1
|
Castro-Rodriguez B, Franco-Sotomayor G, Orlando SA, Garcia-Bereguiain MÁ. Molecular epidemiology of Mycobacterium tuberculosis in Ecuador: Recent advances and future challenges. J Clin Tuberc Other Mycobact Dis 2024; 37:100465. [PMID: 39184342 PMCID: PMC11342892 DOI: 10.1016/j.jctube.2024.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Tuberculosis (TB) is one of the three leading causes of death from a single infectious agent, Mycobacterium tuberculosis (MTB), together with COVID-19 and HIV/AIDS. This disease places a heavy burden on countries with low socio-economic development and aggravates existing inequalities. For the year 2021, estimations for Ecuador were 8500 TB cases, of which 370 were associated to multiple drug resistance (TB-MDR), and 1160 deaths. In the same year, Ecuador notified 5973 total cases, 401 of them were TB-MDR, pointing out an under diagnosis problem. The few molecular epidemiology studies available conclude that L4 is the most prevalent MTB lineage in Ecuador (with LAM as the main L4 sublineage), but L2-Beijing family is also present at low prevalence. Nevertheless, with less than 1 % MTB isolates genetically characterized by either MIRU-VNTR, spolygotyping or WGS to date, molecular epidemiology research must me improved to assist the TB surveillance and control program in Ecuador.
Collapse
Affiliation(s)
| | - Greta Franco-Sotomayor
- Instituto Nacional de Investigación y Salud Pública, Guayaquil, Ecuador
- Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Solón Alberto Orlando
- Instituto Nacional de Investigación y Salud Pública, Guayaquil, Ecuador
- Universidad Espíritu Santo, Guayaquil, Ecuador
| | | |
Collapse
|
2
|
Castro-Rodriguez B, León-Ordóñez K, Franco-Sotomayor G, Benítez-Medina JM, Jiménez-Pizarro N, Cárdenas-Franco G, Granda JC, Aguirre-Martínez JL, Orlando SA, Hermoso de Mendoza J, García-Bereguiain MÁ. Population structure of Mycobacterium tuberculosis in El Oro: A first insight into Ecuador-Peru tuberculosis transmission. J Infect Public Health 2024; 17:527-534. [PMID: 38310744 DOI: 10.1016/j.jiph.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) is a major public health concern in Ecuador and Peru, both settings of high burden of drug resistance TB. Molecular epidemiology tools are important to understand the transmission dynamics of Mycobacterium tuberculosis Complex (MTBC) and to track active transmission clusters of regional importance. This study is the first to address the transmission of TB between Peru and Ecuador through the population structure of MTBC lineages circulating in the Ecuadorian border province of "El Oro". METHODS A total number of 56 MTBC strains from this province for years 2012-2015 were included in the study and analyzed by 24-loci MIRU-VNTR and spoligotyping. RESULTS Genotyping revealed a high degree of diversity for MTBC in "El Oro", without active transmission clusters. MTBC L4 was predominant, with less than 2% of strains belonging to MTBC L2-Beijing. CONCLUSIONS These results may suggest that TB dynamics in this rural and semi-urban area would not be linked to highly transmitted strains like MTBC L2-Beijing from Peru, but related to TB relapse; although further studies with larger MTBC cultures collection from recent years are needed. Nevertheless, we recommend to reinforce TB surveillance programs in remote rural settings and border regions in Ecuador.
Collapse
Affiliation(s)
| | - Kerly León-Ordóñez
- One Health Research Group. Universidad de las Américas, Quito, Ecuador; Yachay Tech University, Urcuquí, Ecuador
| | - Greta Franco-Sotomayor
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Guayaquil, Ecuador; Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | | | - Natalia Jiménez-Pizarro
- Departamento de Sanidad Animal. Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | - Juan Carlos Granda
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Guayaquil, Ecuador
| | | | - Solon Alberto Orlando
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Guayaquil, Ecuador; Universidad Espíritu Santo, Guayaquil, Ecuador
| | | | | |
Collapse
|
3
|
Castro-Rodriguez B, Espinoza-Andrade S, Franco-Sotomayor G, Benítez-Medina JM, Jiménez-Pizarro N, Cárdenas-Franco C, Granda JC, Jouvin JL, Orlando SA, Hermoso de Mendoza J, García-Bereguiain MÁ. A first insight into tuberculosis transmission at the border of Ecuador and Colombia: a retrospective study of the population structure of Mycobacterium tuberculosis in Esmeraldas province. Front Public Health 2024; 12:1343350. [PMID: 38384875 PMCID: PMC10879341 DOI: 10.3389/fpubh.2024.1343350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Objective Tuberculosis (TB) is a major public health concern in Ecuador and Colombia, considering that both countries are high-burden TB settings. Molecular epidemiology is crucial to understand the transmission dynamics of Mycobacterium tuberculosis complex (MTBC) and to identify active transmission clusters of regional importance. Methods We studied the potential transmission of TB between Colombia and Ecuador through the analysis of the population structure of MTBC lineages circulating in the Ecuadorian province of Esmeraldas at the border with Colombia. A total of 105 MTBC strains were characterized by 24-loci MIRU-VNTR and spoligotyping. Results MTBC lineage 4 is only present in Esmeraldas; no MTBC strains belonging to Lineage 2-sublineage Beijing were found despite its presence in other provinces of Ecuador and, in Colombia. Genotyping results revealed a high degree of diversity for MTBC in Esmeraldas: Neither active transmission clusters within this province nor including MTBC strains from Colombia or other provinces of Ecuador were found. Conclusion Our data suggest that tuberculosis dynamics in this rural and isolated area may be not related to highly transmitted strains but could be influenced by other health determinants that favor TB relapse such as poverty and poor health system access. Further studies including a larger number of MTBC strains from Esmeraldas are necessary to test this hypothesis.
Collapse
Affiliation(s)
| | | | - Greta Franco-Sotomayor
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Guayaquil, Ecuador
- Facultad de Medicina, Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - José Manuel Benítez-Medina
- Departamento de Patología Infecciosa, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Natalia Jiménez-Pizarro
- Departamento de Patología Infecciosa, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | - Juan Carlos Granda
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Guayaquil, Ecuador
| | - Jose Luis Jouvin
- Facultad de Medicina, Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Solon Alberto Orlando
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Guayaquil, Ecuador
- Universidad Espíritu Santo, Guayaquil, Ecuador
| | - Javier Hermoso de Mendoza
- Departamento de Patología Infecciosa, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | |
Collapse
|
4
|
Keikha M, Majidzadeh M. Beijing genotype of Mycobacterium tuberculosis is associated with extensively drug-resistant tuberculosis: A global analysis. New Microbes New Infect 2021; 43:100921. [PMID: 34466269 PMCID: PMC8383003 DOI: 10.1016/j.nmni.2021.100921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 02/08/2023] Open
Abstract
We found that the frequency of Beijing genotype among XDR-TB strains was high. The data in this study would help guide the TB control program, and we however need further investigation to confirm the reliability of the present findings.
Collapse
Affiliation(s)
- M Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Majidzadeh
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Santos-Lazaro D, Gavilan RG, Solari L, Vigo AN, Puyen ZM. Whole genome analysis of extensively drug resistant Mycobacterium tuberculosis strains in Peru. Sci Rep 2021; 11:9493. [PMID: 33947918 PMCID: PMC8097007 DOI: 10.1038/s41598-021-88603-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/14/2021] [Indexed: 02/02/2023] Open
Abstract
Peru has the highest burden of multidrug-resistant tuberculosis in the Americas region. Since 1999, the annual number of extensively drug-resistant tuberculosis (XDR-TB) Peruvian cases has been increasing, becoming a public health challenge. The objective of this study was to perform genomic characterization of Mycobacterium tuberculosis strains obtained from Peruvian patients with XDR-TB diagnosed from 2011 to 2015 in Peru. Whole genome sequencing (WGS) was performed on 68 XDR-TB strains from different regions of Peru. 58 (85.3%) strains came from the most populated districts of Lima and Callao. Concerning the lineages, 62 (91.2%) strains belonged to the Euro-American Lineage, while the remaining 6 (8.8%) strains belonged to the East-Asian Lineage. Most strains (90%) had high-confidence resistance mutations according to pre-established WHO-confident grading system. Discordant results between microbiological and molecular methodologies were caused by mutations outside the hotspot regions analysed by commercial molecular assays (rpoB I491F and inhA S94A). Cluster analysis using a cut-off ≤ 10 SNPs revealed that only 23 (34%) strains evidenced recent transmission links. This study highlights the relevance and utility of WGS as a high-resolution approach to predict drug resistance, analyse transmission of strains between groups, and determine evolutionary patterns of circulating XDR-TB strains in the country.
Collapse
Affiliation(s)
| | - Ronnie G. Gavilan
- grid.419228.40000 0004 0636 549XInstituto Nacional de Salud, Lima, Peru ,grid.441740.20000 0004 0542 2122Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Lely Solari
- grid.419228.40000 0004 0636 549XInstituto Nacional de Salud, Lima, Peru
| | - Aiko N. Vigo
- grid.419228.40000 0004 0636 549XInstituto Nacional de Salud, Lima, Peru
| | - Zully M. Puyen
- grid.419228.40000 0004 0636 549XInstituto Nacional de Salud, Lima, Peru ,grid.441917.e0000 0001 2196 144XEscuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| |
Collapse
|
6
|
Lopez K, Arriaga MB, Aliaga JG, Barreda NN, Sanabria OM, Huang CC, Zhang Z, García-de-la-Guarda R, Lecca L, Calçada Carvalho AC, Kritski AL, Calderon RI. Dysglycemia is associated with Mycobacterium tuberculosis lineages in tuberculosis patients of North Lima-Peru. PLoS One 2021; 16:e0243184. [PMID: 33507930 PMCID: PMC7843012 DOI: 10.1371/journal.pone.0243184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
This study was performed to investigate the role of dysglycemia on the genetic diversity of Mycobacterium tuberculosis (MTB) among pulmonary tuberculosis (TB) patients to build scientific evidence about the possible mechanisms of TB transmission. MTB isolates obtained of patients affected by pulmonary tuberculosis from health care facilities of North Lima-Peru, were analyzed using whole genome sequencing and 24-locus mycobacterial interspersed repetitive-unit -variable-number tandem repeats (MIRU-VNTR). Subsequently, clinical and epidemiological characteristics were associated with clustering, lineages and comorbid conditions. The analysis carried out 112 pulmonary TB patients from various health centers in North Lima, 17 (15%) had diabetes mellitus (DM) and 33 (29%) had pre-diabetes (PDM). Latin American-Mediterranean, Haarlem and Beijing were the most frequent MTB lineages found in those patients. Previous TB (adjusted odds ratio [aOR] = 3.65; 95%CI: 1.32-17.81), age (aOR = 1.12; 95%CI: 1.03-1.45) and Beijing lineage (aOR = 3.53; 95%CI: 1.08-13.2) were associated with TB-DM comorbidity. Alcoholism (aOR = 2.92; 95%CI: 1.10-8.28), age (aOR = 1.05; 95%CI: 1.03-1.12) and Haarlem lineage (aOR = 2.54; 95%CI: 1.04-6.51) were associated with TB-PDM comorbidity. Beijing and Haarlem lineages were independently associated with TB-DM and TB-PDM comorbidities, respectively. Although these findings may be surprising, we must be cautious to suggest that dysglycemia could be associated with a highly clustering and predisposition of MTB lineages related to a serious impact on the severity of TB disease, which requires further research.
Collapse
Affiliation(s)
- Kattya Lopez
- Socios En Salud Sucursal Peru, Lima, Peru
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - María B. Arriaga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Brasileiro para Investigação da Tuberculose, Fundação José Silveira, Salvador, Bahia, Brazil
| | | | | | | | - Chuan-Chin Huang
- Division of Global Health Equity, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Zibiao Zhang
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | | | - Anna Cristina Calçada Carvalho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Afrânio L. Kritski
- Faculdade de Medicina, Programa Acadêmico de Tuberculose, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roger I. Calderon
- Socios En Salud Sucursal Peru, Lima, Peru
- Faculdade de Medicina, Programa Acadêmico de Tuberculose, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Garzon-Chavez D, Garcia-Bereguiain MA, Mora-Pinargote C, Granda-Pardo JC, Leon-Benitez M, Franco-Sotomayor G, Trueba G, de Waard JH. Population structure and genetic diversity of Mycobacterium tuberculosis in Ecuador. Sci Rep 2020; 10:6237. [PMID: 32277077 PMCID: PMC7148308 DOI: 10.1038/s41598-020-62824-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
Tuberculosis (TB) is a significant public health problem in Ecuador with an incidence of 43 per 100,000 inhabitants and an estimated multidrug-resistant-TB prevalence in all TB cases of 9%. Genotyping of Mycobacterium tuberculosis (MTBC) is important to understand regional transmission dynamics. This study aims to describe the main MTBC lineages and sublineages circulating in the country. A representative sample of 373 MTBC strains from 22 provinces of Ecuador, with data comprising geographic origin and drug susceptibility, were genotyped using 24 loci-MIRU-VNTR. For strains with an ambiguous sublineage designation, the lineage was confirmed by Regions of Difference analysis or by Whole Genome Sequencing. We show that lineage 4 is predominant in Ecuador (98.3% of the strains). Only 4 strains belong to lineages 2-sublineage Beijing and two strains to lineage 3-sublineage Delhi. Lineage 4 strains included sublineages LAM (45.7%), Haarlem (31.8%), S (13.1%), X (4.6%), Ghana (0.6%) and NEW (0.3%). The LAM sublineage showed the strongest association with antibiotic resistance. The X and S sublineages were found predominantly in the Coastal and the Andean regions respectively and the reason for the high prevalence of these strains in Ecuador should be addressed in future studies. Our database constitutes a tool for MIRU-VNTR pattern comparison of M. tuberculosis isolates for national and international epidemiologic studies and phylogenetic purposes.
Collapse
Affiliation(s)
- Daniel Garzon-Chavez
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto Nacional de Salud Pública e Investigación Leopoldo Izquieta Pérez, Guayaquil, Ecuador
| | - Miguel Angel Garcia-Bereguiain
- One Health Research Group. Universidad de las Américas, Quito, Ecuador.
- Laboratorio para Investigaciones Biomédicas. Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador.
| | - Carlos Mora-Pinargote
- Laboratorio para Investigaciones Biomédicas. Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | | | - Margarita Leon-Benitez
- Instituto Nacional de Salud Pública e Investigación Leopoldo Izquieta Pérez, Guayaquil, Ecuador
| | - Greta Franco-Sotomayor
- Instituto Nacional de Salud Pública e Investigación Leopoldo Izquieta Pérez, Guayaquil, Ecuador
- Facultad de Ciencias Médicas. Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Jacobus H de Waard
- One Health Research Group. Universidad de las Américas, Quito, Ecuador.
- Departamento de Tuberculosis, Servicio Autónomo Instituto de Biomedicina "Dr. Jacinto Convit", Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
8
|
Mora-Pinargote C, Garzon-Chavez D, Franco-Sotomayor G, Leon-Benitez M, Granda-Pardo JC, Trueba G, de Waard JH, Garcia-Bereguiain MA. Country-wide rapid screening for the Mycobacterium tuberculosis Beijing sublineage in Ecuador using a single-nucleotide polymorphism-polymerase chain reaction method. Int J Mycobacteriol 2019; 8:366-370. [PMID: 31793507 DOI: 10.4103/ijmy.ijmy_132_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Strains of the Beijing sublineage of Mycobacterium tuberculosis have caused large outbreaks of tuberculosis, often involving multidrug resistance strains and this genetically highly conserved family of strains predominates in some geographic areas. For most of the countries of Latin America, no country-wide studies about the prevalence of the Beijing lineage are available. Methods In this study, we determine the prevalence of the Beijing sublineage in Ecuador, using a large nation-wide sample of 991 isolates from the years 2014-2016 and with the strains, in case-related-proportional representation, emerging from most of the provinces of the country. The isolates were genotyped with asinglenucleotidespecific polymorphism (SNP) polymerase chain reaction for the Beijing sublineage. SNPpositive strains were confirmed as belonging to this lineage with 24 mycobacterial interspersed repetitive unitvariable number of tandem repeat and DNA sequencing. Results We identified only four Beijing isolates in this collection of 991 strains and calculated a prevalence rate of 0.43%. Conclusions Our study shows a limited dissemination of the Beijing strains in the Ecuadorian population. This in contrast with the neighbor countries of Peru and Colombia were locally a prevalence of up to 16% has been reported.
Collapse
Affiliation(s)
- Carlos Mora-Pinargote
- Laboratorio Para Investigaciones Biomedicas, Facultad de Ciencias de la Vida, Escuela Superior Politecnica del Litoral, Guayaquil, Ecuador
| | | | - Greta Franco-Sotomayor
- Instituto Nacional de Salud Publica e Investigacion "Leopoldo Izquieta Perez", Guayaquil, Ecuador; Facultad de Ciencias de la Salud, Universidad Catolica Santiago de Guayaquil, Guayaquil, Venezuela
| | - Margarita Leon-Benitez
- Instituto Nacional de Salud Publica e Investigacion "Leopoldo Izquieta Perez", Guayaquil, Ecuador
| | - Juan Carlos Granda-Pardo
- Instituto Nacional de Salud Publica e Investigacion "Leopoldo Izquieta Perez", Guayaquil, Ecuador
| | - Gabriel Trueba
- Instituto de Microbiologia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jacobus Henri de Waard
- One Health Research Group, Universidad de las Americas, Quito; Laboratorio de Tuberculosis, Instituto de Biomedicina Dr. Jacinto Convit, Universidad Central de Venezuela, Caracas, Venezuela
| | - Miguel Angel Garcia-Bereguiain
- Laboratorio Para Investigaciones Biomedicas, Facultad de Ciencias de la Vida, Escuela Superior Politecnica del Litoral, Guayaquil, Ecuador; One Health Research Group, Universidad de las Americas, Quito, Venezuela
| |
Collapse
|
9
|
Cerezo-Cortés MI, Rodríguez-Castillo JG, Hernández-Pando R, Murcia MI. Circulation of M. tuberculosis Beijing genotype in Latin America and the Caribbean. Pathog Glob Health 2019; 113:336-351. [PMID: 31903874 PMCID: PMC7006823 DOI: 10.1080/20477724.2019.1710066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lineage 2 (East Asian), which includes the Beijing genotype, is one of the most prevalent lineages of Mycobacterium tuberculosis (Mtb) throughout the world. The Beijing family is associated to hypervirulence and drug-resistant tuberculosis. The study of this genotype's circulation in Latin America is crucial for achieving total control of TB, the goal established by the World Health Organization, for the American sub-continent, before 2035. In this sense, the present work presents an overview of the status of the Beijing genotype for this region, with a bibliographical review, and data analysis of MIRU-VNTRs for available Beijing isolates. Certain countries present a prevalent trend of <5%, suggesting low transmissibility for the region, with the exception of Cuba (17.2%), Perú (16%) and Colombia (5%). Minimum Spanning Tree analysis, obtained from MIRU-VNTR data, shows distribution of specific clonal complex strains in each country. From this data, in most countries, we found that molecular epidemiology has not been a tool used for the control of TB, suggesting that the Beijing genotype may be underestimated in Latin America. It is recommended that countries with the highest incidence of the Beijing genotype use effective control strategies and increased care, as a requirement for public health systems.
Collapse
Affiliation(s)
- MI Cerezo-Cortés
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - JG Rodríguez-Castillo
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - R Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition, México D.F., Mexico
| | - MI Murcia
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
10
|
Garzon-Chavez D, Zurita J, Mora-Pinargote C, Franco-Sotomayor G, Leon-Benitez M, Granda-Pardo JC, Trueba G, Garcia-Bereguiain MA, de Waard JH. Prevalence, Drug Resistance, and Genotypic Diversity of the Mycobacterium tuberculosis Beijing Family in Ecuador. Microb Drug Resist 2019; 25:931-937. [PMID: 30883259 DOI: 10.1089/mdr.2018.0429] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Beijing family, the most successful Mycobacterium tuberculosis lineage, is considered hypervirulent, associated with clustering and has a strong association with multidrug-resistant tuberculosis. The Beijing strains have spread worldwide and also to Latin America. Genotyping of a countrywide collection of 380 M. tuberculosis strains from Ecuador, with 24-loci mycobacterial interspersed repetitive units-variable number tandem repeats (MIRU-VNTR), revealed only six Beijing strains, but four of these were MDR-TB. There was no clustering as all six strains had very distinct MIRU-VNTR profiles that have not been reported in the rest of Latin America. Although active transmission for Beijing has been described for the neighboring countries Peru and Colombia, there is no evidence that Beijing strains in Ecuador are more frequently transmitted than other strains. Moreover, the low prevalence (1.6%) of the Beijing sublineage in Ecuador challenges the concept of hyperadaptability and transmissibility of the Beijing strains in our country.
Collapse
Affiliation(s)
- Daniel Garzon-Chavez
- 1 Instituto de Microbiología and Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jeannete Zurita
- 2 Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.,3 Zurita & Zurita Laboratorios, Unidad de Investigaciones en Biomedicina, Quito, Ecuador
| | - Carlos Mora-Pinargote
- 4 Laboratorio Para Investigaciones Biomedicas, Facultad de Ciencias de la Vida, Escuela Superior Politecnica del Litoral, Guayaquil, Ecuador
| | - Greta Franco-Sotomayor
- 5 Instituto de Salud Pública e Investigacion Leopoldo Izquieta Perez, Guayaquil, Ecuador
| | - Margarita Leon-Benitez
- 5 Instituto de Salud Pública e Investigacion Leopoldo Izquieta Perez, Guayaquil, Ecuador
| | | | - Gabriel Trueba
- 1 Instituto de Microbiología and Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Miguel Angel Garcia-Bereguiain
- 4 Laboratorio Para Investigaciones Biomedicas, Facultad de Ciencias de la Vida, Escuela Superior Politecnica del Litoral, Guayaquil, Ecuador.,6 One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador.,7 Escuela de Ciencias Biologicas e Ingeniería, Universidad Yachay Tech, Urcuqui, Ecuador
| | - Jacobus H de Waard
- 6 One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador.,7 Escuela de Ciencias Biologicas e Ingeniería, Universidad Yachay Tech, Urcuqui, Ecuador.,8 Laboratorio de Tuberculosis, Instituto de Biomedicina, Hospital Vargas, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
11
|
Woodman M, Haeusler IL, Grandjean L. Tuberculosis Genetic Epidemiology: A Latin American Perspective. Genes (Basel) 2019; 10:genes10010053. [PMID: 30654542 PMCID: PMC6356704 DOI: 10.3390/genes10010053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
There are an estimated 10 million new cases of tuberculosis worldwide annually, with 282,000 new or relapsed cases each year reported from the Americas. With improvements in genome sequencing technology, it is now possible to study the genetic diversity of tuberculosis with much greater resolution. Although tuberculosis bacteria do not engage in horizontal gene transfer, the genome is far more variable than previously thought. The study of genome-wide variation in tuberculosis has improved our understanding of the evolutionary origins of tuberculosis, the arrival of tuberculosis in Latin America, the genetic determinants of drug resistance, and lineage-specific associations with important clinical phenotypes. This article reviews what is known about the arrival of tuberculosis in Latin America, the genetic diversity of tuberculosis in Latin America, and the genotypic determinants of clinical phenotypes.
Collapse
Affiliation(s)
- Marc Woodman
- Institute of Child Health, University College London, London WC1N 3JH, UK.
| | - Ilsa L Haeusler
- Institute of Child Health, University College London, London WC1N 3JH, UK.
| | - Louis Grandjean
- Institute of Child Health, University College London, London WC1N 3JH, UK.
- Department of Medicine, Imperial College London, London W2 1NY, UK.
- Great Ormond Street Hospital, Institute of Child Health, University College London, London WC1N 3JH, UK.
- Laboratorio de Investigacion y Desarollo, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porres 15102, Lima, Peru.
| |
Collapse
|
12
|
Perdigão J, Silva C, Diniz J, Pereira C, Machado D, Ramos J, Silva H, Abilleira F, Brum C, Reis AJ, Macedo M, Scaini JL, Silva AB, Esteves L, Macedo R, Maltez F, Clemente S, Coelho E, Viegas S, Rabna P, Rodrigues A, Taveira N, Jordao L, Kritski A, Lapa E Silva JR, Mokrousov I, Couvin D, Rastogi N, Couto I, Pain A, McNerney R, Clark TG, von Groll A, Dalla-Costa ER, Rossetti ML, Silva PEA, Viveiros M, Portugal I. Clonal expansion across the seas as seen through CPLP-TB database: A joint effort in cataloguing Mycobacterium tuberculosis genetic diversity in Portuguese-speaking countries. INFECTION GENETICS AND EVOLUTION 2018; 72:44-58. [PMID: 29559379 PMCID: PMC6598853 DOI: 10.1016/j.meegid.2018.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
Abstract
Tuberculosis (TB) remains a major health problem within the Community of Portuguese Language Speaking Countries (CPLP). Despite the marked variation in TB incidence across its member-states and continued human migratory flux between countries, a considerable gap in the knowledge on the Mycobacterium tuberculosis population structure and strain circulation between the countries still exists. To address this, we have assembled and analysed the largest CPLP M. tuberculosis molecular and drug susceptibility dataset, comprised by a total of 1447 clinical isolates, including 423 multidrug-resistant isolates, from five CPLP countries. The data herein presented reinforces Latin American and Mediterranean (LAM) strains as the hallmark of M. tuberculosis populational structure in the CPLP coupled with country-specific differential prevalence of minor clades. Moreover, using high-resolution typing by 24-loci MIRU-VNTR, six cross-border genetic clusters were detected, thus supporting recent clonal expansion across the Lusophone space. To make this data available to the scientific community and public health authorities we developed CPLP-TB (available at http://cplp-tb.ff.ulisboa.pt), an online database coupled with web-based tools for exploratory data analysis. As a public health tool, it is expected to contribute to improved knowledge on the M. tuberculosis population structure and strain circulation within the CPLP, thus supporting the risk assessment of strain-specific trends. The Community of Portuguese Speaking Countries (CPLP) occupies a vast geographical area. Three CPLP countries are shortlisted in the WHO's list of Top 30 high-burden countries. Common Mycobacterium tuberculosis population structure denote historical strain flow. Cross-border clusters suggest recent intercontinental tuberculosis transmission. CPLP-TB: a novel strain database and framework for collaborative studies and strain tracing.
Collapse
Affiliation(s)
- João Perdigão
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| | - Carla Silva
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Jaciara Diniz
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Catarina Pereira
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Machado
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Jorge Ramos
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Hugo Silva
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Fernanda Abilleira
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Clarice Brum
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Ana J Reis
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Maíra Macedo
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - João L Scaini
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Ana B Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Leonardo Esteves
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil
| | - Rita Macedo
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Fernando Maltez
- Serviço de Doenças Infecciosas, Hospital de Curry Cabral, Lisboa, Portugal
| | - Sofia Clemente
- Hospital da Divina Providência, Serviço de Doenças Infecciosas, Luanda, Angola
| | - Elizabeth Coelho
- Programa Nacional de Controlo da Tuberculose, Ministério da Saúde de Moçambique, Mozambique
| | - Sofia Viegas
- Instituto Nacional de Saúde, Ministério da Saúde de Moçambique, Mozambique
| | - Paulo Rabna
- Instituto Nacional de Saúde Pública, Projecto de Saúde de Bandim (INASA/PSB), Bissau, Guinea-Bissau
| | - Amabélia Rodrigues
- Instituto Nacional de Saúde Pública, Projecto de Saúde de Bandim (INASA/PSB), Bissau, Guinea-Bissau
| | - Nuno Taveira
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Luísa Jordao
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Afrânio Kritski
- Academic Tuberculosis Program, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Lapa E Silva
- Thoracic Diseases Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics (former Laboratory of Molecular Microbiology), St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière Abymes, Guadeloupe, France
| | - Isabel Couto
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ruth McNerney
- Lung Infection and Immunity Unit, UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Observatory, 7925, Cape Town, South Africa
| | - Taane G Clark
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Andrea von Groll
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Elis R Dalla-Costa
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil
| | - Maria Lúcia Rossetti
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil; Universidade Luterana do Brasil (ULBRA/RS), Porto Alegre, Brazil
| | - Pedro E A Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Isabel Portugal
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
13
|
Munro-Rojas D, Fernandez-Morales E, Zarrabal-Meza J, Martínez-Cazares MT, Parissi-Crivelli A, Fuentes-Domínguez J, Séraphin MN, Lauzardo M, González-y-Merchand JA, Rivera-Gutierrez S, Zenteno-Cuevas R. Genetic diversity of drug and multidrug-resistant Mycobacterium tuberculosis circulating in Veracruz, Mexico. PLoS One 2018; 13:e0193626. [PMID: 29543819 PMCID: PMC5854261 DOI: 10.1371/journal.pone.0193626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/14/2018] [Indexed: 11/25/2022] Open
Abstract
Background Mexico is one of the most important contributors of drug and multidrug-resistant tuberculosis in Latin America; however, knowledge of the genetic diversity of drug-resistant tuberculosis isolates is limited. Methods In this study, the genetic structure of 112 Mycobacterium tuberculosis strains from the southeastern Mexico was determined by spoligotyping and 24-loci MIRU-VNTRs. Findings The results show eight major lineages, the most of which was T1 (24%), followed by LAM (16%) and H (15%). A total of 29 (25%) isolates were identified as orphan. The most abundant SITs were SIT53/T1 and SIT42/LAM9 with 10 isolates each and SIT50/H3 with eight isolates. Fifty-two spoligotype patterns, twenty-seven clusters and ten clonal complexes were observed, demonstrating an important genetic diversity of drug and multidrug-resistant tuberculosis isolates in circulation and transmission level of these aggravated forms of tuberculosis. Being defined as orphan or as part of an orphan cluster, was a risk factor for multidrug resistant-tuberculosis (OR 2.5, IC 1.05–5.86 and OR 3.3, IC 1–11.03, respectively). Multiple correspondence analyses showed association of some clusters and SITs with specific geographical locations. Conclusions Our study provides one of the most detailed description of the genetic structure of drug and multidrug-resistant tuberculosis strains in southeast Mexico, establishing for the first time a baseline of the genotypes observed in resistant isolates circulating, however further studies are required to better elucidate the genetic structure of tuberculosis in region and the factors that could be participating in their dispersion.
Collapse
Affiliation(s)
- Daniela Munro-Rojas
- Instituto de Salud Pública, Universidad Veracruzana, Jalapa, Veracruz, México
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, México
| | - Esdras Fernandez-Morales
- Instituto de Salud Pública, Universidad Veracruzana, Jalapa, Veracruz, México
- Programa de Maestría en Ciencias de la Salud, Universidad Veracruzana, Veracruz, México
| | - José Zarrabal-Meza
- Laboratorio Estatal de Salud Pública, Secretaria de Salud, Veracruz, México
| | | | | | | | - Marie Nancy Séraphin
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Michael Lauzardo
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | | | - Sandra Rivera-Gutierrez
- Escuela Nacional de Ciencia Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | | |
Collapse
|
14
|
Pasechnik O, Dymova MA, Stasenko VL, Blokh AI, Tatarintseva MP, Kolesnikova LP, Filipenko ML. Molecular & genetic characteristics of Mycobacterium tuberculosis strains circulating in the southern part of West Siberia. Indian J Med Res 2017; 146:49-55. [PMID: 29168460 PMCID: PMC5719607 DOI: 10.4103/ijmr.ijmr_162_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background & objectives: A complicated epidemiological situation characterized by significantly high tuberculosis (TB) morbidity is observed in West Siberia. This study was aimed to investigate the genetic characteristics of Mycobacterium tuberculosis circulating in the southern part of West Siberia (in the Omsk region). Methods: From March 2013 to January 2015, 100 isolates of M. tuberculosis were obtained from patients with pulmonary TB living in the Omsk region. Drug susceptibility testing was performed on Lowenstein-Jensen medium (absolute concentration method). Genetic typing of isolates was carried out by variable number tandem repeats of mycobacterial interspersed repetitive units (MIRU-VNTR) typing and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The genetic types and characteristics of cluster strains were determined using 15 MIRU-VNTR loci. Results: Thirty six VNTR types were found. Twenty six (26.0%) isolates had a unique profile, and the remaining 74 were grouped in 10 clusters containing from 2 to 23 isolates. The Beijing genotype was found in 72 isolates, 61 (85.0%) of which were part of five clusters that included two large clusters containing 23 isolates. Other genetic families, such as Latin-American Mediterranean (LAM, 11.0%), S family (2.0%) and Haarlem (4.0%), were also detected. The genetic family of 11 isolates could not be determined. Six different VNTR profiles were found in these non-classified isolates. Only 16 per cent of isolates were sensitive to anti-TB drugs. The katG315 (94.8%) and rpoB531 (92.2%) mutations were identified in 77 multidrug-resistant M. tuberculosis isolates. Interpretation & conclusions: This study showed that the M. tuberculosis population in the Omsk region was heterogeneous. The Beijing genotype predominated and was actively spreading. The findings obtained point to the need for the implementation of more effective preventive measures to stop the spread of drug-resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Oksana Pasechnik
- Department of Epidemiology, Omsk State Medical University, Omsk, Russia
| | - Maya Alexandrovna Dymova
- Laboratory of Pharmacogenomics, Institute of Chemical Biology & Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | | | | | | | | | - Maksim Leonidovich Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology & Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| |
Collapse
|
15
|
Chen C, Chen L, Chen C, Chen Q, Zhao Q, Dong Y. The Distribution Frequency of Interferon-Gamma Receptor 1 Gene Polymorphisms in Interferon- γ Release Assay-Positive Patients. DISEASE MARKERS 2017; 2017:4031671. [PMID: 29209098 PMCID: PMC5676416 DOI: 10.1155/2017/4031671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/01/2017] [Accepted: 10/08/2017] [Indexed: 11/25/2022]
Abstract
Tuberculosis is caused by mycobacterium, a potentially fatal infectious bacterium. In recent years, TB cases increased in the whole world. WHO statistics data shows that the world's annual tuberculosis incidence was 8~10 million with about 3 million deaths. Several studies have shown that susceptibility to tuberculosis may be associated with IFNGR1 gene polymorphisms. Here, we report the distribution frequency of IFNGR1 gene polymorphisms in 103 cases of IGA-negative patients and 100 cases of IGA-positive patients from China by sequencing the IFNGR1 proximal ~750 bp promoter region. We found a total of 5 types of site mutations: -611 (G/A), -56 (T/C), -255 (C/T), -359 (T/C), and -72 (C/T). The two main types of gene polymorphisms among the IGA-negative and IGA-positive groups were -611 (G/A), with mutation rates of 88.3% and 78.4%, respectively, and -56 (T/C), with mutation rates of 84.5% and 83.8%, respectively, which had no statistical significance, and there was no correlation with the incidence of tuberculosis.
Collapse
Affiliation(s)
- Changguo Chen
- Department of Clinical Laboratory, The Navy General Hospital, No. 6 Fucheng Road, Beijing 100037, China
| | - Lei Chen
- Department of Clinical Laboratory, The Navy General Hospital, No. 6 Fucheng Road, Beijing 100037, China
| | - Changwei Chen
- Department of Pathology, Donghua Hospital Affiliated to Zhongshan University, No. 1 Dongcheng Road, Dongguan, Guangdong 523110, China
| | - Qiuyuan Chen
- Department of Clinical Laboratory, The Navy General Hospital, No. 6 Fucheng Road, Beijing 100037, China
| | - Qiangyuan Zhao
- Department of Clinical Laboratory, The Navy General Hospital, No. 6 Fucheng Road, Beijing 100037, China
| | - Youyou Dong
- Department of Clinical Laboratory, The Navy General Hospital, No. 6 Fucheng Road, Beijing 100037, China
| |
Collapse
|
16
|
Roycroft E, O'Toole RF, Fitzgibbon MM, Montgomery L, O'Meara M, Downes P, Jackson S, O'Donnell J, Laurenson IF, McLaughlin AM, Keane J, Rogers TR. Molecular epidemiology of multi- and extensively-drug-resistant Mycobacterium tuberculosis in Ireland, 2001-2014. J Infect 2017; 76:55-67. [PMID: 29031637 DOI: 10.1016/j.jinf.2017.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The primary objective of this work was to examine the acquisition and spread of multi-drug resistant (MDR) tuberculosis (TB) in Ireland. METHODS All available Mycobacterium tuberculosis complex (MTBC) isolates (n = 42), from MDR-TB cases diagnosed in Ireland between 2001 and 2014, were analysed using phenotypic drug-susceptibility testing, Mycobacterial-Interspersed-Repetitive-Units Variable-Number Tandem-Repeat (MIRU-VNTR) genotyping, and whole-genome sequencing (WGS). RESULTS The lineage distribution of the MDR-TB isolates comprised 54.7% Euro-American, 33.3% East Asian, 7.2% East African Indian, and 4.8% Indo-Oceanic. A significant association was identified between the East Asian Beijing sub-lineage and the relative risk of an isolate being MDR. Over 75% of MDR-TB cases were confirmed in non-Irish born individuals and 7 MIRU-VNTR genotypes were identical to clusters in other European countries indicating cross-border spread of MDR-TB to Ireland. WGS data provided the first evidence in Ireland of in vivo microevolution of MTBC isolates from drug-susceptible to MDR, and from MDR to extensively-drug resistant (XDR). In addition, they found that the katG S315T isoniazid and rpoB S450L rifampicin resistance mutations were dominant across the different MTBC lineages. CONCLUSIONS Our molecular epidemiological analyses identified the spread of MDR-TB to Ireland from other jurisdictions and its potential to evolve to XDR-TB.
Collapse
Affiliation(s)
- E Roycroft
- Irish Mycobacteria Reference Laboratory, Labmed Directorate, St. James's Hospital, Dublin, Ireland; Department of Clinical Microbiology, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland.
| | - R F O'Toole
- Department of Clinical Microbiology, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - M M Fitzgibbon
- Irish Mycobacteria Reference Laboratory, Labmed Directorate, St. James's Hospital, Dublin, Ireland; Department of Clinical Microbiology, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - L Montgomery
- Irish Mycobacteria Reference Laboratory, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - M O'Meara
- Department of Public Health, Dr. Steeven's Hospital, Dublin, Ireland
| | - P Downes
- Department of Public Health, Dr. Steeven's Hospital, Dublin, Ireland
| | - S Jackson
- Health Protection Surveillance Centre, Dublin, Ireland
| | - J O'Donnell
- Health Protection Surveillance Centre, Dublin, Ireland
| | - I F Laurenson
- Scottish Mycobacteria Reference Laboratory, Edinburgh, UK
| | - A M McLaughlin
- Department of Respiratory Medicine, St. James's Hospital and Trinity Translational Medicine Institute Trinity College Dublin, Ireland
| | - J Keane
- Department of Respiratory Medicine, St. James's Hospital and Trinity Translational Medicine Institute Trinity College Dublin, Ireland
| | - T R Rogers
- Irish Mycobacteria Reference Laboratory, Labmed Directorate, St. James's Hospital, Dublin, Ireland; Department of Clinical Microbiology, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
17
|
Reynaud Y, Millet J, Rastogi N. Genetic Structuration, Demography and Evolutionary History of Mycobacterium tuberculosis LAM9 Sublineage in the Americas as Two Distinct Subpopulations Revealed by Bayesian Analyses. PLoS One 2015; 10:e0140911. [PMID: 26517715 PMCID: PMC4627653 DOI: 10.1371/journal.pone.0140911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) remains broadly present in the Americas despite intense global efforts for its control and elimination. Starting from a large dataset comprising spoligotyping (n = 21183 isolates) and 12-loci MIRU-VNTRs data (n = 4022 isolates) from a total of 31 countries of the Americas (data extracted from the SITVIT2 database), this study aimed to get an overview of lineages circulating in the Americas. A total of 17119 (80.8%) strains belonged to the Euro-American lineage 4, among which the most predominant genotypic family belonged to the Latin American and Mediterranean (LAM) lineage (n = 6386, 30.1% of strains). By combining classical phylogenetic analyses and Bayesian approaches, this study revealed for the first time a clear genetic structuration of LAM9 sublineage into two subpopulations named LAM9C1 and LAM9C2, with distinct genetic characteristics. LAM9C1 was predominant in Chile, Colombia and USA, while LAM9C2 was predominant in Brazil, Dominican Republic, Guadeloupe and French Guiana. Globally, LAM9C2 was characterized by higher allelic richness as compared to LAM9C1 isolates. Moreover, LAM9C2 sublineage appeared to expand close to twenty times more than LAM9C1 and showed older traces of expansion. Interestingly, a significant proportion of LAM9C2 isolates presented typical signature of ancestral LAM-RDRio MIRU-VNTR type (224226153321). Further studies based on Whole Genome Sequencing of LAM strains will provide the needed resolution to decipher the biogeographical structure and evolutionary history of this successful family.
Collapse
Affiliation(s)
- Yann Reynaud
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (YR); (NR)
| | - Julie Millet
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (YR); (NR)
| |
Collapse
|
18
|
Predominant Mycobacterium tuberculosis Families and High Rates of Recent Transmission among New Cases Are Not Associated with Primary Multidrug Resistance in Lima, Peru. J Clin Microbiol 2015; 53:1854-63. [PMID: 25809979 DOI: 10.1128/jcm.03585-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/20/2015] [Indexed: 11/20/2022] Open
Abstract
Sputum samples from new tuberculosis (TB) cases were collected over 2 years as part of a prospective study in the northeastern part of Lima, Peru. To measure the contribution of recent transmission to the high rates of multidrug resistance (MDR) in this area, Mycobacterium tuberculosis complex (MTBc) isolates were tested for drug susceptibility to first-line drugs and were genotyped by spoligotyping and 15-locus mycobacterial interspersed repetitive-unit (MIRU-15)-variable-number tandem repeat (VNTR) analysis. MDR was found in 6.8% of 844 isolates, of which 593 (70.3%) were identified as belonging to a known MTBc lineage, whereas 198 isolates (23.5%) could not be assigned to these lineages and 12 (1.4%) represented mixed infections. Lineage 4 accounted for 54.9% (n = 463) of the isolates, most of which belonged to the Haarlem family (n = 279). MIRU-15 analysis grouped 551/791 isolates (69.7%) in 102 clusters, with sizes ranging from 2 to 46 strains. The overall high clustering rate suggests a high level of recent transmission in this population, especially among younger patients (odds ratio [OR], 1.6; P = 0.01). Haarlem strains were more prone to cluster, compared to the other families taken together (OR, 2.0; P < 0.0001), while Beijing (OR, 0.6; P = 0.006) and LAM (OR, 0.7; P = 0.07) strains clustered less. Whereas streptomycin-resistant strains were more commonly found in clusters (OR, 1.8; P = 0.03), clustering rates did not differ between MDR and non-MDR strains (OR, 1.8; P = 0.1). Furthermore, only 16/51 MDR strains clustered with other MDR strains, suggesting that patients with primary MDR infections acquired the infections mostly from index cases outside the study population, such as retreated cases.
Collapse
|