1
|
Gu S, Wen C, Xiao Z, Huang Q, Jiang Z, Liu H, Gao J, Li J, Sun C, Yang N. MyoV: a deep learning-based tool for the automated quantification of muscle fibers. Brief Bioinform 2024; 25:bbad528. [PMID: 38271484 PMCID: PMC10810329 DOI: 10.1093/bib/bbad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Accurate approaches for quantifying muscle fibers are essential in biomedical research and meat production. In this study, we address the limitations of existing approaches for hematoxylin and eosin-stained muscle fibers by manually and semiautomatically labeling over 660 000 muscle fibers to create a large dataset. Subsequently, an automated image segmentation and quantification tool named MyoV is designed using mask regions with convolutional neural networks and a residual network and feature pyramid network as the backbone network. This design enables the tool to allow muscle fiber processing with different sizes and ages. MyoV, which achieves impressive detection rates of 0.93-0.96 and precision levels of 0.91-0.97, exhibits a superior performance in quantification, surpassing both manual methods and commonly employed algorithms and software, particularly for whole slide images (WSIs). Moreover, MyoV is proven as a powerful and suitable tool for various species with different muscle development, including mice, which are a crucial model for muscle disease diagnosis, and agricultural animals, which are a significant meat source for humans. Finally, we integrate this tool into visualization software with functions, such as segmentation, area determination and automatic labeling, allowing seamless processing for over 400 000 muscle fibers within a WSI, eliminating the model adjustment and providing researchers with an easy-to-use visual interface to browse functional options and realize muscle fiber quantification from WSIs.
Collapse
Affiliation(s)
- Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Zhen Xiao
- School of Computer and Information, Hefei University of Technology, Anhui 230009, China
| | - Qiang Huang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zheyi Jiang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Honghong Liu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jia Gao
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan 572025, China
| |
Collapse
|
2
|
Hiyoshi T, Zhao F, Baba R, Hirakawa T, Kuboki R, Suzuki K, Tomimatsu Y, O'Donnell P, Han S, Zach N, Nakashima M. Electrical impedance myography detects dystrophin-related muscle changes in mdx mice. Skelet Muscle 2023; 13:19. [PMID: 37980539 PMCID: PMC10657153 DOI: 10.1186/s13395-023-00331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND The lack of functional dystrophin protein in Duchenne muscular dystrophy (DMD) causes chronic skeletal muscle inflammation and degeneration. Therefore, the restoration of functional dystrophin levels is a fundamental approach for DMD therapy. Electrical impedance myography (EIM) is an emerging tool that provides noninvasive monitoring of muscle conditions and has been suggested as a treatment response biomarker in diverse indications. Although magnetic resonance imaging (MRI) of skeletal muscles has become a standard measurement in clinical trials for DMD, EIM offers distinct advantages, such as portability, user-friendliness, and reduced cost, allowing for remote monitoring of disease progression or response to therapy. To investigate the potential of EIM as a biomarker for DMD, we compared longitudinal EIM data with MRI/histopathological data from an X-linked muscular dystrophy (mdx) mouse model of DMD. In addition, we investigated whether EIM could detect dystrophin-related changes in muscles using antisense-mediated exon skipping in mdx mice. METHODS The MRI data for muscle T2, the magnetic resonance spectroscopy (MRS) data for fat fraction, and three EIM parameters with histopathology were longitudinally obtained from the hindlimb muscles of wild-type (WT) and mdx mice. In the EIM study, a cell-penetrating peptide (Pip9b2) conjugated antisense phosphorodiamidate morpholino oligomer (PPMO), designed to induce exon-skipping and restore functional dystrophin production, was administered intravenously to mdx mice. RESULTS MRI imaging in mdx mice showed higher T2 intensity at 6 weeks of age in hindlimb muscles compared to WT mice, which decreased at ≥ 9 weeks of age. In contrast, EIM reactance began to decline at 12 weeks of age, with peak reduction at 18 weeks of age in mdx mice. This decline was associated with myofiber atrophy and connective tissue infiltration in the skeletal muscles. Repeated dosing of PPMO (10 mg/kg, 4 times every 2 weeks) in mdx mice led to an increase in muscular dystrophin protein and reversed the decrease in EIM reactance. CONCLUSIONS These findings suggest that muscle T2 MRI is sensitive to the early inflammatory response associated with dystrophin deficiency, whereas EIM provides a valuable biomarker for the noninvasive monitoring of subsequent changes in skeletal muscle composition. Furthermore, EIM reactance has the potential to monitor dystrophin-deficient muscle abnormalities and their recovery in response to antisense-mediated exon skipping.
Collapse
Affiliation(s)
- Tetsuaki Hiyoshi
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Fuqiang Zhao
- Center of Excellence for Imaging, Preclinical and Translational Sciences, Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA, 02141, USA
| | - Rina Baba
- Muscular Disease and Neuropathy Unit, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Takeshi Hirakawa
- Muscular Disease and Neuropathy Unit, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Ryosuke Kuboki
- Muscular Disease and Neuropathy Unit, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kazunori Suzuki
- Muscular Disease and Neuropathy Unit, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yoshiro Tomimatsu
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Patricio O'Donnell
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA, 02141, USA
| | - Steve Han
- Neuroscience Therapeutic Area Unit, Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA, 02141, USA
| | - Neta Zach
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA, 02141, USA
| | - Masato Nakashima
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
3
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
4
|
McCormack NM, Nguyen NY, Tully CB, Oliver T, Fiorillo AA, Heier CR. Vamorolone improves Becker muscular dystrophy and increases dystrophin protein in bmx model mice. iScience 2023; 26:107161. [PMID: 37534133 PMCID: PMC10391915 DOI: 10.1016/j.isci.2023.107161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023] Open
Abstract
There is no approved therapy for Becker muscular dystrophy (BMD), a genetic muscle disease caused by in-frame dystrophin deletions. We previously developed the dissociative corticosteroid vamorolone for treatment of the allelic, dystrophin-null disease Duchenne muscular dystrophy. We hypothesize vamorolone can treat BMD by safely reducing inflammatory signaling in muscle and through a novel mechanism of increasing dystrophin protein via suppression of dystrophin-targeting miRNAs. Here, we test this in the bmx mouse model of BMD. Daily oral treatment with vamorolone or prednisolone improves bmx grip strength and hang time phenotypes. Both drugs reduce myofiber size and decrease the percentage of centrally nucleated fibers. Vamorolone shows improved safety versus prednisolone by avoiding or reducing key side effects to behavior and growth. Intriguingly, vamorolone increases dystrophin protein in both heart and skeletal muscle. These data indicate that vamorolone, nearing approval for Duchenne, shows efficacy in bmx mice and therefore warrants clinical investigation in BMD.
Collapse
Affiliation(s)
- Nikki M. McCormack
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Nhu Y. Nguyen
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Trinitee Oliver
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Biology, Howard University, Washington, DC, USA
| | - Alyson A. Fiorillo
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, USA
| | - Christopher R. Heier
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, USA
| |
Collapse
|
5
|
Lopez C, Batra A, Moslemi Z, Rennick A, Guice K, Zeng H, Walter GA, Forbes SC. Effects of muscle damage on 31 phosphorus magnetic resonance spectroscopy indices of energetic status and sarcolemma integrity in young mdx mice. NMR IN BIOMEDICINE 2022; 35:e4659. [PMID: 34841594 PMCID: PMC9804208 DOI: 10.1002/nbm.4659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
31 Phosphorus magnetic resonance spectroscopy (31 P-MRS) has been shown to detect altered energetic status (e.g. the ratio of inorganic phosphate to phosphocreatine: Pi/PCr), intracellular acid-base status, and free intracellular magnesium ([Mg2+ ]) in dystrophic muscle compared with unaffected muscle; however, the causes of these differences are not well understood. The purposes of this study were to examine 31 P-MRS indices of energetic status and sarcolemma integrity in young mdx mice compared with wild-type and to evaluate the effects of downhill running to induce muscle damage on 31 P-MRS indices in dystrophic muscle. In vivo 31 P-MRS spectra were acquired from the posterior hindlimb muscles in young (4-10 weeks of age) mdx (C57BL/10ScSn-DMDmdx) and wild-type (C57BL/10ScSnJ) mice using an 11.1-T MR system. The flux of phosphate from PCr to ATP was estimated by 31 P-MRS saturation transfer experiments. Relative concentrations of high-energy phosphates were measured, and intracellular pH and [Mg2+ ] were calculated. 1 H2 O-T2 was measured using single-voxel 1 H-MRS from the gastrocnemius and soleus using a 4.7-T MR system. Downhill treadmill running was performed in a subset of mice. Young mdx mice were characterized by elevated 1 H2 O-T2 (p < 0.01), Pi/PCr (p = 0.02), PCr to ATP flux (p = 0.04) and histological inflammatory markers (p < 0.05) and reduced (p < 0.01) [Mg2+ ] compared with wild-type. Furthermore, 24 h after downhill running, an increase (p = 0.02) in Pi/PCr was observed in mdx and wild-type mice compared with baseline, and a decrease (p < 0.001) in [Mg2+ ] and a lower (p = 0.048) intracellular [H+ ] in damaged muscle regions of mdx mice were observed, consistent with impaired sarcolemma integrity. Overall, our findings demonstrate that 31 P-MRS markers of energetic status and sarcolemma integrity are altered in young mdx compared with wild-type mice, and these indices are exacerbated following downhill running.
Collapse
Affiliation(s)
- Christopher Lopez
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Zahra Moslemi
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Andrew Rennick
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Kimberly Guice
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Huadong Zeng
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Sean C. Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Musculoskeletal magnetic resonance imaging in the DE50-MD dog model of Duchenne muscular dystrophy. Neuromuscul Disord 2021; 31:736-751. [PMID: 34384671 PMCID: PMC8449064 DOI: 10.1016/j.nmd.2021.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022]
Abstract
Normalized muscle volumes distinguish between wild type and DE50-MD dogs. Global muscle T2 signal intensities discriminate between wild type and DE50-MD dogs. Musculoskeletal changes detected by MRI reflect those seen in human DMD patients. Musculoskeletal MRI in this model will be useful to assess treatment efficacy.
The DE50-MD canine model of Duchenne muscular dystrophy (DMD) has a dystrophin gene splice site mutation causing deletion of exon 50, an out-of-frame transcript and absence of dystrophin expression in striated muscles. We hypothesized that the musculoskeletal phenotype of DE50-MD dogs could be detected using Magnetic Resonance Imaging (MRI), that it would progress with age and that it would reflect those in other canine models and DMD patients. 15 DE50-MD and 10 age-matched littermate wild type (WT) male dogs underwent MRI every 3 months from 3 to 18 months of age. Normalized muscle volumes, global muscle T2 and ratio of post- to pre-gadolinium T1-weighted SI were evaluated in 7 pelvic limb and 4 lumbar muscles bilaterally. DE50-MD dogs, compared to WT, had smaller volumes in all muscles, except the cranial sartorius; global muscle T2 was significantly higher in DE50-MD dogs compared to WT. Muscle volumes plateaued and global muscle T2 decreased with age. Normalized muscle volumes and global muscle T2 revealed significant differences between groups longitudinally and should be useful to determine efficacy of therapeutics in this model with suitable power and low sample sizes. Musculoskeletal changes reflect those of DMD patients and other dog models.
Collapse
|
7
|
Mele A, Mantuano P, Fonzino A, Rana F, Capogrosso RF, Sanarica F, Rolland JF, Cappellari O, De Luca A. Ultrasonography validation for early alteration of diaphragm echodensity and function in the mdx mouse model of Duchenne muscular dystrophy. PLoS One 2021; 16:e0245397. [PMID: 33434240 PMCID: PMC7802948 DOI: 10.1371/journal.pone.0245397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022] Open
Abstract
The mdx mouse model of Duchenne muscular dystrophy is characterized by functional and structural alterations of the diaphragm since early stages of pathology, closely resembling patients' condition. In recent years, ultrasonography has been proposed as a useful longitudinal non-invasive technique to assess mdx diaphragm dysfunction and evaluate drug efficacy over time. To date, only a few preclinical studies have been conducted. Therefore, an independent validation of this method by different laboratories is needed to increase results reliability and reduce biases. Here, we performed diaphragm ultrasonography in 3- and 6-month-old mdx mice, the preferred age-window for pharmacology studies. The alteration of diaphragm function over time was measured as diaphragm ultrasound movement amplitude. At the same time points, a first-time assessment of diaphragm echodensity was performed, as an experimental index of progressive loss of contractile tissue. A parallel evaluation of other in vivo and ex vivo dystrophy-relevant readouts was carried out. Both 3- and 6-month-old mdx mice showed a significant decrease in diaphragm amplitude compared to wild type (wt) mice. This index was well-correlated either with in vivo running performance or ex vivo isometric tetanic force of isolated diaphragm. In addition, diaphragms from 6-month-old dystrophic mice were also highly susceptible to eccentric contraction ex vivo. Importantly, we disclosed an age-dependent increase in echodensity in mdx mice not observed in wt animals, which was independent from abdominal wall thickness. This was accompanied by a notable increase of pro-fibrotic TGF-β1 levels in the mdx diaphragm and of non-muscle tissue amount in diaphragm sections stained by hematoxylin & eosin. Our findings corroborate the usefulness of diaphragm ultrasonography in preclinical drug studies as a powerful tool to monitor mdx pathology progression since early stages.
Collapse
Affiliation(s)
- Antonietta Mele
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Rana
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
8
|
Alic L, Griffin JF, Eresen A, Kornegay JN, Ji JX. Using MRI to quantify skeletal muscle pathology in Duchenne muscular dystrophy: A systematic mapping review. Muscle Nerve 2021; 64:8-22. [PMID: 33269474 PMCID: PMC8247996 DOI: 10.1002/mus.27133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
There is a great demand for accurate non‐invasive measures to better define the natural history of disease progression or treatment outcome in Duchenne muscular dystrophy (DMD) and to facilitate the inclusion of a large range of participants in DMD clinical trials. This review aims to investigate which MRI sequences and analysis methods have been used and to identify future needs. Medline, Embase, Scopus, Web of Science, Inspec, and Compendex databases were searched up to 2 November 2019, using keywords “magnetic resonance imaging” and “Duchenne muscular dystrophy.” The review showed the trend of using T1w and T2w MRI images for semi‐qualitative inspection of structural alterations of DMD muscle using a diversity of grading scales, with increasing use of T2map, Dixon, and MR spectroscopy (MRS). High‐field (>3T) MRI dominated the studies with animal models. The quantitative MRI techniques have allowed a more precise estimation of local or generalized disease severity. Longitudinal studies assessing the effect of an intervention have also become more prominent, in both clinical and animal model subjects. Quality assessment of the included longitudinal studies was performed using the Newcastle‐Ottawa Quality Assessment Scale adapted to comprise bias in selection, comparability, exposure, and outcome. Additional large clinical trials are needed to consolidate research using MRI as a biomarker in DMD and to validate findings against established gold standards. This future work should use a multiparametric and quantitative MRI acquisition protocol, assess the repeatability of measurements, and correlate findings to histologic parameters.
Collapse
Affiliation(s)
- Lejla Alic
- Department of Electrical & Computer Engineering, Texas A&M University, Doha, Qatar.,Magnetic Detection and Imaging group, Technical Medical Centre, University of Twente, The Netherlands
| | - John F Griffin
- College of Vet. Med. & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Joe N Kornegay
- College of Vet. Med. & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jim X Ji
- Department of Electrical & Computer Engineering, Texas A&M University, Doha, Qatar.,Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
9
|
Giraudo C, Cavaliere A, Lupi A, Guglielmi G, Quaia E. Established paths and new avenues: a review of the main radiological techniques for investigating sarcopenia. Quant Imaging Med Surg 2020; 10:1602-1613. [PMID: 32742955 PMCID: PMC7378089 DOI: 10.21037/qims.2019.12.15] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Sarcopenia is a clinical condition mainly affecting the elderly that can be associated in a long run with severe consequences like malnutrition and frailty. Considering the progressive ageing of the world population and the socio-economic impact of this disease, much effort is devoted and has to be further focused on an early and accurate diagnostic assessment of muscle loss. Currently, several radiological techniques can be applied for evaluating sarcopenia. If dual-energy X-ray absorptiometry (DXA) is still considered the main tool and it is even recommended as reference by the most current guidelines of the European working group on sarcopenia in older people (EWGSOP), the role of ultrasound (US), computed tomography (CT), peripheral quantitative CT (pQCT), and magnetic resonance imaging (MRI) should not be overlooked. Indeed, such techniques can provide robust qualitative and quantitative information. In particular, regarding MRI, the use of sequences like diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS) and mapping that could provide further insights into the physiopathological features of sarcopenia, should be fostered. In an era pointing to the quantification and automatic evaluation of diseases, we call for future research extending the application of organ tailored protocols, taking advantage of the most recent technical developments.
Collapse
Affiliation(s)
- Chiara Giraudo
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Annachiara Cavaliere
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Amalia Lupi
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Giuseppe Guglielmi
- Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, University of Foggia, Foggia, Italy
| | - Emilio Quaia
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Yanay N, Elbaz M, Konikov-Rozenman J, Elgavish S, Nevo Y, Fellig Y, Rabie M, Mitrani-Rosenbaum S, Nevo Y. Pax7, Pax3 and Mamstr genes are involved in skeletal muscle impaired regeneration of dy2J/dy2J mouse model of Lama2-CMD. Hum Mol Genet 2020; 28:3369-3390. [PMID: 31348492 DOI: 10.1093/hmg/ddz180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
Congenital muscular dystrophy type-1A (Lama2-CMD) and Duchenne muscular dystrophy (DMD) result from deficiencies of laminin-α2 and dystrophin proteins, respectively. Although both proteins strengthen the sarcolemma, they are implicated in clinically distinct phenotypes. We used RNA-deep sequencing (RNA-Seq) of dy2J/dy2J, Lama2-CMD mouse model, skeletal muscle at 8 weeks of age to elucidate disease pathophysiology. This study is the first report of dy2J/dy2J model whole transcriptome profile. RNA-Seq of the mdx mouse model of DMD and wild-type (WT) mouse was carried as well in order to enable a novel comparison of dy2J/dy2J to mdx. A large group of shared differentially expressed genes (DEGs) was found in dy2J/dy2J and mdx models (1834 common DEGs, false discovery rate [FDR] < 0.05). Enrichment pathway analysis using ingenuity pathway analysis showed enrichment of inflammation, fibrosis, cellular movement, migration and proliferation of cells, apoptosis and necrosis in both mouse models (P-values 3E-10-9E-37). Via canonical pathway analysis, actin cytoskeleton, integrin, integrin-linked kinase, NF-kB, renin-angiotensin, epithelial-mesenchymal transition, and calcium signaling were also enriched and upregulated in both models (FDR < 0.05). Interestingly, significant downregulation of Pax7 was detected in dy2J/dy2J compared to upregulation of this key regeneration gene in mdx mice. Pax3 and Mamstr genes were also downregulated in dy2J/dy2J compared to WT mice. These results may explain the distinct disease course and severity in these models. While the mdx model at that stage shows massive regeneration, the dy2J/dy2J shows progressive dystrophic process. Our data deepen our understanding of the molecular pathophysiology and suggest new targets for additional therapies to upregulate regeneration in Lama2-CMD.
Collapse
Affiliation(s)
- Nurit Yanay
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Moran Elbaz
- Pediatric Neuromuscular Laboratory, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Jenya Konikov-Rozenman
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Sharona Elgavish
- Info-CORE, I-CORE Bioinformatics Unit, The Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, I-CORE Bioinformatics Unit, The Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Malcolm Rabie
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Stella Mitrani-Rosenbaum
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Yoram Nevo
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
11
|
van der Heyden B, van de Worp WRPH, van Helvoort A, Theys J, Schols AMWJ, Langen RCJ, Verhaegen F. Automated CT-derived skeletal muscle mass determination in lower hind limbs of mice using a 3D U-Net deep learning network. J Appl Physiol (1985) 2019; 128:42-49. [PMID: 31697595 DOI: 10.1152/japplphysiol.00465.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The loss of skeletal muscle mass is recognized as a complication of several chronic diseases and is associated with increased mortality and a decreased quality of life. Relevant and reliable animal models in which muscle wasting can be monitored noninvasively over time are instrumental to investigate and develop new therapies. In this work, we developed a fully automatic deep learning algorithm for segmentation of micro cone beam computed tomography images of the lower limb muscle complex in mice and subsequent muscle mass calculation. A deep learning algorithm was trained on manually segmented data from 32 mice. Muscle wet mass measurements were obtained from 47 mice and served as a data set for model validation and reverse model validation. The automatic algorithm performance was ~150 times faster than manual segmentation. Reverse validation of the algorithm showed high quantitative metrics (i.e., a Dice similarity coefficient of 0.93, a Hausdorff distance of 0.4 mm, and a center of mass displacement of 0.1 mm), substantiating the robustness and accuracy of the model. A high correlation (R2 = 0.92) was obtained between the computed tomography-derived muscle mass measurements and the muscle wet masses. Longitudinal follow-up revealed time-dependent changes in muscle mass that separated control from lung tumor-bearing mice, which was confirmed as cachexia. In conclusion, this deep learning model for automated assessment of the lower limb muscle complex provides highly accurate noninvasive longitudinal evaluation of skeletal muscle mass. Furthermore, it facilitates the workflow and increases the amount of data derived from mouse studies while reducing the animal numbers.NEW & NOTEWORTHY This deep learning application enables highly accurate noninvasive longitudinal evaluation of skeletal muscle mass changes in mice with minimal requirement for operator involvement in the data analysis. It provides a unique opportunity to increase and analyze the amount of data derived from animal studies automatically while reducing animal numbers and analytical workload.
Collapse
Affiliation(s)
- Brent van der Heyden
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Wouter R P H van de Worp
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Health and Science Department, Danone Nutricia Research, Utrecht, The Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
12
|
Eresen A, Hafsa NE, Alic L, Birch SM, Griffin JF, Kornegay JN, Ji JX. Muscle percentage index as a marker of disease severity in golden retriever muscular dystrophy. Muscle Nerve 2019; 60:621-628. [PMID: 31397906 DOI: 10.1002/mus.26657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Golden retriever muscular dystrophy (GRMD) is a spontaneous X-linked canine model of Duchenne muscular dystrophy that resembles the human condition. Muscle percentage index (MPI) is proposed as an imaging biomarker of disease severity in GRMD. METHODS To assess MPI, we used MRI data acquired from nine GRMD samples using a 4.7 T small-bore scanner. A machine learning approach was used with eight raw quantitative mapping of MRI data images (T1m, T2m, two Dixon maps, and four diffusion tensor imaging maps), three types of texture descriptors (local binary pattern, gray-level co-occurrence matrix, gray-level run-length matrix), and a gradient descriptor (histogram of oriented gradients). RESULTS The confusion matrix, averaged over all samples, showed 93.5% of muscle pixels classified correctly. The classification, optimized in a leave-one-out cross-validation, provided an average accuracy of 80% with a discrepancy in overestimation for young (8%) and old (20%) dogs. DISCUSSION MPI could be useful for quantifying GRMD severity, but careful interpretation is needed for severe cases.
Collapse
Affiliation(s)
- Aydin Eresen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Noor E Hafsa
- Department of Electrical and Computer Engineering, Texas A&M University, Doha, Qatar
| | - Lejla Alic
- Department of Electrical and Computer Engineering, Texas A&M University, Doha, Qatar.,Magnetic Detection & Imaging Group, Faculty of Science & Technology, University of Twente, Enschede, The Netherlands
| | - Sharla M Birch
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - John F Griffin
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Joe N Kornegay
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Jim X Ji
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas.,Department of Electrical and Computer Engineering, Texas A&M University, Doha, Qatar
| |
Collapse
|
13
|
Eresen A, Alic L, Birch SM, Friedeck W, Griffin JF, Kornegay JN, Ji JX. Texture as an imaging biomarker for disease severity in golden retriever muscular dystrophy. Muscle Nerve 2019; 59:380-386. [PMID: 30461036 DOI: 10.1002/mus.26386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Golden retriever muscular dystrophy (GRMD), an X-linked recessive disorder, causes similar phenotypic features to Duchenne muscular dystrophy (DMD). There is currently a need for a quantitative and reproducible monitoring of disease progression for GRMD and DMD. METHODS To assess severity in the GRMD, we analyzed texture features extracted from multi-parametric MRI (T1w, T2w, T1m, T2m, and Dixon images) using 5 feature extraction methods and classified using support vector machines. RESULTS A single feature from qualitative images can provide 89% maximal accuracy. Furthermore, 2 features from T1w, T2m, or Dixon images provided highest accuracy. When considering a tradeoff between scan-time and computational complexity, T2m images provided good accuracy at a lower acquisition and processing time and effort. CONCLUSIONS The combination of MRI texture features improved the classification accuracy for assessment of disease progression in GRMD with evaluation of the heterogenous nature of skeletal muscles as reflection of the histopathological changes. Muscle Nerve 59:380-386, 2019.
Collapse
Affiliation(s)
- Aydin Eresen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Lejla Alic
- Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar
| | - Sharla M Birch
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Wade Friedeck
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - John F Griffin
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Joe N Kornegay
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jim X Ji
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA.,Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar
| |
Collapse
|
14
|
Park JS, Vohra R, Klussmann T, Bengtsson NE, Chamberlain JS, Lee D. Non-invasive tracking of disease progression in young dystrophic muscles using multi-parametric MRI at 14T. PLoS One 2018; 13:e0206323. [PMID: 30365532 PMCID: PMC6203357 DOI: 10.1371/journal.pone.0206323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 10/10/2018] [Indexed: 12/02/2022] Open
Abstract
In this study, multi-parametric magnetic resonance imaging (MRI) was conducted to monitor skeletal muscle changes in dystrophic (mdx4cv) and age-matched control (C57BL/6J) mice starting at 3 weeks of age. The objective of this study was to evaluate and characterize changes in muscle tissue characteristics of hind limbs in young, dystrophic mice using MRI. Mdx4cv (n = 25) and age-matched C57BL/6J (n = 5) were imaged at 3, 5, 7, 9, and 11 weeks of age. Multiple MR measurements were taken from the tibialis anterior, gastrocnemius, and soleus muscles. There were significant differences between dystrophic and control groups for all three muscle types when comparing transverse relaxation times (T2) in lower hind limb muscles. Additionally, fractional anisotropy, radial diffusivity, and eigenvalue analysis of diffusion tensor imaging also demonstrated significant differences between groups. Longitudinal relaxation times (T1) displayed no significant differences between groups. The earliest time points in the magnetization transfer ratio measurements displayed a significant difference. Histological analysis revealed significant differences in the tibialis anterior and gastrocnemius muscles between groups with the mdx mice displaying greater variability in muscle fiber size in later time points. The multi-parametric MRI approach offers a promising alternative for future development of a noninvasive avenue for tracking both disease progression and treatment response.
Collapse
Affiliation(s)
- Joshua S. Park
- Department of Radiology, University of Washington, Seattle, WA, United States of America
| | - Ravneet Vohra
- Department of Radiology, University of Washington, Seattle, WA, United States of America
| | - Thomas Klussmann
- Department of Radiology, University of Washington, Seattle, WA, United States of America
| | - Niclas E. Bengtsson
- Department of Neurology, University of Washington, Seattle, WA, United States of America
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, WA, United States of America
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington, Seattle, WA, United States of America
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, WA, United States of America
- Department of Biochemistry, University of Washington, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Donghoon Lee
- Department of Radiology, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Monitoring disease activity noninvasively in the mdx model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2018; 115:7741-7746. [PMID: 29987034 DOI: 10.1073/pnas.1802425115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare, muscle degenerative disease resulting from the absence of the dystrophin protein. DMD is characterized by progressive loss of muscle fibers, muscle weakness, and eventually loss of ambulation and premature death. Currently, there is no cure for DMD and improved methods of disease monitoring are crucial for the development of novel treatments. In this study, we describe a new method of assessing disease progression noninvasively in the mdx model of DMD. The reporter mice, which we term the dystrophic Degeneration Reporter strains, contain an inducible CRE-responsive luciferase reporter active in mature myofibers. In these mice, muscle degeneration is reflected in changes in the level of luciferase expression, which can be monitored using noninvasive, bioluminescence imaging. We monitored the natural history and disease progression in these dystrophic report mice and found that decreases in luciferase signals directly correlated with muscle degeneration. We further demonstrated that this reporter strain, as well as a previously reported Regeneration Reporter strain, successfully reveals the effectiveness of a gene therapy treatment following systemic administration of a recombinant adeno-associated virus-6 (rAAV-6) encoding a microdystrophin construct. Our data demonstrate the value of these noninvasive imaging modalities for monitoring disease progression and response to therapy in mouse models of muscular dystrophy.
Collapse
|
16
|
Fiorillo AA, Tully CB, Damsker JM, Nagaraju K, Hoffman EP, Heier CR. Muscle miRNAome shows suppression of chronic inflammatory miRNAs with both prednisone and vamorolone. Physiol Genomics 2018; 50:735-745. [PMID: 29883261 PMCID: PMC6172612 DOI: 10.1152/physiolgenomics.00134.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Corticosteroids are highly prescribed and effective anti-inflammatory drugs but the burden of side effects with chronic use significantly detracts from patient quality of life, particularly in children. Developing safer steroids amenable to long-term use is an important goal for treatment of chronic inflammatory diseases such as Duchenne muscular dystrophy (DMD). We have developed vamorolone (VBP15), a first-in-class dissociative glucocorticoid receptor (GR) ligand that shows the anti-inflammatory efficacy of corticosteroids without key steroid side effects in animal models. miRNAs are increasingly recognized as key regulators of inflammatory responses. To define effects of prednisolone and vamorolone on the muscle miRNAome, we performed a preclinical discovery study in the mdx mouse model of DMD. miRNAs associated with inflammation were highly elevated in mdx muscle. Both vamorolone and prednisolone returned these toward wild-type levels (miR-142-5p, miR-142-3p, miR-146a, miR-301a, miR-324-3p, miR-455-5p, miR-455-3p, miR-497, miR-652). Effects of vamorolone were largely limited to reduction of proinflammatory miRNAs. In contrast, prednisolone activated a separate group of miRNAs associated with steroid side effects and a noncoding RNA cluster homologous to human chromosome 14q32. Effects were validated for inflammatory miRNAs in a second, independent preclinical study. For the anti-inflammatory miRNA signature, bioinformatic analyses showed all of these miRNAs are directly regulated by, or in turn activate, the inflammatory transcription factor NF-κB. Moving forward miR-146a and miR-142 are of particular interest as biomarkers or novel drug targets. These data validate NF-κB signaling as a target of dissociative GR-ligand efficacy in vivo and provide new insight into miRNA signaling in chronic inflammation.
Collapse
Affiliation(s)
- Alyson A Fiorillo
- Center for Genetic Medicine Research, Children's National Medical Center , Washington, District of Columbia.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences , Washington, District of Columbia
| | - Christopher B Tully
- Center for Genetic Medicine Research, Children's National Medical Center , Washington, District of Columbia
| | | | - Kanneboyina Nagaraju
- ReveraGen BioPharma, Incorporated, Rockville, Maryland.,School of Pharmacy and Pharmaceutical Sciences, Binghamton University, State University of New York , Binghamton, New York
| | - Eric P Hoffman
- ReveraGen BioPharma, Incorporated, Rockville, Maryland.,School of Pharmacy and Pharmaceutical Sciences, Binghamton University, State University of New York , Binghamton, New York
| | - Christopher R Heier
- Center for Genetic Medicine Research, Children's National Medical Center , Washington, District of Columbia.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences , Washington, District of Columbia
| |
Collapse
|
17
|
Micro-computed tomography for non-invasive evaluation of muscle atrophy in mouse models of disease. PLoS One 2018; 13:e0198089. [PMID: 29813127 PMCID: PMC5973599 DOI: 10.1371/journal.pone.0198089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022] Open
Abstract
Muscle wasting occurs during various chronic diseases and precedes death in humans as in mice. The evaluation of the degree of muscle atrophy in diseased mouse models is often overlooked since it requires the sacrifice of the animals for muscle examination or expensive instrumentation and highly qualified personnel, such as Magnetic Resonance Imaging (MRI). Very often behavioral tests for muscle strength evaluation are used as an outcome measurement in preclinical therapeutic trials. However, these tests are easy to perform serially, but not enough sensitive to detect early muscle changes during disease progression. Monitoring muscle loss in living animals could allow to perform more informative preclinical trials with a better evaluation of therapeutic benefit with respect to muscle wasting. We developed a non-invasive procedure based on micro-computed tomography (micro-CT) without contrast agents to monitor hind limb muscle wasting in mouse models of amyotrophic lateral sclerosis (ALS) and cancer cachexia: the transgenic SOD1G93A mouse and the colon adenocarcinoma C26-bearing mouse, respectively. We established the scanning procedure and the parameters to consider in the reconstructed images to calculate the Index of Muscle Mass (IMM). The coefficient of variance for the whole procedure was 2.2%. We performed longitudinally micro-CT scan of hind limbs in SOD1G93A mice at presymptomatic and symptomatic stages of the disease and calculated the IMM. We found that IMM in SOD1G93A mice was lower than age-matched controls even before symptom onset. We also detected a further decrease in IMM as disease progresses, most markedly just before disease onset. We performed the same analyses in the C26-based mouse model losing quickly body and muscle mass because of cancer cachexia. Overall, we found that the reduced muscle content detected by micro-CT mirrored the reduced muscle weight in both disease models. We developed a fast, precise and easy-to-conduct imaging procedure to monitor hind limb muscle mass, useful in therapeutic preclinical trials but also in proof-of-principle studies to identify the onset of muscle wasting. This method could be widely applied to other disease models characterized by muscle wasting, to assist drug development and search for early biomarkers of muscle atrophy. Moreover, reducing the number of mice needed for the experiments and being less distressing are in line with the 3R principle embodied in national and international directives for animal research.
Collapse
|
18
|
Carlier PG, Marty B, Scheidegger O, Loureiro de Sousa P, Baudin PY, Snezhko E, Vlodavets D. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials. J Neuromuscul Dis 2018; 3:1-28. [PMID: 27854210 PMCID: PMC5271435 DOI: 10.3233/jnd-160145] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have seen tremendous progress towards therapy of many previously incurable neuromuscular diseases. This new context has acted as a driving force for the development of novel non-invasive outcome measures. These can be organized in three main categories: functional tools, fluid biomarkers and imagery. In the latest category, nuclear magnetic resonance imaging (NMRI) offers a considerable range of possibilities for the characterization of skeletal muscle composition, function and metabolism. Nowadays, three NMR outcome measures are frequently integrated in clinical research protocols. They are: 1/ the muscle cross sectional area or volume, 2/ the percentage of intramuscular fat and 3/ the muscle water T2, which quantity muscle trophicity, chronic fatty degenerative changes and oedema (or more broadly, “disease activity”), respectively. A fourth biomarker, the contractile tissue volume is easily derived from the first two ones. The fat fraction maps most often acquired with Dixon sequences have proven their capability to detect small changes in muscle composition and have repeatedly shown superior sensitivity over standard functional evaluation. This outcome measure will more than likely be the first of the series to be validated as an endpoint by regulatory agencies. The versatility of contrast generated by NMR has opened many additional possibilities for characterization of the skeletal muscle and will result in the proposal of more NMR biomarkers. Ultra-short TE (UTE) sequences, late gadolinium enhancement and NMR elastography are being investigated as candidates to evaluate skeletal muscle interstitial fibrosis. Many options exist to measure muscle perfusion and oxygenation by NMR. Diffusion NMR as well as texture analysis algorithms could generate complementary information on muscle organization at microscopic and mesoscopic scales, respectively. 31P NMR spectroscopy is the reference technique to assess muscle energetics non-invasively during and after exercise. In dystrophic muscle, 31P NMR spectrum at rest is profoundly perturbed, and several resonances inform on cell membrane integrity. Considerable efforts are being directed towards acceleration of image acquisitions using a variety of approaches, from the extraction of fat content and water T2 maps from one single acquisition to partial matrices acquisition schemes. Spectacular decreases in examination time are expected in the near future. They will reinforce the attractiveness of NMR outcome measures and will further facilitate their integration in clinical research trials.
Collapse
Affiliation(s)
- Pierre G Carlier
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France.,National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Benjamin Marty
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Olivier Scheidegger
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | | | - Eduard Snezhko
- National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Dmitry Vlodavets
- N.I. Prirogov Russian National Medical Research University, Clinical Research Institute of Pediatrics, Moscow, Russian Federation
| |
Collapse
|
19
|
Bourdenet G, Dubourg B, Nicol L, Mulder P, Martinet J, Allenbach Y, Boitard C, Boyer O. Value of magnetic resonance imaging for evaluating muscle inflammation: insights from a new mouse model of myositis. Neuropathol Appl Neurobiol 2017; 44:537-540. [PMID: 29231968 DOI: 10.1111/nan.12457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 12/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- G Bourdenet
- Normandie Université, Rouen University Hospital, UNIROUEN, IRIB, INSERM, U1234, Department of Immunology, Rouen, France
| | - B Dubourg
- Normandie Université, Rouen University Hospital, UNIROUEN, IRIB, INSERM, U1096, Department of Radiology, Rouen, France
| | - L Nicol
- Normandie Université, UNIROUEN, IRIB, PICTUR, INSERM, U1096, Rouen, France
| | - P Mulder
- Normandie Université, UNIROUEN, IRIB, PICTUR, INSERM, U1096, Rouen, France
| | - J Martinet
- Normandie Université, Rouen University Hospital, UNIROUEN, IRIB, INSERM, U1234, Department of Immunology, Rouen, France
| | - Y Allenbach
- Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière University Hospital, Department of Internal Medicine and Clinical Immunology, Paris, France
| | - C Boitard
- Sorbonne Paris Cité, Paris Descartes University, Cochin Institute, INSERM, U1016, Paris, France
| | - O Boyer
- Normandie Université, Rouen University Hospital, UNIROUEN, IRIB, INSERM, U1234, Department of Immunology, Rouen, France
| |
Collapse
|
20
|
Kalia V, Leung DG, Sneag DB, Del Grande F, Carrino JA. Advanced MRI Techniques for Muscle Imaging. Semin Musculoskelet Radiol 2017; 21:459-469. [PMID: 28772322 DOI: 10.1055/s-0037-1604007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractAdvanced magnetic resonance imaging (MRI) techniques can evaluate a wide array of muscle pathologies including acute or chronic muscle injury, musculotendinous response to injury, intramuscular collections and soft tissue masses, and others. In recent years, MRI has played a more important role in muscle disease diagnosis and monitoring. MRI provides excellent spatial and contrast resolution and helps direct optimal sites for muscle biopsy. Whole-body MRI now helps identify signature patterns of muscular involvement in large anatomical regions with relative ease. Quantitative MRI has advanced the evaluation and disease tracking of muscle atrophy and fatty infiltration in entities such as muscular dystrophies. Multivoxel magnetic resonance spectroscopy (MRS) now allows a more thorough, complete evaluation of a muscle of interest without the inherent sampling bias of single-voxel MRS or biopsy. Diffusion MRI allows quantification of muscle inflammation and capillary perfusion as well as muscle fiber tracking.
Collapse
Affiliation(s)
- Vivek Kalia
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| | - Doris G Leung
- The Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland
| | - Darryl B Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| | - Filippo Del Grande
- Servizio si Radiologia del Sottoceneri, Ospedale Regionale di Lugano, Lugano, Ticino, Switzerland
| | - John A Carrino
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| |
Collapse
|
21
|
Loehr JA, Stinnett GR, Hernández-Rivera M, Roten WT, Wilson LJ, Pautler RG, Rodney GG. Eliminating Nox2 reactive oxygen species production protects dystrophic skeletal muscle from pathological calcium influx assessed in vivo by manganese-enhanced magnetic resonance imaging. J Physiol 2016; 594:6395-6405. [PMID: 27555555 PMCID: PMC5088246 DOI: 10.1113/jp272907] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/12/2016] [Indexed: 01/18/2023] Open
Abstract
KEY POINTS Inhibiting Nox2 reactive oxygen species (ROS) production reduced in vivo calcium influx in dystrophic muscle. The lack of Nox2 ROS production protected against decreased in vivo muscle function in dystrophic mice. Manganese-enhanced magnetic resonance imaging (MEMRI) was able to detect alterations in basal calcium levels in skeletal muscle and differentiate disease status. Administration of Mn2+ did not affect muscle function or the health of the animal, and Mn2+ was cleared from skeletal muscle rapidly. We conclude that MEMRI may be a viable, non-invasive technique to monitor molecular alterations in disease progression and evaluate the effectiveness of potential therapies for Duchenne muscular dystrophy. ABSTRACT Duchenne muscular dystrophy (DMD) is an X-linked progressive degenerative disease resulting from a mutation in the gene that encodes dystrophin, leading to decreased muscle mechanical stability and force production. Increased Nox2 reactive oxygen species (ROS) production and sarcolemmal Ca2+ influx are early indicators of disease pathology, and eliminating Nox2 ROS production reduces aberrant Ca2+ influx in young mdx mice, a model of DMD. Various imaging modalities have been used to study dystrophic muscle in vivo; however, they are based upon alterations in muscle morphology or inflammation. Manganese has been used for indirect monitoring of calcium influx across the sarcolemma and may allow detection of molecular alterations in disease progression in vivo using manganese-enhanced magnetic resonance imaging (MEMRI). Therefore, we hypothesized that eliminating Nox2 ROS production would decrease calcium influx in adult mdx mice and that MEMRI would be able to monitor and differentiate disease status in dystrophic muscle. Both in vitro and in vivo data demonstrate that eliminating Nox2 ROS protected against aberrant Ca2+ influx and improved muscle function in dystrophic muscle. MEMRI was able to differentiate between different pathological states in vivo, with no long-term effects on animal health or muscle function. We conclude that MEMRI is a viable, non-invasive technique to differentiate disease status and might provide a means to monitor and evaluate the effectiveness of potential therapies in dystrophic muscle.
Collapse
Affiliation(s)
- James A Loehr
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Gary R Stinnett
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | - Wesley T Roten
- SMART Program, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Lon J Wilson
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Robia G Pautler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb. PLoS One 2016; 11:e0147669. [PMID: 27115354 PMCID: PMC4846001 DOI: 10.1371/journal.pone.0147669] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/06/2016] [Indexed: 01/19/2023] Open
Abstract
Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion.
Collapse
|
23
|
Shen ZT, Zheng S, Gounis MJ, Sigalov AB. Diagnostic Magnetic Resonance Imaging of Atherosclerosis in Apolipoprotein E Knockout Mouse Model Using Macrophage-Targeted Gadolinium-Containing Synthetic Lipopeptide Nanoparticles. PLoS One 2015; 10:e0143453. [PMID: 26569115 PMCID: PMC4646679 DOI: 10.1371/journal.pone.0143453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/04/2015] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease is the leading cause of death in Western cultures. The vast majority of cardiovascular events, including stroke and myocardial infarction, result from the rupture of vulnerable atherosclerotic plaques, which are characterized by high and active macrophage content. Current imaging modalities including magnetic resonance imaging (MRI) aim to characterize anatomic and structural features of plaques rather than their content. Previously, we reported that macrophage-targeted delivery of gadolinium (Gd)-based contrast agent (GBCA-HDL) using high density lipoproteins (HDL)-like particles significantly enhances the detection of plaques in an apolipoprotein (apo) E knockout (KO) mouse model, with an atherosclerotic wall/muscle normalized enhancement ratio (NER) of 120% achieved. These particles are comprised of lipids and synthetic peptide fragments of the major protein of HDL, apo A-I, that contain a naturally occurring modification which targets the particles to macrophages. Targeted delivery minimizes the Gd dose and thus reduces the adverse effects of Gd. The aims of the current study were to test whether varying the GBCA-HDL particle shape and composition can further enhance atherosclerotic plaque MRI and control organ clearance of these agents. We show that the optimized GBCA-HDL particles are efficiently delivered intracellularly to and uptaken by both J774 macrophages in vitro and more importantly, by intraplaque macrophages in vivo, as evidenced by NER up to 160% and higher. This suggests high diagnostic power of our GBCA-HDL particles in the detection of vulnerable atherosclerotic plaques. Further, in contrast to discoidal, spherical GBCA-HDL exhibit hepatic clearance, which could further diminish adverse renal effects of Gd. Finally, activated macrophages are reliable indicators of any inflamed tissues and are implicated in other areas of unmet clinical need such as rheumatoid arthritis, sepsis and cancer, suggesting the expanded diagnostic and prognostic use of this method.
Collapse
Affiliation(s)
- Zu T. Shen
- SignaBlok, Inc, Shrewsbury, Massachusetts, United States of America
| | - Shaokuan Zheng
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Matthew J. Gounis
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | |
Collapse
|