, Section 5, Jinzhou 121001, China (Zhou)
| | - Guixue Hu
- College of Animal Science and Technology (Wang, Qi, Pei, Yi, Yang, Zhao, Meng, Yu, Hu); College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun (Dong); College of Animal Husbandry & Veterinary, Jinzhou Medical University, Renmin Street, No. 48, Section 5, Jinzhou 121001, China (Zhou)
| |
Collapse
|
29
|
Duan MC, Han W, Jin PW, Wei YP, Wei Q, Zhang LM, Li JC. Disturbed Th17/Treg Balance in Patients with Non-small Cell Lung Cancer. Inflammation 2016; 38:2156-65. [PMID: 26077695 DOI: 10.1007/s10753-015-0198-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The fine balance of T help-17 (Th17)/regulatory T(Treg) cells is crucial for maintenance of immune homeostasis. However, there is little information concerning the role played in non-small cell lung cancer (NSCLC) by Th17/Treg cells. The objective of this study was to investigate the variation of Th17 and Treg cells in the peripheral blood of patients with NSCLC. Blood samples were collected from 19 patients with NSCLC and 19 healthy donors. Samples were processed to detect CD4(+)IL-17(+) Th17 cells and CD4(+)CD25(+)Foxp3(+) Treg cells by flow cytometry, and related gene expressions were assessed by real-time quantitative polymerase chain reaction. The concentrations of interleukin (IL)-1β, IL-6, IL-10, IL-17, IL-23, and transforming growth factor-beta (TGF-β1) were also measured by enzyme-linked immunosorbent assay analysis (ELISA). The frequency of circulating Th17 cells and Treg cells was increased in samples derived from patients with NSCLC, accompanied by the upregulation of Foxp3 and RORγt. However, a negative correlation between Treg cells and Th17 cells was found in patients with NSCLC. Additionally, the Th17/Treg ratio and the related cytokines were also significantly higher in patients with NSCLC than in healthy controls. Furthermore, the frequency of Th17 cells was positively correlated with IL-1β, IL-6, and IL-23 in patients with NSCLC, and the frequency of Treg cells was positively correlated with TGF-β1 and IL-10. More importantly, the Th17/Treg ratio was positively correlated with the CEA concentrations in patients with NSCLC. Our data indicated that Th17 and Treg subset are involved in the immunopathology of NSCLC. Distinct cytokine environment might play a key role in the differentiation of the Th17 and Treg cells in NSCLC. Reconstituting an adequate balance between Th17 and Treg may be beneficial in the treatment of NSCLC.
Collapse
Affiliation(s)
- Min-Chao Duan
- Department of Respiratory Medicine, The Eighth People's Hospital of Nanning, Nanning, Guangxi Province, China.
| | - Wei Han
- Department of Respiratory Medicine, The Eighth People's Hospital of Nanning, Nanning, Guangxi Province, China
| | - Pei-Wen Jin
- Department of Respiratory Medicine, The Eighth People's Hospital of Nanning, Nanning, Guangxi Province, China
| | - Yu-Ping Wei
- Department of Respiratory Medicine, The Eighth People's Hospital of Nanning, Nanning, Guangxi Province, China
| | - Qiu Wei
- Department of Respiratory Medicine, The First People's Hospital of Nanning, Nanning, Guangxi Province, China
| | - Liang-Ming Zhang
- Department of Respiratory Medicine, The First People's Hospital of Nanning, Nanning, Guangxi Province, China
| | - Jun-Chen Li
- Department of Respiratory Medicine, The Eighth People's Hospital of Nanning, Nanning, Guangxi Province, China
| |
Collapse
|
30
|
Cook DN, Kang HS, Jetten AM. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism. NUCLEAR RECEPTOR RESEARCH 2015; 2. [PMID: 26878025 PMCID: PMC4750502 DOI: 10.11131/2015/101185] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.
Collapse
Affiliation(s)
- Donald N Cook
- Immunogenetics Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
31
|
Cook DN, Kang HS, Jetten AM. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism. NUCLEAR RECEPTOR RESEARCH 2015. [PMID: 26878025 DOI: 10.1038/nbt.3121.chip-nexus] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.
Collapse
Affiliation(s)
- Donald N Cook
- Immunogenetics Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|