1
|
Kulikowicz T, Sommers JA, Fuchs KF, Wu Y, Brosh RM. Purification and biochemical characterization of the G4 resolvase and DNA helicase FANCJ. Methods Enzymol 2024; 695:1-27. [PMID: 38521581 DOI: 10.1016/bs.mie.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
G-quadruplex (G4) DNA or RNA poses a unique nucleic acid structure in genomic transactions. Because of the unique topology presented by G4, cells have exquisite mechanisms and pathways to metabolize G4 that arise in guanine-rich regions of the genome such as telomeres, promoter regions, ribosomal DNA, and other chromosomal elements. G4 resolvases are often represented by a class of molecular motors known as helicases that disrupt the Hoogsteen hydrogen bonds in G4 by harnessing the chemical energy of nucleoside triphosphate hydrolysis. Of special interest to researchers in the field, including us, is the human FANCJ DNA helicase that efficiently resolves G4 DNA structures. Notably, FANCJ mutations are linked to Fanconi Anemia and are prominent in breast and ovarian cancer. Since our discovery that FANCJ efficiently resolves G4 DNA structures 15 years ago, we and other labs have characterized mechanistic aspects of FANCJ-catalyzed G4 resolution and its biological importance in genomic integrity and cellular DNA replication. In addition to its G4 resolvase function, FANCJ is also a classic DNA helicase that acts on conventional duplex DNA structures, which are relevant to the enzyme's role in interstrand cross link repair, double-strand break repair via homologous recombination, and response to replication stress. Here, we describe detailed procedures for the purification of recombinant FANCJ protein and characterization of its G4 resolvase and duplex DNA helicase activity.
Collapse
Affiliation(s)
- Tomasz Kulikowicz
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Joshua A Sommers
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Kathleen F Fuchs
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States.
| |
Collapse
|
2
|
Ruprecht NA, Singhal S, Schaefer K, Gill JS, Bansal B, Sens D, Singhal SK. Establishing a genomic radiation-age association for space exploration supplements lung disease differentiation. Front Public Health 2023; 11:1161124. [PMID: 37250098 PMCID: PMC10213902 DOI: 10.3389/fpubh.2023.1161124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/07/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose One possible way to quantify each individual's response or damage from ionizing radiation is to estimate their accelerated biological age following exposure. Since there is currently no definitive way to know if biological age estimations are accurate, we aim to establish a rad-age association using genomics as its foundation. Methods Two datasets were combined and used to empirically find the age cutoff between young and old patients. With age as both a categorical and continuous variable, two other datasets that included radiation exposure are used to test the interaction between radiation and age. The gene lists are oriented in preranked lists for both pathway and diseases analysis. Finally, these genes are used to evaluate another dataset on the clinical relevance in differentiating lung disease given ethnicity and sex using both pairwise t-tests and linear models. Results Using 12 well-known genes associated with aging, a threshold of 29-years-old was found to be the difference between young and old patients. The two interaction tests yielded 234 unique genes such that pathway analysis flagged IL-1 signaling and PRPP biosynthesis as significant with high cell proliferation diseases and carcinomas being a common trend. LAPTM4B was the only gene with significant interaction among lung disease, ethnicity, and sex, with fold change greater than two. Conclusion The results corroborate an initial association between radiation and age, given inflammation and metabolic pathways and multiple genes emphasizing mitochondrial function, oxidation, and histone modification. Being able to tie rad-age genes to lung disease supplements future work for risk assessment following radiation exposure.
Collapse
Affiliation(s)
- Nathan A. Ruprecht
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Sonalika Singhal
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| | - Kalli Schaefer
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Jappreet S. Gill
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Benu Bansal
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Donald Sens
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| | - Sandeep K. Singhal
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
3
|
When UDG and hAPE1 Meet Cyclopurines. How (5' R) and (5' S) 5',8-Cyclo-2'-deoxyadenosine and 5',8-Cyclo-2'-deoxyguanosine Affect UDG and hAPE1 Activity? Molecules 2021; 26:molecules26175177. [PMID: 34500606 PMCID: PMC8434022 DOI: 10.3390/molecules26175177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022] Open
Abstract
Ionizing radiation is a factor that seriously damages cellular mechanisms/macromolecules, e.g., by inducing damage in the human genome, such as 5′,8-cyclo-2′-deoxypurines (cdPus). CdPus may become a component of clustered DNA lesions (CDL), which are notably unfavorable for the base excision repair system (BER). In this study, the influence of 5′S and 5′R diastereomers of 5′,8-cyclo-2′-deoxyadenosine (cdA) and 5′,8-cyclo-2′-deoxyguanosine (cdG) on the uracil-DNA glycosylase (UDG) and human AP site endonuclease 1 (hAPE1) activity has been taken under consideration. Synthetic oligonucleotides containing 2′-deoxyuridine (dU) and cdPu were used as a model of single-stranded CDL. The activity of the UDG and hAPE1 enzymes decreased in the presence of RcdG compared to ScdG. Contrary to the above, ScdA reduced enzyme activity more than RcdA. The presented results show the influence of cdPus lesions located within CDL on the activity of the initial stages of BER dependently on their position toward dU. Numerous studies have shown the biological importance of cdPus (e.g., as a risk of carcinogenesis). Due to that, it is important to understand how to recognize and eliminate this type of DNA damage from the genome.
Collapse
|
4
|
Szewczuk M, Boguszewska K, Kaźmierczak-Barańska J, Karwowski BT. The Influence of 5' R and 5' S cdA and cdG on the Activity of BsmAI and SspI Restriction Enzymes. Molecules 2021; 26:molecules26123750. [PMID: 34205449 PMCID: PMC8234751 DOI: 10.3390/molecules26123750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/03/2023] Open
Abstract
Restriction endonucleases (REs) are intra-bacterial scissors that are considered tools in the fight against foreign genetic material. SspI and BsmAI, examined in this study, cleave dsDNA at their site of recognition or within a short distance of it. Both enzymes are representatives of type II REs, which have played an extremely important role in research on the genetics of organisms and molecular biology. Therefore, the study of agents affecting their activity has become highly important. Ionizing radiation may damage basic cellular mechanisms by inducing lesions in the genome, with 5',8-cyclo-2'-deoxypurines (cdPus) as a model example. Since cdPus may become components of clustered DNA lesions (CDLs), which are unfavorable for DNA repair pathways, their impact on other cellular mechanisms is worthy of attention. This study investigated the influence of cdPus on the elements of the bacterial restriction-modification system. In this study, it was shown that cdPus present in DNA affect the activity of REs. SspI was blocked by any cdPu lesion present at the enzyme's recognition site. When lesions were placed near the recognition sequence, the SspI was inhibited up to 46%. Moreover, (5'S)-5',8-cyclo-2'-deoxyadenosine (ScdA) present in the oligonucleotide sequence lowered BsmAI activity more than (5'R)-5',8-cyclo-2'-deoxyadenosine (RcdA). Interestingly, in the case of 5',8-cyclo-2'-deoxyguanosine (cdG), both 5'S and 5'R diastereomers inhibited BsmAI activity (up to 55% more than cdA). The inhibition was weaker when cdG was present at the recognition site rather than the cleavage site.
Collapse
|
5
|
Santos D, Mahtab M, Boavida A, Pisani FM. Role of the DDX11 DNA Helicase in Warsaw Breakage Syndrome Etiology. Int J Mol Sci 2021; 22:2308. [PMID: 33669056 PMCID: PMC7956524 DOI: 10.3390/ijms22052308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Warsaw breakage syndrome (WABS) is a genetic disorder characterized by sister chromatid cohesion defects, growth retardation, microcephaly, hearing loss and other variable clinical manifestations. WABS is due to biallelic mutations of the gene coding for the super-family 2 DNA helicase DDX11/ChlR1, orthologous to the yeast chromosome loss protein 1 (Chl1). WABS is classified in the group of "cohesinopathies", rare hereditary diseases that are caused by mutations in genes coding for subunits of the cohesin complex or protein factors having regulatory roles in the sister chromatid cohesion process. In fact, among the cohesion regulators, an important player is DDX11, which is believed to be important for the functional coupling of DNA synthesis and cohesion establishment at the replication forks. Here, we will review what is known about the molecular and cellular functions of human DDX11 and its role in WABS etiopathogenesis, even in light of recent findings on the role of cohesin and its regulator network in promoting chromatin loop formation and regulating chromatin spatial organization.
Collapse
Affiliation(s)
- Diana Santos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| | - Mohammad Mahtab
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ana Boavida
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| | - Francesca M. Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| |
Collapse
|
6
|
Bharti SK, Sommers JA, Awate S, Bellani MA, Khan I, Bradley L, King GA, Seol Y, Vidhyasagar V, Wu Y, Abe T, Kobayashi K, Shin-Ya K, Kitao H, Wold MS, Branzei D, Neuman KC, Brosh RM. A minimal threshold of FANCJ helicase activity is required for its response to replication stress or double-strand break repair. Nucleic Acids Res 2019; 46:6238-6256. [PMID: 29788478 PMCID: PMC6159516 DOI: 10.1093/nar/gky403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 05/01/2018] [Indexed: 01/24/2023] Open
Abstract
Fanconi Anemia (FA) is characterized by bone marrow failure, congenital abnormalities, and cancer. Of over 20 FA-linked genes, FANCJ uniquely encodes a DNA helicase and mutations are also associated with breast and ovarian cancer. fancj−/− cells are sensitive to DNA interstrand cross-linking (ICL) and replication fork stalling drugs. We delineated the molecular defects of two FA patient-derived FANCJ helicase domain mutations. FANCJ-R707C was compromised in dimerization and helicase processivity, whereas DNA unwinding by FANCJ-H396D was barely detectable. DNA binding and ATP hydrolysis was defective for both FANCJ-R707C and FANCJ-H396D, the latter showing greater reduction. Expression of FANCJ-R707C or FANCJ-H396D in fancj−/− cells failed to rescue cisplatin or mitomycin sensitivity. Live-cell imaging demonstrated a significantly compromised recruitment of FANCJ-R707C to laser-induced DNA damage. However, FANCJ-R707C expressed in fancj-/- cells conferred resistance to the DNA polymerase inhibitor aphidicolin, G-quadruplex ligand telomestatin, or DNA strand-breaker bleomycin, whereas FANCJ-H396D failed. Thus, a minimal threshold of FANCJ catalytic activity is required to overcome replication stress induced by aphidicolin or telomestatin, or to repair bleomycin-induced DNA breakage. These findings have implications for therapeutic strategies relying on DNA cross-link sensitivity or heightened replication stress characteristic of cancer cells.
Collapse
Affiliation(s)
- Sanjay Kumar Bharti
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Sanket Awate
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Irfan Khan
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Lynda Bradley
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Graeme A King
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Venkatasubramanian Vidhyasagar
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Yuliang Wu
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Takuye Abe
- IFOM, the FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Koji Kobayashi
- IFOM, the FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Kazuo Shin-Ya
- Department of Life Science and Biotechnology Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST) 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Hiroyuki Kitao
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Marc S Wold
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Dana Branzei
- IFOM, the FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
7
|
Diastereomeric Recognition of 5',8-cyclo-2'-Deoxyadenosine Lesions by Human Poly(ADP-ribose) Polymerase 1 in a Biomimetic Model. Cells 2019; 8:cells8020116. [PMID: 30717407 PMCID: PMC6406461 DOI: 10.3390/cells8020116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/20/2019] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
5’,8-Cyclo-2’-deoxyadenosine (cdA), in the 5’R and 5’Sdiastereomeric forms, are typical non strand-break oxidative DNA lesions, induced by hydroxyl radicals, with emerging importance as a molecular marker. These lesions are exclusively repaired by the nucleotide excision repair (NER) mechanism with a low efficiency, thus readily accumulating in the genome. Poly(ADP-ribose) polymerase1 (PARP1) acts as an early responder to DNA damage and plays a key role as a nick sensor in the maintenance of the integrity of the genome by recognizing nicked DNA. So far, it was unknown whether the two diastereomeric cdA lesions could induce specific PARP1 binding. Here, we provide the first evidence of PARP1 to selectively recognize the diastereomeric lesions of 5’S-cdA and 5’R-cdA in vitro as compared to deoxyadenosine in model DNA substrates (23-mers) by using circular dichroism, fluorescence spectroscopy, immunoblotting analysis, and gel mobility shift assay. Several features of the recognition of the damaged and undamaged oligonucleotides by PARP1 were characterized. Remarkably, PARP1 exhibits different affinities in binding to a double strand (ds) oligonucleotide, which incorporates cdA lesions in R and S diastereomeric form. In particular, PARP1 proved to bind oligonucleotides, including a 5’S-cdA, with a higher affinity constant for the 5’S lesion in a model of ds DNA than 5’R-cdA, showing different recognition patterns, also compared with undamaged dA. This new finding highlights the ability of PARP1 to recognize and differentiate the distorted DNA backbone in a biomimetic system caused by different diastereomeric forms of a cdA lesion.
Collapse
|
8
|
Hoffmeister H, Fuchs A, Strobl L, Sprenger F, Gröbner-Ferreira R, Michaelis S, Hoffmann P, Nazet J, Merkl R, Längst G. Elucidation of the functional roles of the Q and I motifs in the human chromatin-remodeling enzyme BRG1. J Biol Chem 2019; 294:3294-3310. [PMID: 30647132 DOI: 10.1074/jbc.ra118.005685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/08/2019] [Indexed: 12/26/2022] Open
Abstract
The Snf2 proteins, comprising 53 different enzymes in humans, belong to the SF2 family. Many Snf2 enzymes possess chromatin-remodeling activity, requiring a functional ATPase domain consisting of conserved motifs named Q and I-VII. These motifs form two recA-like domains, creating an ATP-binding pocket. Little is known about the function of the conserved motifs in chromatin-remodeling enzymes. Here, we characterized the function of the Q and I (Walker I) motifs in hBRG1 (SMARCA4). The motifs are in close proximity to the bound ATP, suggesting a role in nucleotide binding and/or hydrolysis. Unexpectedly, when substituting the conserved residues Gln758 (Q motif) or Lys785 (I motif) of both motifs, all variants still bound ATP and exhibited basal ATPase activity similar to that of wildtype BRG1 (wtBRG1). However, all mutants lost the nucleosome-dependent stimulation of the ATPase domain. Their chromatin-remodeling rates were impaired accordingly, but nucleosome binding was retained and still comparable with that of wtBRG1. Interestingly, a cancer-relevant substitution, L754F (Q motif), displayed defects similar to the Gln758 variant(s), arguing for a comparable loss of function. Because we excluded a mutual interference of ATP and nucleosome binding, we postulate that both motifs stimulate the ATPase and chromatin-remodeling activities upon binding of BRG1 to nucleosomes, probably via allosteric mechanisms. Furthermore, mutations of both motifs similarly affect the enzymatic functionality of BRG1 in vitro and in living cells. Of note, in BRG1-deficient H1299 cells, exogenously expressed wtBRG1, but not BRG1 Q758A and BRG1 K785R, exhibited a tumor suppressor-like function.
Collapse
Affiliation(s)
| | | | | | - Frank Sprenger
- the Institute of Biochemistry, Genetics and Microbiology, Cell Cycle Control
| | | | - Stefanie Michaelis
- Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien, Fraunhofer Research Institution for Microsystems and Solid State Technologies, c/o Institute of Analytical Chemistry, Chemo- and Biosensors, and
| | - Petra Hoffmann
- the Department of Internal Medicine III, University Hospital Regensburg, 93059 Regensburg, Germany.,the Central FACS Facility, Regensburg Center for Interventional Immunology, University of Regensburg, 93053 Regensburg, Germany, and
| | | | | | | |
Collapse
|
9
|
Pisani FM, Napolitano E, Napolitano LMR, Onesti S. Molecular and Cellular Functions of the Warsaw Breakage Syndrome DNA Helicase DDX11. Genes (Basel) 2018; 9:genes9110564. [PMID: 30469382 PMCID: PMC6266566 DOI: 10.3390/genes9110564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022] Open
Abstract
DDX11/ChlR1 (Chl1 in yeast) is a DNA helicase involved in sister chromatid cohesion and in DNA repair pathways. The protein belongs to the family of the iron–sulphur cluster containing DNA helicases, whose deficiencies have been linked to a number of diseases affecting genome stability. Mutations of human DDX11 are indeed associated with the rare genetic disorder named Warsaw breakage syndrome, showing both chromosomal breakages and chromatid cohesion defects. Moreover, growing evidence of a potential role in oncogenesis further emphasizes the clinical relevance of DDX11. Here, we illustrate the biochemical and structural features of DDX11 and how it cooperates with multiple protein partners in the cell, acting at the interface of DNA replication/repair/recombination and sister chromatid cohesion to preserve genome stability.
Collapse
Affiliation(s)
- Francesca M Pisani
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131 Napoli, Italy.
| | - Ettore Napolitano
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131 Napoli, Italy.
| | - Luisa M R Napolitano
- Elettra⁻Sincrotrone Trieste S.C.p.A., AREA Science Park Basovizza, 34149 Trieste, Italy.
| | - Silvia Onesti
- Elettra⁻Sincrotrone Trieste S.C.p.A., AREA Science Park Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
10
|
RecQ and Fe-S helicases have unique roles in DNA metabolism dictated by their unwinding directionality, substrate specificity, and protein interactions. Biochem Soc Trans 2017; 46:77-95. [PMID: 29273621 DOI: 10.1042/bst20170044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022]
Abstract
Helicases are molecular motors that play central roles in nucleic acid metabolism. Mutations in genes encoding DNA helicases of the RecQ and iron-sulfur (Fe-S) helicase families are linked to hereditary disorders characterized by chromosomal instabilities, highlighting the importance of these enzymes. Moreover, mono-allelic RecQ and Fe-S helicase mutations are associated with a broad spectrum of cancers. This review will discuss and contrast the specialized molecular functions and biological roles of RecQ and Fe-S helicases in DNA repair, the replication stress response, and the regulation of gene expression, laying a foundation for continued research in these important areas of study.
Collapse
|
11
|
Crouch JD, Brosh RM. Mechanistic and biological considerations of oxidatively damaged DNA for helicase-dependent pathways of nucleic acid metabolism. Free Radic Biol Med 2017; 107:245-257. [PMID: 27884703 PMCID: PMC5440220 DOI: 10.1016/j.freeradbiomed.2016.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022]
Abstract
Cells are under constant assault from reactive oxygen species that occur endogenously or arise from environmental agents. An important consequence of such stress is the generation of oxidatively damaged DNA, which is represented by a wide range of non-helix distorting and helix-distorting bulkier lesions that potentially affect a number of pathways including replication and transcription; consequently DNA damage tolerance and repair pathways are elicited to help cells cope with the lesions. The cellular consequences and metabolism of oxidatively damaged DNA can be quite complex with a number of DNA metabolic proteins and pathways involved. Many of the responses to oxidative stress involve a specialized class of enzymes known as helicases, the topic of this review. Helicases are molecular motors that convert the energy of nucleoside triphosphate hydrolysis to unwinding of structured polynucleic acids. Helicases by their very nature play fundamentally important roles in DNA metabolism and are implicated in processes that suppress chromosomal instability, genetic disease, cancer, and aging. We will discuss the roles of helicases in response to nuclear and mitochondrial oxidative stress and how this important class of enzymes help cells cope with oxidatively generated DNA damage through their functions in the replication stress response, DNA repair, and transcriptional regulation.
Collapse
Affiliation(s)
- Jack D Crouch
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
12
|
Brooks PJ. The cyclopurine deoxynucleosides: DNA repair, biological effects, mechanistic insights, and unanswered questions. Free Radic Biol Med 2017; 107:90-100. [PMID: 28011151 DOI: 10.1016/j.freeradbiomed.2016.12.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
Patients with the genetic disease xeroderma pigmentosum (XP) who lack the capacity to carry out nucleotides excision repair (NER) have a dramatically elevated risk of skin cancer on sun exposed areas of the body. NER is the DNA repair mechanism responsible for the removal of DNA lesions resulting from ultraviolet light. In addition, a subset of XP patients develop a progressive neurodegenerative disease, referred to as XP neurologic disease, which is thought to be the result of accumulation of endogenous DNA lesions that are repaired by NER but not other repair pathways. The 8,5-cyclopurine deoxynucleotides (cyPu) have emerged as leading candidates for such lesions, in that they result from the reaction of the hydroxyl radical with DNA, are strong blocks to transcription in human cells, and are repaired by NER but not base excision repair. Here I present a focused perspective on progress into understating the repair and biological effects of these lesions. In doing so, I emphasize the role of Tomas Lindahl and his laboratory in stimulating cyPu research. I also include a critical evaluation of the evidence supporting a role for cyPu lesions in XP neurologic disease, with a focus on outstanding questions, and conceptual and technologic challenges.
Collapse
Affiliation(s)
- Philip J Brooks
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
13
|
Cadet J, Davies KJA, Medeiros MH, Di Mascio P, Wagner JR. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med 2017; 107:13-34. [PMID: 28057600 PMCID: PMC5457722 DOI: 10.1016/j.freeradbiomed.2016.12.049] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/27/2016] [Accepted: 12/31/2016] [Indexed: 12/18/2022]
Abstract
In this review article, emphasis is placed on the critical survey of available data concerning modified nucleobase and 2-deoxyribose products that have been identified in cellular DNA following exposure to a wide variety of oxidizing species and agents including, hydroxyl radical, one-electron oxidants, singlet oxygen, hypochlorous acid and ten-eleven translocation enzymes. In addition, information is provided about the generation of secondary oxidation products of 8-oxo-7,8-dihydroguanine and nucleobase addition products with reactive aldehydes arising from the decomposition of lipid peroxides. It is worth noting that the different classes of oxidatively generated DNA damage that consist of single lesions, intra- and interstrand cross-links were unambiguously assigned and quantitatively detected on the basis of accurate measurements involving in most cases high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The reported data clearly show that the frequency of DNA lesions generated upon severe oxidizing conditions, including exposure to ionizing radiation is low, at best a few modifications per 106 normal bases. Application of accurate analytical measurement methods has also allowed the determination of repair kinetics of several well-defined lesions in cellular DNA that however concerns so far only a restricted number of cases.
Collapse
Affiliation(s)
- Jean Cadet
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, United States; Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, United States
| | - Marisa Hg Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| |
Collapse
|
14
|
Parvathaneni S, Lu X, Chaudhary R, Lal A, Madhusudan S, Sharma S. RECQ1 expression is upregulated in response to DNA damage and in a p53-dependent manner. Oncotarget 2017; 8:75924-75942. [PMID: 29100281 PMCID: PMC5652675 DOI: 10.18632/oncotarget.18237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022] Open
Abstract
Sensitivity of cancer cells to DNA damaging chemotherapeutics is determined by DNA repair processes. Consequently, cancer cells may upregulate the expression of certain DNA repair genes as a mechanism to promote chemoresistance. Here, we report that RECQ1, a breast cancer susceptibility gene that encodes the most abundant RecQ helicase in humans, is a p53-regulated gene, potentially acting as a defense against DNA damaging agents. We show that RECQ1 mRNA and protein levels are upregulated upon treatment of cancer cells with a variety of DNA damaging agents including the DNA-alkylating agent methylmethanesulfonate (MMS). The MMS-induced upregulation of RECQ1 expression is p53-dependent as it was observed in p53-proficient but not in isogenic p53-deficient cells. The RECQ1 promoter is bound by endogenous p53 and is responsive to p53 in luciferase reporter assays suggesting that RECQ1 is a direct target of p53. Treatment with the chemotherapeutic drugs temozolomide and fotemustine also increased RECQ1 mRNA levels whereas depletion of RECQ1 enhanced cellular sensitivity to these agents. These results identify a previously unrecognized p53-mediated upregulation of RECQ1 expression in response to DNA damage and implicate RECQ1 in the repair of DNA lesions including those induced by alkylating and other chemotherapeutic agents.
Collapse
Affiliation(s)
- Swetha Parvathaneni
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, 20059, USA
| | - Xing Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, 20059, USA
| | - Ritu Chaudhary
- Regulatory RNAs and Cancer Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Srinivasan Madhusudan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG51PB, UK
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, 20059, USA
| |
Collapse
|
15
|
Trakselis MA, Seidman MM, Brosh RM. Mechanistic insights into how CMG helicase facilitates replication past DNA roadblocks. DNA Repair (Amst) 2017; 55:76-82. [PMID: 28554039 DOI: 10.1016/j.dnarep.2017.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 02/07/2023]
Abstract
Before leaving the house, it is a good idea to check for road closures that may affect the morning commute. Otherwise, one may encounter significant delays arriving at the destination. While this is commonly true, motorists may be able to consult a live interactive traffic map and pick an alternate route or detour to avoid being late. However, this is not the case if one needs to catch the train which follows a single track to the terminus; if something blocks the track, there is a delay. Such is the case for the DNA replisome responsible for copying the genetic information that provides the recipe of life. When the replication machinery encounters a DNA roadblock, the outcome can be devastating if the obstacle is not overcome in an efficient manner. Fortunately, the cell's DNA synthesis apparatus can bypass certain DNA obstructions, but the mechanism(s) are still poorly understood. Very recently, two papers from the O'Donnell lab, one structural (Georgescu et al., 2017 [1]) and the other biochemical (Langston and O'Donnell, 2017 [2]), have challenged the conventional thinking of how the replicative CMG helicase is arranged on DNA, unwinds double-stranded DNA, and handles barricades in its path. These new findings raise important questions in the search for mechanistic insights into how DNA is copied, particularly when the replication machinery encounters a roadblock.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States.
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| |
Collapse
|
16
|
The excluded DNA strand is SEW important for hexameric helicase unwinding. Methods 2016; 108:79-91. [DOI: 10.1016/j.ymeth.2016.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 02/04/2023] Open
|
17
|
Khan I, Crouch JD, Bharti SK, Sommers JA, Carney SM, Yakubovskaya E, Garcia-Diaz M, Trakselis MA, Brosh RM. Biochemical Characterization of the Human Mitochondrial Replicative Twinkle Helicase: SUBSTRATE SPECIFICITY, DNA BRANCH MIGRATION, AND ABILITY TO OVERCOME BLOCKADES TO DNA UNWINDING. J Biol Chem 2016; 291:14324-14339. [PMID: 27226550 DOI: 10.1074/jbc.m115.712026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 01/08/2023] Open
Abstract
Mutations in the c10orf2 gene encoding the human mitochondrial DNA replicative helicase Twinkle are linked to several rare genetic diseases characterized by mitochondrial defects. In this study, we have examined the catalytic activity of Twinkle helicase on model replication fork and DNA repair structures. Although Twinkle behaves as a traditional 5' to 3' helicase on conventional forked duplex substrates, the enzyme efficiently dissociates D-loop DNA substrates irrespective of whether it possesses a 5' or 3' single-stranded tailed invading strand. In contrast, we report for the first time that Twinkle branch-migrates an open-ended mobile three-stranded DNA structure with a strong 5' to 3' directionality preference. To determine how well Twinkle handles potential roadblocks to mtDNA replication, we tested the ability of the helicase to unwind substrates with site-specific oxidative DNA lesions or bound by the mitochondrial transcription factor A. Twinkle helicase is inhibited by DNA damage in a unique manner that is dependent on the type of oxidative lesion and the strand in which it resides. Novel single molecule FRET binding and unwinding assays show an interaction of the excluded strand with Twinkle as well as events corresponding to stepwise unwinding and annealing. TFAM inhibits Twinkle unwinding, suggesting other replisome proteins may be required for efficient removal. These studies shed new insight on the catalytic functions of Twinkle on the key DNA structures it would encounter during replication or possibly repair of the mitochondrial genome and how well it tolerates potential roadblocks to DNA unwinding.
Collapse
Affiliation(s)
- Irfan Khan
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Jack D Crouch
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Sanjay Kumar Bharti
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Sean M Carney
- Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Elena Yakubovskaya
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651
| | - Michael A Trakselis
- Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260,; Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224,.
| |
Collapse
|
18
|
Abstract
Hexameric helicases control both the initiation and the elongation phase of DNA replication. The toroidal structure of these enzymes provides an inherent challenge in the opening and loading onto DNA at origins, as well as the conformational changes required to exclude one strand from the central channel and activate DNA unwinding. Recently, high-resolution structures have not only revealed the architecture of various hexameric helicases but also detailed the interactions of DNA within the central channel, as well as conformational changes that occur during loading. This structural information coupled with advanced biochemical reconstitutions and biophysical methods have transformed our understanding of the dynamics of both the helicase structure and the DNA interactions required for efficient unwinding at the replisome.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| |
Collapse
|
19
|
Khan I, Sommers JA, Brosh RM. Close encounters for the first time: Helicase interactions with DNA damage. DNA Repair (Amst) 2015; 33:43-59. [PMID: 26160335 DOI: 10.1016/j.dnarep.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 01/17/2023]
Abstract
DNA helicases are molecular motors that harness the energy of nucleoside triphosphate hydrolysis to unwinding structured DNA molecules that must be resolved during cellular replication, DNA repair, recombination, and transcription. In vivo, DNA helicases are expected to encounter a wide spectrum of covalent DNA modifications to the sugar phosphate backbone or the nitrogenous bases; these modifications can be induced by endogenous biochemical processes or exposure to environmental agents. The frequency of lesion abundance can vary depending on the lesion type. Certain adducts such as oxidative base modifications can be quite numerous, and their effects can be helix-distorting or subtle perturbations to DNA structure. Helicase encounters with specific DNA lesions and more novel forms of DNA damage will be discussed. We will also review the battery of assays that have been used to characterize helicase-catalyzed unwinding of damaged DNA substrates. Characterization of the effects of specific DNA adducts on unwinding by various DNA repair and replication helicases has proven to be insightful for understanding mechanistic and biological aspects of helicase function in cellular DNA metabolism.
Collapse
Affiliation(s)
- Irfan Khan
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
20
|
Fan L, DuPrez KT. XPB: An unconventional SF2 DNA helicase. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:174-181. [PMID: 25641424 DOI: 10.1016/j.pbiomolbio.2014.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 11/27/2022]
Abstract
XPB is a 3'-5' DNA helicase belonging to the superfamily 2 (SF2) of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH which plays a dual role in transcription and DNA repair: 1) to facilitate the melting of the promoter during the initiation of RNA polymerase II transcription; 2) to unwind double stranded DNA (dsDNA) around a DNA lesion during nucleotide excision repair (NER). NER is a highly versatile DNA repair process which is able to remove a broad spectrum of structurally unrelated DNA helix-distorting lesions. The importance of a fully functional XPB is clearly illustrated by the severe clinical consequences associated with inherited defects in XPB including UV-hypersensitive syndromes xeroderma pigmentosum (XP), Cockayne syndrome (CS), combined XP and CS (XP/CS), and trichothiodystrophy (TTD). Here we discuss the structure and function of XPB in NER as well as the impact of a disease mutation in XP11BE patients with XP/CS complex manifestations.
Collapse
Affiliation(s)
- Li Fan
- 900 University Ave, Biochemistry Department, University of California, Riverside, CA 92521, USA.
| | - Kevin T DuPrez
- 900 University Ave, Biochemistry Department, University of California, Riverside, CA 92521, USA
| |
Collapse
|
21
|
Guo M, Hundseth K, Ding H, Vidhyasagar V, Inoue A, Nguyen CH, Zain R, Lee JS, Wu Y. A distinct triplex DNA unwinding activity of ChlR1 helicase. J Biol Chem 2015; 290:5174-5189. [PMID: 25561740 DOI: 10.1074/jbc.m114.634923] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in genome maintenance. The DNA triplex helix structures that form by Hoogsteen or reverse Hoogsteen hydrogen bonding are examples of alternate DNA structures that can be a source of genomic instability. In this study, we have examined the ability of human ChlR1 helicase to destabilize DNA triplexes. Biochemical studies demonstrated that ChlR1 efficiently melted both intermolecular and intramolecular DNA triplex substrates in an ATP-dependent manner. Compared with other substrates such as replication fork and G-quadruplex DNA, triplex DNA was a preferred substrate for ChlR1. Also, compared with FANCJ, a helicase of the same family, the triplex resolving activity of ChlR1 is unique. On the other hand, the mutant protein from a Warsaw breakage syndrome patient failed to unwind these triplexes. A previously characterized triplex DNA-specific antibody (Jel 466) bound triplex DNA structures and inhibited ChlR1 unwinding activity. Moreover, cellular assays demonstrated that there were increased triplex DNA content and double-stranded breaks in ChlR1-depleted cells, but not in FANCJ(-/-) cells, when cells were treated with a triplex stabilizing compound benzoquinoquinoxaline, suggesting that ChlR1 melting of triple-helix structures is distinctive and physiologically important to defend genome integrity. On the basis of our results, we conclude that the abundance of ChlR1 known to exist in vivo is likely to be a strong deterrent to the stability of triplexes that can potentially form in the human genome.
Collapse
Affiliation(s)
- Manhong Guo
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kristian Hundseth
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Hao Ding
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | - Akira Inoue
- the Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Chi-Hung Nguyen
- UMR176 CNRS-Institut Curie, Laboratoire de Pharmacochimie, Centre Universitaire, 91405 Orsay, France, and
| | - Rula Zain
- the Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden
| | - Jeremy S Lee
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Yuliang Wu
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada,.
| |
Collapse
|