1
|
Kim JH, Lee R, Hwang SH, Choi SH, Kim JH, Cho IH, Lee JI, Nah SY. Ginseng and ginseng byproducts for skincare and skin health. J Ginseng Res 2024; 48:525-534. [PMID: 39583168 PMCID: PMC11583465 DOI: 10.1016/j.jgr.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 11/26/2024] Open
Abstract
Ginseng is a traditional herbal medicine with a long history of use for the prevention and/or treatment of various diseases. Ginseng is used worldwide as a functional food to maintain human health. In addition, ginseng has been used as a raw ingredient in cosmetics with various applications, ranging from skin toning to anti-aging. Some cosmetic products contain ginseng extracts from Korea and other countries, as it is thought that ginseng can also exert beneficial effects on human skin. However, it remains unclear which ginseng component(s) could be the main active compound that directly contributes to skin health and/or prevents skin aging. It is also important to understand the mechanisms by which the ginseng component(s) exert their effects on the skin and skin health. This review describes recent in vitro and in vivo studies involving ginseng extracts, ginseng ingredients, and ginseng byproducts for skincare and skin health and discusses emerging evidence that ginsenosides, gintonin, and ginseng byproducts could be novel candidates for skincare and skin health applications ranging from anti-aging to the treatment of skin diseases such as atopic dermatitis and hypertrophic scars and keloids. The mechanisms underlying the beneficial effects of ginseng components and byproducts on skin health are discussed. In addition, this review shows how ginseng components, such as gintonin, a newly identified ginseng component, might contribute to skin health and skin disease when used as a supplementary ingredient in cosmetics and further proposes a novel combination in cosmetic products containing both ginsenosides and gintonin.
Collapse
Affiliation(s)
- Ji-Hun Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju, Republic of Korea
| | - Sun-Hye Choi
- Department of Animal Health, College of Health and Medical Services, Osan University, Osan-si, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Iksan City, Jeollabuk-Do, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong Ik Lee
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhang Y, Liu E, Gao H, He Q, Chen A, Pang Y, Zhang X, Bai S, Zeng J, Guo J. Natural products for the treatment of hypertrophic scars: Preclinical and clinical studies. Heliyon 2024; 10:e37059. [PMID: 39296083 PMCID: PMC11408005 DOI: 10.1016/j.heliyon.2024.e37059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Hypertrophic scarring (HS) is a complication of wound healing that causes physiological and psychological distress in patients. However, the possible mechanism underlying HS is not fully understood, and there is no gold standard for its treatment. Natural products are more effective, economical, convenient, and safe than existing drugs, and they have a wide application prospect. However, there is a lack of literature on this topic, so we reviewed in vivo, in vitro, and clinical studies and screened natural products showing beneficial effects on HS that can become potential therapeutic agents for HS to fill in the gaps in the field. In addition, we discussed the drug delivery systems related to these natural products and their mechanisms in the treatment of HS. Generally speaking, natural products inhibit inflammation, myofibroblast activation, angiogenesis, and collagen accumulation by targeting interleukins, tumor necrosis factor-α, vascular endothelial growth factors, platelet-derived growth factors, and matrix metalloproteinases, so as to play an anti-HS effects of natural products are attributed to their anti-inflammatory, anti-proliferative, anti-angiogenesis, and pro-apoptotic (enhancing apoptosis and autophagy) roles, thus treating HS. We also screened the potential therapeutic targets of these natural compounds for HS through network pharmacology and constructed a protein-protein interaction (PPI) network, which may provide clues for the pharmacological mechanism of natural products in treating this disease and the development and application of drugs.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - E Liu
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | | | - Qingying He
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Anjing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Yaobing Pang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Xueer Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Sixian Bai
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| |
Collapse
|
3
|
Zarei H, Tamri P, Asl SS, Soleimani M, Moradkhani S. Hydroalcoholic Extract of Scrophularia Striata Attenuates Hypertrophic Scar, Suppresses Collagen Synthesis, and Stimulates MMP2 and 9 Gene Expression in Rabbit Ear Model. J Pharmacopuncture 2022; 25:258-267. [PMID: 36186090 PMCID: PMC9510145 DOI: 10.3831/kpi.2022.25.3.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives Hypertrophic scars (HSs) are caused by abnormal wound healing. To date, no standard treatment has been made available for HSs. Scrophularia striata has been reported to accelerate wound healing and has the potential to prevent HS formation. In this study, we investigated the anti-scarring effects of S. striata extract (SSE) in a rabbit ear model of scarring. Methods In this study, New Zealand white rabbit (weight 2.3-2.5 kg) were used. In the prevention phase of the study, three test groups received 5%, 10%, and 15% ointments of SSE in the Eucerin base, the fourth group received Eucerin, and the fifth group received no treatment. The samples were obtained on day 35 after wounding. In the treatment phase of the study, the test groups received an intralesional injection of SSE (5%, 10%, and 15%), the fourth group received an intralesional injection of triamcinolone, the fifth group received a solvent (injection vehicle), and the sixth group received no treatment. To evaluate the anti-scarring effects of SSE, the scar elevation index (SEI), epidermis thickness index (ETI), collagen deposition, and MMP2 and MMP9 gene expression were evaluated. Results A significant reduction in SEI, ETI, and collagen deposition was noted in animals treated with SSE compared with the control groups. In addition, topical SSE stimulated MMP2 and MMP9 gene expression. Conclusion The findings of this study demonstrate the potential for SSE in the prevention and treatment of HS. SSE could be prepared as an appropriate formulation to treat wounds and prevent abnormal scarring.
Collapse
Affiliation(s)
- Hatam Zarei
- Department of Pharmacology & Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pari Tamri
- Department of Pharmacology & Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Moradkhani
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Wang J, Zeng L, Zhang Y, Qi W, Wang Z, Tian L, Zhao D, Wu Q, Li X, Wang T. Pharmacological properties, molecular mechanisms and therapeutic potential of ginsenoside Rg3 as an antioxidant and anti-inflammatory agent. Front Pharmacol 2022; 13:975784. [PMID: 36133804 PMCID: PMC9483152 DOI: 10.3389/fphar.2022.975784] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 12/06/2022] Open
Abstract
Inflammation and oxidative stress lead to various acute or chronic diseases, including pneumonia, liver and kidney injury, cardiovascular and cerebrovascular diseases, metabolic diseases, and cancer. Ginseng is a well-known and widely used ethnic medicine in Asian countries, and ginsenoside Rg3 is a saponin isolated from Panax ginseng C. A. Meyer, Panax notoginseng, or Panax quinquefolius L. This compound has a wide range of pharmacological properties, including antioxidant and anti-inflammatory activities, which have been evaluated in disease models of inflammation and oxidative stress. Rg3 can attenuate lung inflammation, prevent liver and kidney function damage, mitigate neuroinflammation, prevent cerebral and myocardial ischemia–reperfusion injury, and improve hypertension and diabetes symptoms. The multitarget, multipathway mechanisms of action of Rg3 have been gradually deciphered. This review summarizes the existing knowledge on the anti-inflammatory and antioxidant effects and underlying molecular mechanisms of ginsenoside Rg3, suggesting that ginsenoside Rg3 may be a promising candidate drug for the treatment of diseases with inflammatory and oxidative stress conditions.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li Zeng
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ying Zhang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Wenxiu Qi
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Ziyuan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lin Tian
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| | - Xiangyan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| | - Tan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| |
Collapse
|
5
|
Jin L, Liu J, Wang S, Zhao L, Li J. Evaluation of 20(S)-ginsenoside Rg3 loaded hydrogel for the treatment of perianal ulcer in a rat model. J Ginseng Res 2022; 46:771-779. [PMID: 36312740 PMCID: PMC9597444 DOI: 10.1016/j.jgr.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background As a kind of common complication of the surgery of perianal diseases, perianal ulcer is known as a nuisance. This study aims to develop a kind of 20(S)-ginsenoside Rg3 (Rg3)-loaded hydrogel to treat perianal ulcers in a rat model. Methods The copolymers PLGA1600-PEG1000-PLGA1600 were synthesized by ring-opening polymerization process and Rg3-loaded hydrogel was then developed. The perianal ulcer rat model was established to analyze the treatment efficacy of Rg3-loaded hydrogel for ulceration healing for 15 days. The animals were divided into control group, hydrogel group, free Rg3 group, Rg3-loaded hydrogel group, and Lidocaine Gel® group. The residual wound area rate was calculated and the blood concentrations of interleukin-1 (IL-1), interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF) were recorded. Hematoxylin and eosin (H&E) staining, Masson's Trichrome (MT) staining, and tumor necrosis factor α (TNF-α), Ki-67, CD31, ERK1/2, and NF-κB immunohistochemical staining were performed. Results The biodegradable and biocompatible hydrogel carries a homogenous interactive porous structure with 10 μm pore size and five weeks in vivo degradation time. The loaded Rg3 can be released sustainably. The in vitro cytotoxicity study showed that the hydrogel had no effect on survival rate of murine skin fibroblasts L929. The Rg3-loaded hydrogel can facilitate perianal ulcer healing by inhibiting local and systematic inflammatory responses, swelling the proliferation of nuclear cells, collagen deposition, and vascularization, and activating ERK signal pathway. Conclusion The Rg3-loaded hydrogel shows the best treatment efficacy of perianal ulcer and may be a candidate for perianal ulcer treatment.
Collapse
|
6
|
Ni J, Liu Z, Jiang M, Li L, Deng J, Wang X, Su J, Zhu Y, He F, Mao J, Gao X, Fan G. Ginsenoside Rg3 ameliorates myocardial glucose metabolism and insulin resistance via activating the AMPK signaling pathway. J Ginseng Res 2021; 46:235-247. [PMID: 35509823 PMCID: PMC9058838 DOI: 10.1016/j.jgr.2021.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background Ginsenoside Rg3 is one of the main active ingredients in ginseng. Here, we aimed to confirm its protective effect on the heart function in transverse aortic coarctation (TAC)-induced heart failure mice and explore the potential molecular mechanisms involved. Methods The effects of ginsenoside Rg3 on heart and mitochondrial function were investigated by treating TAC-induced heart failure in mice. The mechanism of ginsenoside Rg3 for improving heart and mitochondrial function in mice with heart failure was predicted through integrative analysis of the proteome and plasma metabolome. Glucose uptake and myocardial insulin sensitivity were evaluated using micro-positron emission tomography. The effect of ginsenoside Rg3 on myocardial insulin sensitivity was clarified by combining in vivo animal experiments and in vitro cell experiments. Results Treatment of TAC-induced mouse models with ginsenoside Rg3 significantly improved heart function and protected mitochondrial structure and function. Fusion of metabolomics, proteomics, and targeted metabolomics data showed that Rg3 regulated the glycolysis process, and Rg3 not only regulated glucose uptake but also improve myocardial insulin resistance. The molecular mechanism of ginsenoside Rg3 regulation of glucose metabolism was determined by exploring the interaction pathways of AMPK, insulin resistance, and glucose metabolism. The effect of ginsenoside Rg3 on the promotion of glucose uptake in IR-H9c2 cells by AMPK activation was dependent on the insulin signaling pathway. Conclusions Ginsenoside Rg3 modulates glucose metabolism and significantly ameliorates insulin resistance through activation of the AMPK pathway.
Collapse
|
7
|
Hesari M, Mohammadi P, Khademi F, Shackebaei D, Momtaz S, Moasefi N, Farzaei MH, Abdollahi M. Current Advances in the Use of Nanophytomedicine Therapies for Human Cardiovascular Diseases. Int J Nanomedicine 2021; 16:3293-3315. [PMID: 34007178 PMCID: PMC8123960 DOI: 10.2147/ijn.s295508] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Considering the high prevalence of cardiovascular diseases (CVDs), the primary cause of death during the last several decades, it is necessary to develop proper strategies for the prevention and treatment of CVDs. Given the excessive side effects of current therapies, alternative therapeutic approaches like medicinal plants and natural products are preferred. Lower toxicity, chemical diversity, cost-effectiveness, and proven therapeutic potentials make natural products superior compared to other products. Nanoformulation methods improve the solubility, bioavailability, circulation time, surface area-to-volume ratio, systemic adverse side effects, and drug delivery efficiency of these medications. This study intended to review the functionality of the most recent nanoformulated medicinal plants and/or natural products against various cardiovascular conditions such as hypertension, atherosclerosis, thrombosis, and myocardial infarction. Literature review revealed that curcumin, quercetin, and resveratrol were the most applied natural products, respectively. Combination therapy, conjugation, or fabrication of nanoparticles and nanocarriers improved the applications and therapeutic efficacy of herbal- or natural-based nanoformulations. In the context of CVDs prevention and/or treatment, available data suggest that natural-based nanoformulations are considerably efficient, alone or in blend with other herbal/synthetic medicines. However, clinical trials are mandatory to elucidate the safety, cardioprotective effect, and mechanism of actions of nanophytomedicines.
Collapse
Affiliation(s)
- Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Narges Moasefi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Lin H, Zheng Z, Yuan J, Zhang C, Cao W, Qin X. Collagen Peptides Derived from Sipunculus nudus Accelerate Wound Healing. Molecules 2021; 26:molecules26051385. [PMID: 33806637 PMCID: PMC7961935 DOI: 10.3390/molecules26051385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Marine collagen peptides have high potential in promoting skin wound healing. This study aimed to investigate wound healing activity of collagen peptides derived from Sipunculus nudus (SNCP). The effects of SNCP on promoting healing were studied through a whole cortex wound model in mice. Results showed that SNCP consisted of peptides with a molecular weight less than 5 kDa accounted for 81.95%, rich in Gly and Arg. SNCP possessed outstanding capacity to induce human umbilical vein endothelial cells (HUVEC), human immortalized keratinocytes (HaCaT) and human skin fibroblasts (HSF) cells proliferation and migration in vitro. In vivo, SNCP could markedly improve the healing rate and shorten the scab removal time, possessing a scar-free healing effect. Compared with the negative control group, the expression level of tumor necrosis factor-α, interleukin-1β and transforming growth factor-β1 (TGF-β1) in the SNCP group was significantly down-regulated at 7 days post-wounding (p < 0.01). Moreover, the mRNA level of mothers against decapentaplegic homolog 7 (Smad7) in SNCP group was up-regulated (p < 0.01); in contrast, type II TGF-β receptors, collagen I and α-smooth muscle actin were significantly down-regulated at 28 days (p < 0.01). These results indicate that SNCP possessed excellent activity of accelerating wound healing and inhibiting scar formation, and its mechanism was closely related to reducing inflammation, improving collagen deposition and recombination and blockade of the TGF-β/Smads signal pathway. Therefore, SNCP may have promising clinical applications in skin wound repair and scar inhibition.
Collapse
Affiliation(s)
- Haisheng Lin
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University), Fujian Province University, Quanzhou 362000, China;
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhihong Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
| | - Jianjun Yuan
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University), Fujian Province University, Quanzhou 362000, China;
- Correspondence: (J.Y.); (C.Z.); Tel.: +86-15980016199 (J.Y.); +86-13902501963 (C.Z.)
| | - Chaohua Zhang
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University), Fujian Province University, Quanzhou 362000, China;
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (J.Y.); (C.Z.); Tel.: +86-15980016199 (J.Y.); +86-13902501963 (C.Z.)
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (W.C.); (X.Q.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institu-tion, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
9
|
Ginsenosides: potential therapeutic source for fibrosis-associated human diseases. J Ginseng Res 2019; 44:386-398. [PMID: 32372860 PMCID: PMC7195584 DOI: 10.1016/j.jgr.2019.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue fibrosis is an eventual pathologic change of numerous chronic illnesses, which is characterized by resident fibroblasts differentiation into myofibroblasts during inflammation, coupled with excessive extracellular matrix deposition in tissues, ultimately leading to failure of normal organ function. Now, there are many mechanistic insights into the pathogenesis of tissue fibrosis, which facilitate the discovery of effective antifibrotic drugs. Moreover, many chronic diseases remain a significant clinical unmet need. For the past five years, many research works have undoubtedly addressed the functional dependency of ginsenosides in different types of fibrosis and the successful remission in various animal models treated with ginsenosides. Caveolin-1, interleukin, thrombospondin-1 (TSP-1), liver X receptors (LXRs), Nrf2, microRNA-27b, PPARδ-STAT3, liver kinase B1 (LKB1)-AMPK, and TGF-β1/Smads are potential therapy targeting using ginsenosides. Ginsenosides can play a targeting role and suppress chronic inflammatory response, collagen deposition, and epithelial-mesenchymal transition (EMT), as well as myofibroblast activation to attenuate fibrosis. In this report, our aim was to focus on the therapeutic prospects of ginsenosides in fibrosis-related human diseases making use of results acquired from various animal models. These findings should provide important therapeutic clues and strategies for the exploration of new drugs for fibrosis treatment.
Collapse
|
10
|
Qiu R, Li J, Sun D, Li H, Qian F, Wang L. 20(S)-Ginsenoside Rg3-loaded electrospun membranes to prevent postoperative peritoneal adhesion. Biomed Microdevices 2019; 21:78. [DOI: 10.1007/s10544-019-0425-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Xu T, Yang R, Ma X, Chen W, Liu S, Liu X, Cai X, Xu H, Chi B. Bionic Poly(γ-Glutamic Acid) Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars. Adv Healthc Mater 2019; 8:e1900123. [PMID: 30972958 DOI: 10.1002/adhm.201900123] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/15/2019] [Indexed: 12/16/2022]
Abstract
Hypertrophic scarring (HS) remains a great challenge in wound dressing. Although various bionic extracellular matrix (ECM) biomaterials have been designed towards HS treatment, not all biomaterials can synergize biological functions and application functions in wound repair. Bionic scar-inhibiting scaffolds, loaded with biomolecules or drugs, become promising strategies for scarless skin regeneration. In this work, inspired by the physicochemical environment of ECM, a versatile fabrication of poly(γ-glutamic acid) based on electrospun photocrosslinkable hydrogel fibrous scaffolds incorporated with ginsenoside Rg3 (GS-Rg3) is developed for tissue repair and wound therapy. Decorated with adhesive peptide, bionic fibrous scaffolds can accelerate fibroblasts to sprout and grow, forming organized space-filling basement that gradually fills a depression before wound close up in the early stage. Additionally, by sustained release of GS-Rg3 in late stage, fibrous scaffolds promote scarless wound healing in vivo as evidenced by the promotion of cell communication and skin regeneration, as well as the subsequent decrease of angiogenesis and collagen accumulation. These ECM-inspired fibrous scaffolds, therefore, offer new perspectives on accelerated wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
| | - Rong Yang
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
| | - Xuebin Ma
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing 210094 China
| | - Wei Chen
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
| | - Shuai Liu
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing 210094 China
| | - Xin Liu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
| | - Xiaojun Cai
- College of Materials Science and EngineeringNanjing Tech University Nanjing 211816 Nanjing China
| | - Hong Xu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
- Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Bo Chi
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Food Science and Light IndustryNanjing Tech University Nanjing 211816 China
- Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
12
|
Zhang K, Liu Y, Wang C, Li J, Xiong L, Wang Z, Liu J, Li P. Evaluation of the gastroprotective effects of 20 (S)-ginsenoside Rg3 on gastric ulcer models in mice. J Ginseng Res 2018; 43:550-561. [PMID: 31695563 PMCID: PMC6823781 DOI: 10.1016/j.jgr.2018.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/15/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Background Gastric ulcer (GU) is a common gastrointestinal disease that can be induced by many factors. Finding an effective treatment method that contains fewer side effects is important. 20 (S)-ginsenoside Rg3 is a kind of protopanaxadiol and has shown superior antiinflammatory and antioxidant effects in many studies, especially cancer studies. In this study, we examined the treatment efficacy of 20 (S)-ginsenoside Rg3 on GU. Methods Three kinds of GU models, including an alcohol GU model, a pylorus-ligated GU model, and an acetic acid GU model, were used. Mouse endothelin-1 (ET-1) and nitric oxide (NO) levels in blood and epidermal growth factor (EGF), superoxide dismutase, and NO levels in gastric mucosa were evaluated. Hematoxylin and eosin staining of gastric mucosa and immunohistochemical staining of ET-1, inducible nitric oxide synthase (NOS2), and epidermal growth factor receptors were studied. Ulcer index (UI) scores and UI ratios were also analyzed to demonstrate the GU conditions in different groups. Furthermore, Glide XP from Schrödinger was used for molecular docking to clarify the interactions between 20 (S)-ginsenoside Rg3 and EGF and NOS2. Results 20 (S)-ginsenoside Rg3 significantly decreased the UI scores and UI ratios in all the three GU models, and it demonstrated antiulcer effects by decreasing the ET-1 and NOS2 levels and increasing the NO, superoxide dismutase, EGF, and epidermal growth factor receptor levels. In addition, high-dose 20 (S)-ginsenoside Rg3 showed satisfactory gastric mucosa protection effects. Conclusion 20 (S)-ginsenoside Rg3 can inhibit the formation of GU and may be a potential therapeutic agent for GU.
Collapse
Affiliation(s)
- Kai Zhang
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Cuizhu Wang
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lingxin Xiong
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhenzhou Wang
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Corresponding author. School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Pingya Li
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Corresponding author. School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| |
Collapse
|
13
|
Li Y, Wang Y, Niu K, Chen X, Xia L, Lu D, Kong R, Chen Z, Duan Y, Sun J. Clinical benefit from EGFR-TKI plus ginsenoside Rg3 in patients with advanced non-small cell lung cancer harboring EGFR active mutation. Oncotarget 2018; 7:70535-70545. [PMID: 27655708 PMCID: PMC5342572 DOI: 10.18632/oncotarget.12059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/25/2016] [Indexed: 01/10/2023] Open
Abstract
Purpose Acquired resistance is a bottleneck that restricts the efficacy of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) for lung cancer. Ginsenoside Rg3 is an antiangiogenic agent which can down-regulate the expressions of vascular endothelial growth factor (VEGF) and EGFR. Combination of EGFR-TKI and ginsenoside Rg3 may be a promising strategy to delay acquired resistance. This retrospective study explored the efficacy and safety of this combined regimen in patients with EGFR mutation and advanced non-small cell lung cancer (NSCLC). Results By the deadline of March 31th 2016, the median follow-up period reached 22.9 months. The median PFS was significantly longer in group A than in group B (12.4 months vs 9.9 months, P = 0.017). In addition, ORR was significantly higher in group A than in group B (59.6% vs 41.7%, P = 0.049). The median OS in group A showed no extended tendency compared with that in group B (25.4 months vs 21.4 months, P = 0.258). No significant difference in side effects was found between the two groups. Methods A total of 124 patients with advanced NSCLC and EGFR active mutation were collected and analyzed. All of them were treated with first-line EGFR-TKI and divided into two groups. In group A (n=52), patients were administered EGFR-TKI plus ginsenoside Rg3 at standard doses. In group B (n=72), patients received EGFR-TKI alone. Progression-free survival (PFS), overall survival (OS), objective response rate (ORR) and side effects were analyzed. Conclusions Ginsenoside Rg3 improves median PFS and ORR of first-line EGFR-TKI treatment in EGFR-mutant advanced NSCLC patients, thus providing a new regimen to delay acquired resistance of EGFR-TKI.
Collapse
Affiliation(s)
- Yan Li
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yanmei Wang
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Kai Niu
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xiewan Chen
- Medical English Department, College of Basic Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Liqin Xia
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Dingxi Lu
- Medical English Department, College of Basic Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Rui Kong
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Zhengtang Chen
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yuzhong Duan
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jianguo Sun
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| |
Collapse
|
14
|
Li L, Ni J, Li M, Chen J, Han L, Zhu Y, Kong D, Mao J, Wang Y, Zhang B, Zhu M, Gao X, Fan G. Ginsenoside Rg3 micelles mitigate doxorubicin-induced cardiotoxicity and enhance its anticancer efficacy. Drug Deliv 2017; 24:1617-1630. [PMID: 29063791 PMCID: PMC8241051 DOI: 10.1080/10717544.2017.1391893] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin (DOX) is one of the most effective chemotherapy agents used in the treatment of hematological and solid tumors, however, it causes dose-related cardiotoxicity that may lead to heart failure in patients. One of the major reasons was increased reactive oxygen species (ROS) production. Ginsenoside Rg3 (Rg3), was powerful free radical scavengers and possessed cardioprotective effects. Nevertheless, Rg3 has low aqueous solubility and oral bioavailability, limiting its effects. Herein, we encapsulated Rg3 through spontaneous self-assembly of Pluronic F127 to improve its solubility and oral bioavailability. Moreover, co-administering Rg3 in Pluronic F127 micelles with doxorubicin can mitigate the cardiotoxicity, with ameliorating mitochondrial and metabolic function, improving calcium handling, and decreasing ROS production. In addition, it can improve the anticancer efficacy of doxorubicin. Therefore, our study provides a rational strategy for further developing a potentially viable adjunct-supportive treatment for reducing toxicity and increasing efficiency on chemotherapy.
Collapse
Affiliation(s)
- Lan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Min Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jingrui Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Lifeng Han
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yan Zhu
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Boli Zhang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Meifeng Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Science, Nankai University, Tianjin, PR China
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| |
Collapse
|
15
|
Wang L, Yang J, Ran B, Yang X, Zheng W, Long Y, Jiang X. Small Molecular TGF-β1-Inhibitor-Loaded Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32545-32553. [PMID: 28875694 DOI: 10.1021/acsami.7b09796] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hypertrophic scarring (HS) is a disorder that occurs during wound healing and seriously depresses the quality of human life. Scar-inhibiting scaffolds, though bringing promise to HS prevention, face problems such as the incompatibility of the scaffold materials and the instability of bioactive molecules. Herein, we present a TGF-β1-inhibitor-doped poly(ε-caprolactone) (PCL)/gelatin (PG) coelectrospun nanofibrous scaffold (PGT) for HS prevention during wound healing. The appropriate ratio of PCL to gelatin can avoid individual defects of the two materials and achieve an optimized mechanical property and biocompatibility. The TGF-β1 inhibitor (SB-525334) is a small molecule and is highly stable during electrospinning and drug release processes. The PGT effectively inhibits fibroblast (the major cell type contributing to scar formation) proliferation in vitro and successfully prevents HS formation during the healing of full-thickness model wounds on rabbit ear. Our strategy offers an excellent solution for potential large-scale production of scaffolds for clinical HS prevention.
Collapse
Affiliation(s)
- Le Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University , Qingdao 266071, China
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , Beijing, 100190, China
| | - Junchuan Yang
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , Beijing, 100190, China
| | - Bei Ran
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , Beijing, 100190, China
| | - Xinglong Yang
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , Beijing, 100190, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Wenfu Zheng
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , Beijing, 100190, China
| | - Yunze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University , Qingdao 266071, China
| | - Xingyu Jiang
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology , Beijing, 100190, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| |
Collapse
|
16
|
Reinforcement of transvaginal repair using polypropylene mesh functionalized with basic fibroblast growth factor. Colloids Surf B Biointerfaces 2016; 142:10-19. [DOI: 10.1016/j.colsurfb.2016.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/18/2015] [Accepted: 02/16/2016] [Indexed: 12/14/2022]
|
17
|
MWNT-hybrided supramolecular hydrogel for hydrophobic camptothecin delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 50:294-9. [DOI: 10.1016/j.msec.2015.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
|