1
|
Ripandelli RA, van Oijen AM, Robinson A. Single-Cell Microfluidics: A Primer for Microbiologists. J Phys Chem B 2024; 128:10311-10328. [PMID: 39400277 PMCID: PMC11514030 DOI: 10.1021/acs.jpcb.4c02746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 10/15/2024]
Abstract
Recent advances in microfluidic technology have made it possible to image live bacterial cells with a high degree of precision and control. In particular, single-cell microfluidic designs have created new opportunities to study phenotypic variation in bacterial populations. However, the development and use of microfluidic devices require specialized resources, and these can be practical barriers to entry for microbiologists. With this review, our intentions are to help demystify the design, construction, and application of microfluidics. Our approach is to present design elements as building blocks from which a multitude of microfluidics applications can be imagined by the microbiologist.
Collapse
|
2
|
Bao K, Jiang X, Hu HM, Liu T, Zhang J. DEPICT-seq: Single-Cell Transcriptomic Analysis of Rare Cell Subsets Isolated via Nucleic Acid Cytometry. Anal Chem 2024; 96:16236-16243. [PMID: 39287475 PMCID: PMC11483345 DOI: 10.1021/acs.analchem.4c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The ability to dive deep into specific rare cell populations is critical for understanding tissue physiology and pathology across various biological domains. As single-cell RNA-seq flourishes, many newly discovered cell subtypes are defined by their transcriptomic markers. However, our ability to retrieve and analyze cells based on their nucleic acid markers remains underdeveloped. Here, we present Double Emulsion PCR-Initiated Cell sorting and Transcriptomic Sequencing (DEPICT-seq), a high-throughput droplet nucleic acid cytometry method that integrates batch cell fixation for cellular information preservation, double emulsion digital PCR-based cell sorting to target nucleic acid markers of interest, and in-depth full-length transcriptomic analyses at single-cell resolution. We utilize DEPICT-seq to isolate and characterize T cell receptor (TCR)-engineered T cells within a mixed population and also demonstrate a variation of the workflow by incorporating an RNase H-dependent PCR step to enrich full-length TCR sequences for paired single-cell TCR sequencing and transcriptomic profiling.
Collapse
Affiliation(s)
- Kaixuan Bao
- State
Key Laboratory of Genetic Engineering, Human Phenome Institute, Department
of Endocrinology and Metabolism, School of Life Sciences, Zhongshan
Hospital, Fudan University, Shanghai 200438, China
| | | | - Hong-min Hu
- ImmuXell
Biotech Ltd., Shanghai 201315, China
| | - Tiemin Liu
- State
Key Laboratory of Genetic Engineering, Human Phenome Institute, Department
of Endocrinology and Metabolism, School of Life Sciences, Zhongshan
Hospital, Fudan University, Shanghai 200438, China
- School
of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, China
| | - Jingwei Zhang
- State
Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- School
of Exercise and Health, Shanghai University
of Sport, Shanghai 200438, China
- Zhejiang
Lab, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
3
|
Liu Y, Cui X, Lu R, Yang D, Ai Y, Cheow LF. Digital Sort-Enabled Counting Allows Absolute Electrical Quantification of Target Nucleic Acid. ACS Sens 2024; 9:2695-2702. [PMID: 38747895 DOI: 10.1021/acssensors.4c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Quantitative nucleic acid amplification tests are of great importance for diagnostics, but current approaches require complex and costly optical setups that limit their nonlaboratory applications. Herein we describe the implementation of a microfluidics platform that can perform binary DNA-amplification-activated droplet sorting. The digital sort-enabled counting (DISCO) platform enables label-free absolute quantification of the nucleic acid. This is achieved by provoking a pH change in droplets through a loop-mediated isothermal amplification (LAMP) reaction, followed by using sorting by interfacial tension (SIFT) to direct positive and negative droplets to different outlets. With the use of on-chip electrodes at both outlets, we demonstrate that the digital electrical counting of target DNA and RNA can be realized. DISCO is a promising approach for realizing sensitive nucleic acid quantification in point-of-care settings.
Collapse
Affiliation(s)
- Yi Liu
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
| | - Xu Cui
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
| | - Ri Lu
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
| | - Dahou Yang
- Critical Analytics for Manufacturing Personalized Medicine, Singapore MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Ye Ai
- Critical Analytics for Manufacturing Personalized Medicine, Singapore MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 387372, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
- Critical Analytics for Manufacturing Personalized Medicine, Singapore MIT Alliance for Research and Technology, Singapore 138602, Singapore
| |
Collapse
|
4
|
Madhu B, Miller BM, Levy M. Single-cell analysis and spatial resolution of the gut microbiome. Front Cell Infect Microbiol 2023; 13:1271092. [PMID: 37860069 PMCID: PMC10582963 DOI: 10.3389/fcimb.2023.1271092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Over the past decade it has become clear that various aspects of host physiology, metabolism, and immunity are intimately associated with the microbiome and its interactions with the host. Specifically, the gut microbiome composition and function has been shown to play a critical role in the etiology of different intestinal and extra-intestinal diseases. While attempts to identify a common pattern of microbial dysbiosis linked with these diseases have failed, multiple studies show that bacterial communities in the gut are spatially organized and that disrupted spatial organization of the gut microbiome is often a common underlying feature of disease pathogenesis. As a result, focus over the last few years has shifted from analyzing the diversity of gut microbiome by sequencing of the entire microbial community, towards understanding the gut microbiome in spatial context. Defining the composition and spatial heterogeneity of the microbiome is critical to facilitate further understanding of the gut microbiome ecology. Development in single cell genomics approach has advanced our understanding of microbial community structure, however, limitations in approaches exist. Single cell genomics is a very powerful and rapidly growing field, primarily used to identify the genetic composition of microbes. A major challenge is to isolate single cells for genomic analyses. This review summarizes the different approaches to study microbial genomes at single-cell resolution. We will review new techniques for microbial single cell sequencing and summarize how these techniques can be applied broadly to answer many questions related to the microbiome composition and spatial heterogeneity. These methods can be used to fill the gaps in our understanding of microbial communities.
Collapse
Affiliation(s)
| | | | - Maayan Levy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Zath GK, Sperling RA, Hoffman CW, Bikos DA, Abbasi R, Abate AR, Weitz DA, Chang CB. Rapid parallel generation of a fluorescently barcoded drop library from a microtiter plate using the plate-interfacing parallel encapsulation (PIPE) chip. LAB ON A CHIP 2022; 22:4735-4745. [PMID: 36367139 PMCID: PMC10016142 DOI: 10.1039/d2lc00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In drop-based microfluidics, an aqueous sample is partitioned into drops using individual pump sources that drive water and oil into a drop-making device. Parallelization of drop-making devices is necessary to achieve high-throughput screening of multiple experimental conditions, especially in time-sensitive studies. Here, we present the plate-interfacing parallel encapsulation (PIPE) chip, a microfluidic chip designed to generate 50 to 90 μm diameter drops of up to 96 different conditions in parallel by interfacing individual drop makers with a standard 384-well microtiter plate. The PIPE chip is used to generate two types of optically barcoded drop libraries consisting of two-color fluorescent particle combinations: a library of 24 microbead barcodes and a library of 192 quantum dot barcodes. Barcoded combinations in the drop libraries are rapidly measured within a microfluidic device using fluorescence detection and distinct barcoded populations in the fluorescence drop data are identified using DBSCAN data clustering. Signal analysis reveals that particle size defines the source of dominant noise present in the fluorescence intensity distributions of the barcoded drop populations, arising from Poisson loading for microbeads and shot noise for quantum dots. A barcoded population from a drop library is isolated using fluorescence-activated drop sorting, enabling downstream analysis of drop contents. The PIPE chip can improve multiplexed high-throughput assays by enabling simultaneous encapsulation of barcoded samples stored in a microtiter plate and reducing sample preparation time.
Collapse
Affiliation(s)
- Geoffrey K Zath
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Ralph A Sperling
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Fraunhofer Institute for Microengineering and Microsystems IMM, Mainz, Germany
| | - Carter W Hoffman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Dimitri A Bikos
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Reha Abbasi
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - David A Weitz
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Connie B Chang
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Anggraini D, Ota N, Shen Y, Tang T, Tanaka Y, Hosokawa Y, Li M, Yalikun Y. Recent advances in microfluidic devices for single-cell cultivation: methods and applications. LAB ON A CHIP 2022; 22:1438-1468. [PMID: 35274649 DOI: 10.1039/d1lc01030a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-cell analysis is essential to improve our understanding of cell functionality from cellular and subcellular aspects for diagnosis and therapy. Single-cell cultivation is one of the most important processes in single-cell analysis, which allows the monitoring of actual information of individual cells and provides sufficient single-cell clones and cell-derived products for further analysis. The microfluidic device is a fast-rising system that offers efficient, effective, and sensitive single-cell cultivation and real-time single-cell analysis conducted either on-chip or off-chip. Here, we introduce the importance of single-cell cultivation from the aspects of cellular and subcellular studies. We highlight the materials and structures utilized in microfluidic devices for single-cell cultivation. We further discuss biological applications utilizing single-cell cultivation-based microfluidics, such as cellular phenotyping, cell-cell interactions, and omics profiling. Finally, present limitations and future prospects of microfluidics for single-cell cultivation are also discussed.
Collapse
Affiliation(s)
- Dian Anggraini
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Nobutoshi Ota
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yigang Shen
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tao Tang
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Ming Li
- School of Engineering, Macquarie University, Sydney 2122, Australia.
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Droplet-microfluidics-assisted sequencing of HIV proviruses and their integration sites in cells from people on antiretroviral therapy. Nat Biomed Eng 2022; 6:1004-1012. [PMID: 35347274 PMCID: PMC9398922 DOI: 10.1038/s41551-022-00864-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/28/2022] [Indexed: 01/03/2023]
Abstract
The human immunodeficiency virus (HIV) integrates its genome in that of infected cells and may enter an inactive state of reversible latency that cannot be targeted using antiretroviral therapy. The resulting HIV DNA is termed a provirus. Sequencing individual proviruses with the adjacent human cellular junctions may elucidate mechanisms of infected cell persistence in humans. Here, we introduce a high throughput microfluidic assay where droplet-based whole genome amplification of the HIV DNA in its native context is followed by a polymerase chain reaction to tag droplets containing proviruses for sequencing, resulting in the assembly of full-length viral genomes connected to their contiguous HIV-human DNA junctions, regardless of the 150 million-fold higher amount of human DNA present in the background. We analyzed infected cells from patients with HIV receiving suppressive antiretroviral therapy, resulting in the detection and sequencing of paired proviral genomes and integration sites, 90% of which weren’t recovered by commonly used nested PCR methods. The sequencing of individual proviral genomes with their integration sites could improve the genetic analysis of persistent HIV-infected cell reservoirs.
Collapse
|
8
|
Pryszlak A, Wenzel T, Seitz KW, Hildebrand F, Kartal E, Cosenza MR, Benes V, Bork P, Merten CA. Enrichment of gut microbiome strains for cultivation-free genome sequencing using droplet microfluidics. CELL REPORTS METHODS 2022; 2:None. [PMID: 35118437 PMCID: PMC8787643 DOI: 10.1016/j.crmeth.2021.100137] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/05/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
We report a droplet microfluidic method to target and sort individual cells directly from complex microbiome samples and to prepare these cells for bulk whole-genome sequencing without cultivation. We characterize this approach by recovering bacteria spiked into human stool samples at a ratio as low as 1:250 and by successfully enriching endogenous Bacteroides vulgatus to the level required for de novo assembly of high-quality genomes. Although microbiome strains are increasingly demanded for biomedical applications, a vast majority of species and strains are uncultivated and without reference genomes. We address this shortcoming by encapsulating complex microbiome samples directly into microfluidic droplets and amplifying a target-specific genomic fragment using a custom molecular TaqMan probe. We separate those positive droplets by droplet sorting, selectively enriching single target strain cells. Finally, we present a protocol to purify the genomic DNA while specifically removing amplicons and cell debris for high-quality genome sequencing.
Collapse
Affiliation(s)
- Anna Pryszlak
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tobias Wenzel
- European Molecular Biology Laboratory, Heidelberg, Germany
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Falk Hildebrand
- European Molecular Biology Laboratory, Heidelberg, Germany
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
- Digital Biology, Earlham Institute, Norwich, UK
| | - Ece Kartal
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Vladimir Benes
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- University of Würzburg, Würzburg, Germany
| | - Christoph A. Merten
- European Molecular Biology Laboratory, Heidelberg, Germany
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
9
|
Cahn JKB, Piel J. Anwendungen von Einzelzellmethoden in der mikrobiellen Naturstoffforschung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201900532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jackson K. B. Cahn
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| | - Jörn Piel
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| |
Collapse
|
10
|
Abstract
![]()
Targeted
sequencing enables sensitive and cost-effective analysis
by focusing resources on molecules of interest. Existing methods,
however, are limited in enrichment power and target capture length.
Here, we present a novel method that uses compound nucleic acid cytometry
to achieve million-fold enrichments of molecules >10 kbp in length
using minimal prior target information. We demonstrate the approach
by sequencing HIV proviruses in infected individuals. Our method is
useful for rare target sequencing in research and clinical applications,
including for identifying cancer-associated mutations or sequencing
viruses infecting cells.
Collapse
Affiliation(s)
- Chen Sun
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Kai-Chun Chang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States.,California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California 94158, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
11
|
Cahn JKB, Piel J. Opening up the Single-Cell Toolbox for Microbial Natural Products Research. Angew Chem Int Ed Engl 2021; 60:18412-18428. [PMID: 30748086 DOI: 10.1002/anie.201900532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 02/06/2023]
Abstract
The diverse microbes that produce natural products represent an important source of novel therapeutics, drug leads, and scientific tools. However, the vast majority have not been grown in axenic culture and are members of complex communities. While meta-'omic methods such as metagenomics, -transcriptomics, and -proteomics reveal collective molecular features of this "microbial dark matter", the study of individual microbiome members can be challenging. To address these limits, a number of techniques with single-bacterial resolution have been developed in the last decade and a half. While several of these are embraced by microbial ecologists, there has been less use by researchers interested in mining microbes for natural products. In this review, we discuss the available and emerging techniques for targeted single-cell analysis with a particular focus on applications to the discovery and study of natural products.
Collapse
Affiliation(s)
- Jackson K B Cahn
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| | - Jörn Piel
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| |
Collapse
|
12
|
Liu L, Dong X, Tu Y, Miao G, Zhang Z, Zhang L, Wei Z, Yu D, Qiu X. Methods and platforms for analysis of nucleic acids from single-cell based on microfluidics. MICROFLUIDICS AND NANOFLUIDICS 2021; 25:87. [PMID: 34580578 PMCID: PMC8457033 DOI: 10.1007/s10404-021-02485-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 05/14/2023]
Abstract
Single-cell nucleic acid analysis aims at discovering the genetic differences between individual cells which is well known as the cellular heterogeneity. This technology facilitates cancer diagnosis, stem cell research, immune system analysis, and other life science applications. The conventional platforms for single-cell nucleic acid analysis more rely on manual operation or bulky devices. Recently, the emerging microfluidic technology has provided a perfect platform for single-cell nucleic acid analysis with the characteristic of accurate and automatic single-cell manipulation. In this review, we briefly summarized the procedure of single-cell nucleic acid analysis including single-cell isolation, single-cell lysis, nucleic acid amplification, and genetic analysis. And then, three representative microfluidic platforms for single-cell nucleic acid analysis are concluded as valve-, microwell-, and droplet-based platforms. Furthermore, we described the state-of-the-art integrated single-cell nucleic acid analysis systems based on the three platforms. Finally, the future development and challenges of microfluidics-based single-cell nucleic acid analysis are discussed as well.
Collapse
Affiliation(s)
- Luyao Liu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Xiaobin Dong
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yunping Tu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Guijun Miao
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhongping Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Lulu Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zewen Wei
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, 100081 China
| | - Duli Yu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029 China
| | - Xianbo Qiu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| |
Collapse
|
13
|
Clark IC, Delley CL, Sun C, Thakur R, Stott SL, Thaploo S, Li Z, Quintana FJ, Abate AR. Targeted Single-Cell RNA and DNA Sequencing With Fluorescence-Activated Droplet Merger. Anal Chem 2020; 92:14616-14623. [PMID: 33049138 PMCID: PMC8182774 DOI: 10.1021/acs.analchem.0c03059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Analyzing every cell in a diverse sample provides insight into population-level heterogeneity, but abundant cell types dominate the analysis and rarer populations are scarcely represented in the data. To focus on specific cell types, the current paradigm is to physically isolate subsets of interest prior to analysis; however, it remains difficult to isolate and then single-cell sequence such populations because of compounding losses. Here, we describe an alternative approach that selectively merges cells with reagents to achieve enzymatic reactions without having to physically isolate cells. We apply this technique to perform single-cell transcriptome and genome sequencing of specific cell subsets. Our method for analyzing heterogeneous populations obviates the need for pre- or post-enrichment and simplifies single-cell workflows, making it useful for other applications in single-cell biology, combinatorial chemical synthesis, and drug screening.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Cyrille L Delley
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Chen Sun
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Rohan Thakur
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Shannon L Stott
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Shravan Thaploo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
14
|
Sesen M, Whyte G. Image-Based Single Cell Sorting Automation in Droplet Microfluidics. Sci Rep 2020; 10:8736. [PMID: 32457421 PMCID: PMC7250914 DOI: 10.1038/s41598-020-65483-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
The recent boom in single-cell omics has brought researchers one step closer to understanding the biological mechanisms associated with cell heterogeneity. Rare cells that have historically been obscured by bulk measurement techniques are being studied by single cell analysis and providing valuable insight into cell function. To support this progress, novel upstream capabilities are required for single cell preparation for analysis. Presented here is a droplet microfluidic, image-based single-cell sorting technique that is flexible and programmable. The automated system performs real-time dual-camera imaging (brightfield & fluorescent), processing, decision making and sorting verification. To demonstrate capabilities, the system was used to overcome the Poisson loading problem by sorting for droplets containing a single red blood cell with 85% purity. Furthermore, fluorescent imaging and machine learning was used to load single K562 cells amongst clusters based on their instantaneous size and circularity. The presented system aspires to replace manual cell handling techniques by translating expert knowledge into cell sorting automation via machine learning algorithms. This powerful technique finds application in the enrichment of single cells based on their micrographs for further downstream processing and analysis.
Collapse
Affiliation(s)
- Muhsincan Sesen
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh, EH14 4AS, United Kingdom
- Imperial College London, Department of Bioengineering, London, SW7 2AZ, United Kingdom
| | - Graeme Whyte
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh, EH14 4AS, United Kingdom.
| |
Collapse
|
15
|
Fung CW, Chan SN, Wu AR. Microfluidic single-cell analysis-Toward integration and total on-chip analysis. BIOMICROFLUIDICS 2020; 14:021502. [PMID: 32161631 PMCID: PMC7060088 DOI: 10.1063/1.5131795] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Various types of single-cell analyses are now extensively used to answer many biological questions, and with this growth in popularity, potential drawbacks to these methods are also becoming apparent. Depending on the specific application, workflows can be laborious, low throughput, and run the risk of contamination. Microfluidic designs, with their advantages of being high throughput, low in reaction volume, and compatible with bio-inert materials, have been widely used to improve single-cell workflows in all major stages of single-cell applications, from cell sorting to lysis, to sample processing and readout. Yet, designing an integrated microfluidic chip that encompasses the entire single-cell workflow from start to finish remains challenging. In this article, we review the current microfluidic approaches that cover different stages of processing in single-cell analysis and discuss the prospects and challenges of achieving a full integrated workflow to achieve total single-cell analysis in one device.
Collapse
Affiliation(s)
- Cheuk Wang Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shek Nga Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Angela Ruohao Wu
- Author to whom correspondence should be addressed:. Tel.: +852 3469-2577
| |
Collapse
|
16
|
Matuła K, Rivello F, Huck WTS. Single-Cell Analysis Using Droplet Microfluidics. ACTA ACUST UNITED AC 2019; 4:e1900188. [PMID: 32293129 DOI: 10.1002/adbi.201900188] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Droplet microfluidics has revolutionized the study of single cells. The ability to compartmentalize cells within picoliter droplets in microfluidic devices has opened up a wide range of strategies to extract information at the genomic, transcriptomic, proteomic, or metabolomic level from large numbers of individual cells. Studying the different molecular landscapes at single-cell resolution has provided the authors with a detailed picture of intracellular heterogeneity and the resulting changes in cellular phenotypes. In addition, these technologies have aided in the discovery of rare cells in tumors or in the immune system, and left the authors with a deeper understanding of the fundamental biological processes that determine cell fate. This review aims to provide a detailed overview of the various droplet microfluidic strategies reported in the literature, taking into account the sometimes subtle differences in workflow or reagents that enable or improve certain protocols. Specifically, approaches to targeted- and whole-genome analysis, as well as whole-transcriptome profiling techniques, are reviewed. In addition, an up-to-date overview of new methods to characterize and quantify single-cell protein levels, and of developments to screen secreted molecules such as antibodies, cytokines, or metabolites at the single-cell level, is provided.
Collapse
Affiliation(s)
- Kinga Matuła
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Francesca Rivello
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Mapping Microbial Capacities for Bioremediation: Genes to Genomics. Indian J Microbiol 2019; 60:45-53. [PMID: 32089573 DOI: 10.1007/s12088-019-00842-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Bioremediation is a process wherein the decontamination strategies are designed so that a site could achieve the environmental abiotic and biotic parameters close to its baseline. In the process, the driving force is the available microbial genetic degradative capabilities, which are supported by required nutrients so that the desired expression of these capabilities could be exploited in favour of removal of pollutants. With genomics tools not only the available abilities could be estimated but their dynamic performance could also be established. These tools are now playing important role in bioprocess optimization, which not only derive the bio-stimulation plans but also could suggest possible genetic bio-augmentation options.
Collapse
|
18
|
Recent Advances in Droplet-based Microfluidic Technologies for Biochemistry and Molecular Biology. MICROMACHINES 2019; 10:mi10060412. [PMID: 31226819 PMCID: PMC6631694 DOI: 10.3390/mi10060412] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
Abstract
Recently, droplet-based microfluidic systems have been widely used in various biochemical and molecular biological assays. Since this platform technique allows manipulation of large amounts of data and also provides absolute accuracy in comparison to conventional bioanalytical approaches, over the last decade a range of basic biochemical and molecular biological operations have been transferred to drop-based microfluidic formats. In this review, we introduce recent advances and examples of droplet-based microfluidic techniques that have been applied in biochemistry and molecular biology research including genomics, proteomics and cellomics. Their advantages and weaknesses in various applications are also comprehensively discussed here. The purpose of this review is to provide a new point of view and current status in droplet-based microfluidics to biochemists and molecular biologists. We hope that this review will accelerate communications between researchers who are working in droplet-based microfluidics, biochemistry and molecular biology.
Collapse
|
19
|
Gorgannezhad L, Stratton H, Nguyen NT. Microfluidic-Based Nucleic Acid Amplification Systems in Microbiology. MICROMACHINES 2019; 10:E408. [PMID: 31248141 PMCID: PMC6630468 DOI: 10.3390/mi10060408] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Rapid, sensitive, and selective bacterial detection is a hot topic, because the progress in this research area has had a broad range of applications. Novel and innovative strategies for detection and identification of bacterial nucleic acids are important for practical applications. Microfluidics is an emerging technology that only requires small amounts of liquid samples. Microfluidic devices allow for rapid advances in microbiology, enabling access to methods of amplifying nucleic acid molecules and overcoming difficulties faced by conventional. In this review, we summarize the recent progress in microfluidics-based polymerase chain reaction devices for the detection of nucleic acid biomarkers. The paper also discusses the recent development of isothermal nucleic acid amplification and droplet-based microfluidics devices. We discuss recent microfluidic techniques for sample preparation prior to the amplification process.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| | - Helen Stratton
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| |
Collapse
|
20
|
Murphy TW, Zhang Q, Naler LB, Ma S, Lu C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 2017; 143:60-80. [PMID: 29170786 PMCID: PMC5839671 DOI: 10.1039/c7an01346a] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inherent heterogeneity in cell populations has become of great interest and importance as analytical techniques have improved over the past decades. With the advent of personalized medicine, understanding the impact of this heterogeneity has become an important challenge for the research community. Many different microfluidic approaches with varying levels of throughput and resolution exist to study single cell activity. In this review, we take a broad view of the recent microfluidic developments in single cell analysis based on microwell, microchamber, and droplet platforms. We cover physical, chemical, and molecular biology approaches for cellular and molecular analysis including newly emerging genome-wide analysis.
Collapse
Affiliation(s)
- Travis W Murphy
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
21
|
Li Y, Yang X, Zhao W. Emerging Microtechnologies and Automated Systems for Rapid Bacterial Identification and Antibiotic Susceptibility Testing. SLAS Technol 2017; 22:585-608. [PMID: 28850804 DOI: 10.1177/2472630317727519] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rapid bacterial identification (ID) and antibiotic susceptibility testing (AST) are in great demand due to the rise of drug-resistant bacteria. Conventional culture-based AST methods suffer from a long turnaround time. By necessity, physicians often have to treat patients empirically with antibiotics, which has led to an inappropriate use of antibiotics, an elevated mortality rate and healthcare costs, and antibiotic resistance. Recent advances in miniaturization and automation provide promising solutions for rapid bacterial ID/AST profiling, which will potentially make a significant impact in the clinical management of infectious diseases and antibiotic stewardship in the coming years. In this review, we summarize and analyze representative emerging micro- and nanotechnologies, as well as automated systems for bacterial ID/AST, including both phenotypic (e.g., microfluidic-based bacterial culture, and digital imaging of single cells) and molecular (e.g., multiplex PCR, hybridization probes, nanoparticles, synthetic biology tools, mass spectrometry, and sequencing technologies) methods. We also discuss representative point-of-care (POC) systems that integrate sample processing, fluid handling, and detection for rapid bacterial ID/AST. Finally, we highlight major remaining challenges and discuss potential future endeavors toward improving clinical outcomes with rapid bacterial ID/AST technologies.
Collapse
Affiliation(s)
- Yiyan Li
- 1 Sue and Bill Gross Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA.,7 Department of Physics and Engineering, Fort Lewis College, Durango, Colorado, USA
| | | | - Weian Zhao
- 1 Sue and Bill Gross Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA.,6 Department of Biological Chemistry, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
22
|
Sesen M, Alan T, Neild A. Droplet control technologies for microfluidic high throughput screening (μHTS). LAB ON A CHIP 2017. [PMID: 28631799 DOI: 10.1039/c7lc00005g] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The transition from micro well plate and robotics based high throughput screening (HTS) to chip based screening has already started. This transition promises reduced droplet volumes thereby decreasing the amount of fluids used in these studies. Moreover, it significantly boosts throughput allowing screening to keep pace with the overwhelming number of molecular targets being discovered. In this review, we analyse state-of-the-art droplet control technologies that exhibit potential to be used in this new generation of screening devices. Since these systems are enclosed and usually planar, even some of the straightforward methods used in traditional HTS such as pipetting and reading can prove challenging to replicate in microfluidic high throughput screening (μHTS). We critically review the technologies developed for this purpose in depth, describing the underlying physics and discussing the future outlooks.
Collapse
Affiliation(s)
- Muhsincan Sesen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | | | | |
Collapse
|
23
|
Abstract
The microbiota - the collection of microorganisms that live within and on all mammals - provides crucial signals for the development and function of the immune system. Increased availability of technologies that profile microbial communities is facilitating the entry of many immunologists into the evolving field of host-microbiota studies. The microbial communities, their metabolites and components are not only necessary for immune homeostasis, they also influence the susceptibility of the host to many immune-mediated diseases and disorders. In this Review, we discuss technological and computational approaches for investigating the microbiome, as well as recent advances in our understanding of host immunity and microbial mutualism with a focus on specific microbial metabolites, bacterial components and the immune system.
Collapse
|
24
|
Clark IC, Abate AR. Finding a helix in a haystack: nucleic acid cytometry with droplet microfluidics. LAB ON A CHIP 2017; 17:2032-2045. [PMID: 28540956 PMCID: PMC6005652 DOI: 10.1039/c7lc00241f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nucleic acids encode the information of life, programming cellular functions and dictating many biological outcomes. Differentiating between cells based on their nucleic acid programs is, thus, a powerful way to unravel the genetic bases of many phenotypes. This is especially important considering that most cells exist in heterogeneous populations, requiring them to be isolated before they can be studied. Existing flow cytometry techniques, however, are unable to reliably recover specific cells based on nucleic acid content. Nucleic acid cytometry is a new field built on droplet microfluidics that allows robust identification, sorting, and sequencing of cells based on specific nucleic acid biomarkers. This review highlights applications that immediately benefit from the approach, biological questions that can be addressed for the first time with it, and considerations for building successful workflows.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
25
|
Fernandez RE, Rohani A, Farmehini V, Swami NS. Review: Microbial analysis in dielectrophoretic microfluidic systems. Anal Chim Acta 2017; 966:11-33. [PMID: 28372723 PMCID: PMC5424535 DOI: 10.1016/j.aca.2017.02.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Infections caused by various known and emerging pathogenic microorganisms, including antibiotic-resistant strains, are a major threat to global health and well-being. This highlights the urgent need for detection systems for microbial identification, quantification and characterization towards assessing infections, prescribing therapies and understanding the dynamic cellular modifications. Current state-of-the-art microbial detection systems exhibit a trade-off between sensitivity and assay time, which could be alleviated by selective and label-free microbial capture onto the sensor surface from dilute samples. AC electrokinetic methods, such as dielectrophoresis, enable frequency-selective capture of viable microbial cells and spores due to polarization based on their distinguishing size, shape and sub-cellular compositional characteristics, for downstream coupling to various detection modalities. Following elucidation of the polarization mechanisms that distinguish bacterial cells from each other, as well as from mammalian cells, this review compares the microfluidic platforms for dielectrophoretic manipulation of microbials and their coupling to various detection modalities, including immuno-capture, impedance measurement, Raman spectroscopy and nucleic acid amplification methods, as well as for phenotypic assessment of microbial viability and antibiotic susceptibility. Based on the urgent need within point-of-care diagnostics towards reducing assay times and enhancing capture of the target organism, as well as the emerging interest in isolating intact microbials based on their phenotype and subcellular features, we envision widespread adoption of these label-free and selective electrokinetic techniques.
Collapse
Affiliation(s)
- Renny E Fernandez
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Ali Rohani
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Vahid Farmehini
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Nathan S Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
26
|
Haliburton JR, Kim SC, Clark IC, Sperling RA, Weitz DA, Abate AR. Efficient extraction of oil from droplet microfluidic emulsions. BIOMICROFLUIDICS 2017; 11:034111. [PMID: 28611871 PMCID: PMC5438281 DOI: 10.1063/1.4984035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Droplet microfluidic techniques can perform large numbers of single molecule and cell reactions but often require controlled, periodic flow to merge, split, and sort droplets. Here, we describe a simple method to convert aperiodic flows into periodic ones. Using an oil extraction module, we efficiently remove oil from emulsions to readjust the droplet volume fraction, velocity, and packing, producing periodic flows. The extractor acts as a universal adaptor to connect microfluidic modules that do not operate under identical flow conditions, such as droplet generators, incubators, and merger devices.
Collapse
Affiliation(s)
| | - S C Kim
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California 94158, USA
| | - I C Clark
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California 94158, USA
| | - R A Sperling
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - D A Weitz
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
27
|
Lim SW, Lance ST, Stedman KM, Abate AR. PCR-activated cell sorting as a general, cultivation-free method for high-throughput identification and enrichment of virus hosts. J Virol Methods 2016; 242:14-21. [PMID: 28042018 DOI: 10.1016/j.jviromet.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 01/27/2023]
Abstract
Characterizing virus-host relationships is critical for understanding the impact of a virus on an ecosystem, but is challenging with existing techniques, particularly for uncultivable species. We present a general, cultivation-free approach for identifying phage-associated bacterial cells. Using PCR-activated cell sorting, we interrogate millions of individual bacteria for the presence of specific phage nucleic acids. If the nucleic acids are present, the bacteria are recovered via sorting and their genomes analyzed. This allows targeted recovery of all possible host species in a diverse population associated with a specific phage, and can be easily targeted to identify the hosts of different phages by modifying the PCR primers used for detection. Moreover, this technique allows quantification of free phage particles, as benchmarked against the "gold standard" of virus enumeration, the plaque assay.
Collapse
Affiliation(s)
- Shaun W Lim
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Shea T Lance
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Kenneth M Stedman
- Biology Department and Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
28
|
Ahrberg CD, Manz A, Chung BG. Polymerase chain reaction in microfluidic devices. LAB ON A CHIP 2016; 16:3866-3884. [PMID: 27713993 DOI: 10.1039/c6lc00984k] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The invention of the polymerase chain reaction (PCR) has caused a revolution in molecular biology, giving access to a method of amplifying deoxyribonucleic acid (DNA) molecules across several orders of magnitude. Since the first application of PCR in a microfluidic device was developed in 1998, an increasing number of researchers have continued the development of microfluidic PCR systems. In this review, we introduce recent developments in microfluidic-based space and time domain devices as well as discuss various designs integrated with multiple functions for sample preparation and detection. The development of isothermal nucleic acid amplification and digital PCR microfluidic devices within the last five years is also highlighted. Furthermore, we introduce various commercial microfluidic PCR devices.
Collapse
Affiliation(s)
| | - Andreas Manz
- Microfluidics group, KIST-Europe, Saarbrücken, Germany and Mechanotronics Department, Universität des Saarlandes, Saarbrücken, Germany
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| |
Collapse
|
29
|
Kaminski TS, Scheler O, Garstecki P. Droplet microfluidics for microbiology: techniques, applications and challenges. LAB ON A CHIP 2016; 16:2168-87. [PMID: 27212581 DOI: 10.1039/c6lc00367b] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Droplet microfluidics has rapidly emerged as one of the key technologies opening up new experimental possibilities in microbiology. The ability to generate, manipulate and monitor droplets carrying single cells or small populations of bacteria in a highly parallel and high throughput manner creates new approaches for solving problems in diagnostics and for research on bacterial evolution. This review presents applications of droplet microfluidics in various fields of microbiology: i) detection and identification of pathogens, ii) antibiotic susceptibility testing, iii) studies of microbial physiology and iv) biotechnological selection and improvement of strains. We also list the challenges in the dynamically developing field and new potential uses of droplets in microbiology.
Collapse
Affiliation(s)
- Tomasz S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
30
|
Scheler O, Kaminski TS, Ruszczak A, Garstecki P. Dodecylresorufin (C12R) Outperforms Resorufin in Microdroplet Bacterial Assays. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11318-11325. [PMID: 27100211 DOI: 10.1021/acsami.6b02360] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper proves that dodecylresorufin (C12R) outperforms resorufin (the conventional form of this dye) in droplet microfluidic bacterial assays. Resorufin is a marker dye that is widely used in different fields of microbiology and has increasingly been applied in droplet microfluidic assays and experiments. The main concern associated with resorufin in droplet-based systems is dye leakage into the oil phase and neighboring droplets. The leakage decreases the performance of assays because it causes averaging of the signal between the positive (bacteria-containing) and negative (empty) droplets. Here we show that C12R is a promising alternative to conventional resorufin because it maintains higher sensitivity, specificity, and signal-to-noise ratio over time. These characteristics make C12R a suitable reagent for droplet digital assays and for monitoring of microbial growth in droplets.
Collapse
Affiliation(s)
- Ott Scheler
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
- Institute of Molecular and Cell Biology, University of Tartu , Riia 23, 51010 Tartu, Estonia
| | - Tomasz S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Artur Ruszczak
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
31
|
Shembekar N, Chaipan C, Utharala R, Merten CA. Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. LAB ON A CHIP 2016; 16:1314-31. [PMID: 27025767 DOI: 10.1039/c6lc00249h] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Droplet-based microfluidics enables assays to be carried out at very high throughput (up to thousands of samples per second) and enables researchers to work with very limited material, such as primary cells, patient's biopsies or expensive reagents. An additional strength of the technology is the possibility to perform large-scale genotypic or phenotypic screens at the single-cell level. Here we critically review the latest developments in antibody screening, drug discovery and highly multiplexed genomic applications such as targeted genetic workflows, single-cell RNAseq and single-cell ChIPseq. Starting with a comprehensive introduction for non-experts, we pinpoint current limitations, analyze how they might be overcome and give an outlook on exciting future applications.
Collapse
Affiliation(s)
- Nachiket Shembekar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany.
| | - Chawaree Chaipan
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany.
| | - Ramesh Utharala
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany.
| | - Christoph A Merten
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany.
| |
Collapse
|
32
|
de Lange N, Tran TM, Abate AR. Electrical lysis of cells for detergent-free droplet assays. BIOMICROFLUIDICS 2016; 10:024114. [PMID: 27051471 PMCID: PMC4808063 DOI: 10.1063/1.4944742] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/13/2016] [Indexed: 05/06/2023]
Abstract
Efficient lysis is critical when analyzing single cells in microfluidic droplets, but existing methods utilize detergents that can interfere with the assays to be performed. We demonstrate robust cell lysis without the use of detergents or other chemicals. In our method, cells are exposed to electric field immediately before encapsulation in droplets, resulting in cell lysis. We characterize lysis efficiency as a function of control parameters and demonstrate compatibility with enzymatic assays by measuring the catalysis of β-glucosidase, an important cellulase used in the conversion of biomass to biofuel. Our method enables assays in microfluidic droplets that are incompatible with detergents.
Collapse
Affiliation(s)
| | - T M Tran
- Bioengineering and Therapeutic Sciences, University of California San Francisco , San Francisco, California 14958, USA
| | - A R Abate
- Bioengineering and Therapeutic Sciences, University of California San Francisco , San Francisco, California 14958, USA
| |
Collapse
|
33
|
Abstract
The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.
Collapse
Affiliation(s)
- Songzi Kou
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Danhui Cheng
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Fei Sun
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - I-Ming Hsing
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
34
|
Affiliation(s)
- Sanjin Hosic
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Shashi K. Murthy
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Abigail N. Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
35
|
Ufarté L, Potocki-Veronese G, Laville É. Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology. Front Microbiol 2015; 6:563. [PMID: 26097471 PMCID: PMC4456863 DOI: 10.3389/fmicb.2015.00563] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/21/2015] [Indexed: 12/30/2022] Open
Abstract
The rapid expansion of new sequencing technologies has enabled large-scale functional exploration of numerous microbial ecosystems, by establishing catalogs of functional genes and by comparing their prevalence in various microbiota. However, sequence similarity does not necessarily reflect functional conservation, since just a few modifications in a gene sequence can have a strong impact on the activity and the specificity of the corresponding enzyme or the recognition for a sensor. Similarly, some microorganisms harbor certain identified functions yet do not have the expected related genes in their genome. Finally, there are simply too many protein families whose function is not yet known, even though they are highly abundant in certain ecosystems. In this context, the discovery of new protein functions, using either sequence-based or activity-based approaches, is of crucial importance for the discovery of new enzymes and for improving the quality of annotation in public databases. This paper lists and explores the latest advances in this field, along with the challenges to be addressed, particularly where microfluidic technologies are concerned.
Collapse
Affiliation(s)
- Lisa Ufarté
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| | - Gabrielle Potocki-Veronese
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| | - Élisabeth Laville
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| |
Collapse
|
36
|
Eastburn DJ, Huang Y, Pellegrino M, Sciambi A, Ptáček LJ, Abate AR. Microfluidic droplet enrichment for targeted sequencing. Nucleic Acids Res 2015; 43:e86. [PMID: 25873629 PMCID: PMC4513844 DOI: 10.1093/nar/gkv297] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023] Open
Abstract
Targeted sequence enrichment enables better identification of genetic variation by providing increased sequencing coverage for genomic regions of interest. Here, we report the development of a new target enrichment technology that is highly differentiated from other approaches currently in use. Our method, MESA (Microfluidic droplet Enrichment for Sequence Analysis), isolates genomic DNA fragments in microfluidic droplets and performs TaqMan PCR reactions to identify droplets containing a desired target sequence. The TaqMan positive droplets are subsequently recovered via dielectrophoretic sorting, and the TaqMan amplicons are removed enzymatically prior to sequencing. We demonstrated the utility of this approach by generating an average 31.6-fold sequence enrichment across 250 kb of targeted genomic DNA from five unique genomic loci. Significantly, this enrichment enabled a more comprehensive identification of genetic polymorphisms within the targeted loci. MESA requires low amounts of input DNA, minimal prior locus sequence information and enriches the target region without PCR bias or artifacts. These features make it well suited for the study of genetic variation in a number of research and diagnostic applications.
Collapse
Affiliation(s)
- Dennis J Eastburn
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA Mission Bio, Inc., San Francisco, CA 94107, USA
| | - Yong Huang
- Department of Neurology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | | | - Adam Sciambi
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA Mission Bio, Inc., San Francisco, CA 94107, USA
| | - Louis J Ptáček
- Department of Neurology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|