1
|
Cajochen C, Reichert CF, Münch M, Gabel V, Stefani O, Chellappa SL, Schmidt C. Ultradian sleep cycles: Frequency, duration, and associations with individual and environmental factors-A retrospective study. Sleep Health 2024; 10:S52-S62. [PMID: 37914631 DOI: 10.1016/j.sleh.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Sleep varies between individuals in response to sleep-wake history and various environmental factors, including light and noise. Here we report on the intranight variation of the ultradian nonrapid eye movement-rapid eye movement (NREM-REM) sleep cycle in 369 participants who have contributed to different laboratory studies from 1994 to 2020 at the Centre for Chronobiology, Basel, Switzerland. RESULTS We observed a large interindividual variability in sleep cycle duration, including NREM and REM sleep episodes in healthy participants who were given an 8-hour sleep opportunity at habitual bedtime in controlled laboratory settings. The median sleep cycle duration was 96 minutes out of 6064 polysomnographically-recorded cycles. The number and duration of cycles were not normally distributed, and the distribution became narrower for NREM sleep and wider for REM sleep later in the night. The first cycle was consistently shorter than subsequent cycles, and moderate presleep light or nocturnal noise exposure had no significant effects on ultradian sleep cycle duration. Age and sex significantly affected NREM and REM sleep duration, with older individuals having longer NREM and shorter REM sleep particularly in the end of the night, and females having longer NREM sleep episodes. High sleep pressure (ie, sleep deprivation) and low sleep pressure (ie, multiple naps) altered ultradian sleep cycles, with high sleep pressure leading to longer NREM sleep in the first cycle, and low sleep pressure leading to longer REM sleep episodes. Positive correlations were observed between N2 and NREM duration, and between N1 and REM duration. Weak intrasleep REM sleep homeostasis was also evident in our data set. CONCLUSIONS We conclude that ultradian sleep cycles are endogenous biological rhythms modulated by age, sex, and sleep homeostasis, but not directly responsive to (moderate levels of) environmental cues in healthy good sleepers.
Collapse
Affiliation(s)
- Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland.
| | - Carolin Franziska Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Mirjam Münch
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | | | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Sarah Laxhmi Chellappa
- School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Christina Schmidt
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium; Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology, Speech and Language, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Adra N, Dümmer LW, Paixao L, Tesh RA, Sun H, Ganglberger W, Westmeijer M, Da Silva Cardoso M, Kumar A, Ye E, Henry J, Cash SS, Kitchener E, Leveroni CL, Au R, Rosand J, Salinas J, Lam AD, Thomas RJ, Westover MB. Decoding information about cognitive health from the brainwaves of sleep. Sci Rep 2023; 13:11448. [PMID: 37454163 PMCID: PMC10349883 DOI: 10.1038/s41598-023-37128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Sleep electroencephalogram (EEG) signals likely encode brain health information that may identify individuals at high risk for age-related brain diseases. Here, we evaluate the correlation of a previously proposed brain age biomarker, the "brain age index" (BAI), with cognitive test scores and use machine learning to develop and validate a series of new sleep EEG-based indices, termed "sleep cognitive indices" (SCIs), that are directly optimized to correlate with specific cognitive scores. Three overarching cognitive processes were examined: total, fluid (a measure of cognitive processes involved in reasoning-based problem solving and susceptible to aging and neuropathology), and crystallized cognition (a measure of cognitive processes involved in applying acquired knowledge toward problem-solving). We show that SCI decoded information about total cognition (Pearson's r = 0.37) and fluid cognition (Pearson's r = 0.56), while BAI correlated only with crystallized cognition (Pearson's r = - 0.25). Overall, these sleep EEG-derived biomarkers may provide accessible and clinically meaningful indicators of neurocognitive health.
Collapse
Affiliation(s)
- Noor Adra
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital (MGH), 55 Fruit Street, Boston, MA, 02114, USA
| | - Lisa W Dümmer
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA
- University of Groningen, Groningen, The Netherlands
| | - Luis Paixao
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ryan A Tesh
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital (MGH), 55 Fruit Street, Boston, MA, 02114, USA
| | - Haoqi Sun
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital (MGH), 55 Fruit Street, Boston, MA, 02114, USA
| | - Wolfgang Ganglberger
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA
- Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| | - Mike Westmeijer
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA
- Utrecht University, Utrecht, The Netherlands
| | - Madalena Da Silva Cardoso
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA
| | - Anagha Kumar
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA
| | - Elissa Ye
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA
| | - Jonathan Henry
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital (MGH), 55 Fruit Street, Boston, MA, 02114, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA
| | - Erin Kitchener
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital (MGH), 55 Fruit Street, Boston, MA, 02114, USA
| | | | - Rhoda Au
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jonathan Rosand
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital (MGH), 55 Fruit Street, Boston, MA, 02114, USA
| | - Joel Salinas
- New York University Grossman School of Medicine, New York, NY, USA
| | - Alice D Lam
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital (MGH), 55 Fruit Street, Boston, MA, 02114, USA
| | - Robert J Thomas
- Division of Pulmonary, Critical Care, and Sleep, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, USA.
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, USA.
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital (MGH), 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Genetics and Cognitive Vulnerability to Sleep Deprivation in Healthy Subjects: Interaction of ADORA2A, TNF-α and COMT Polymorphisms. Life (Basel) 2021; 11:life11101110. [PMID: 34685481 PMCID: PMC8540997 DOI: 10.3390/life11101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/02/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Several genetic polymorphisms differentiate between healthy individuals who are more cognitively vulnerable or resistant during total sleep deprivation (TSD). Common metrics of cognitive functioning for classifying vulnerable and resilient individuals include the Psychomotor Vigilance Test (PVT), Go/noGo executive inhibition task, and subjective daytime sleepiness. We evaluated the influence of 14 single-nucleotide polymorphisms (SNPs) on cognitive responses during total sleep deprivation (continuous wakefulness for 38 h) in 47 healthy subjects (age 37.0 ± 1.1 years). SNPs selected after a literature review included SNPs of the adenosine-A2A receptor gene (including the most studied rs5751876), pro-inflammatory cytokines (TNF-α, IL1-β, IL-6), catechol-O-methyl-transferase (COMT), and PER3. Subjects performed a psychomotor vigilance test (PVT) and a Go/noGo-inhibition task, and completed the Karolinska Sleepiness Scale (KSS) every 6 h during TSD. For PVT lapses (reaction time >500 ms), an interaction between SNP and SDT (p < 0.05) was observed for ADORA2A (rs5751862 and rs2236624) and TNF-α (rs1800629). During TSD, carriers of the A allele for ADORA2A (rs5751862) and TNF-α were significantly more impaired for cognitive responses than their respective ancestral G/G genotypes. Carriers of the ancestral G/G genotype of ADORA2A rs5751862 were found to be very similar to the most resilient subjects for PVT lapses and Go/noGo commission errors. Carriers of the ancestral G/G genotype of COMT were close to the most vulnerable subjects. ADORA2A (rs5751862) was significantly associated with COMT (rs4680) (p = 0.001). In conclusion, we show that genetic polymorphisms in ADORA2A (rs5751862), TNF-α (rs1800629), and COMT (rs4680) are involved in creating profiles of high vulnerability or high resilience to sleep deprivation. (NCT03859882).
Collapse
|
4
|
Tartar JL, Hiffernan FS, Freitas KE, Fins AI, Banks JB. A Functional Adenosine Deaminase Polymorphism Associates with Evening Melatonin Levels and Sleep Quality. J Circadian Rhythms 2021; 19:5. [PMID: 33981350 PMCID: PMC8086720 DOI: 10.5334/jcr.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Increased adenosine levels throughout the day promote sleepiness. A single nucleotide polymorphism (SNP) in the adenosine deaminase ADA gene (rs73598374) has been shown to affect sleep regulation. The extent to which lower ADA enzymatic activity is associated with the homeostatic sleep factor, melatonin, is uncertain. To test this possibility, we assessed the relationship between the ADA polymorphism and evening melatonin levels, as well as self-reported sleep behavior. Given the close relationship between mood and sleep behavior, we further tested the impact of ADA genotype on self-reported mood. We show that relative to the GG homozygotes, the A allele carriers (higher adenosine levels) had significantly higher evening melatonin levels as well as significantly better sleep quality. We further show the correlations between sleep and mood measures were altered by ADA genotype, with a stronger relationship observed in the GG (lower adenosine) group. Combined, these findings advance our understanding of the biochemistry of melatonin production by showing that there is a relationship between ADA genotype and melatonin levels. The differential relationships between sleep and psychological health between the genotype groups may reveal novel insights about the development of genotype-specific progression of various psychological disorders such as chronic anxiety and stress.
Collapse
Affiliation(s)
- Jaime L. Tartar
- Department of Psychology and Neuroscience, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Franklin S. Hiffernan
- Department of Psychology and Neuroscience, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Kristine E. Freitas
- Department of Clinical Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Ana I. Fins
- Department of Psychology and Neuroscience, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Jonathan B. Banks
- Department of Psychology and Neuroscience, Nova Southeastern University, Ft. Lauderdale, FL, USA
| |
Collapse
|
5
|
Maire M, Reichert CF, Gabel V, Viola AU, Phillips C, Berthomier C, Borgwardt S, Cajochen C, Schmidt C. Human brain patterns underlying vigilant attention: impact of sleep debt, circadian phase and attentional engagement. Sci Rep 2018; 8:970. [PMID: 29343686 PMCID: PMC5772468 DOI: 10.1038/s41598-017-17022-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/20/2017] [Indexed: 01/31/2023] Open
Abstract
Sleepiness and cognitive function vary over the 24-h day due to circadian and sleep-wake-dependent mechanisms. However, the underlying cerebral hallmarks associated with these variations remain to be fully established. Using functional magnetic resonance imaging (fMRI), we investigated brain responses associated with circadian and homeostatic sleep-wake-driven dynamics of subjective sleepiness throughout day and night. Healthy volunteers regularly performed a psychomotor vigilance task (PVT) in the MR-scanner during a 40-h sleep deprivation (high sleep pressure) and a 40-h multiple nap protocol (low sleep pressure). When sleep deprived, arousal-promoting thalamic activation during optimal PVT performance paralleled the time course of subjective sleepiness with peaks at night and troughs on the subsequent day. Conversely, task-related cortical activation decreased when sleepiness increased as a consequence of higher sleep debt. Under low sleep pressure, we did not observe any significant temporal association between PVT-related brain activation and subjective sleepiness. Thus, a circadian modulation in brain correlates of vigilant attention was only detectable under high sleep pressure conditions. Our data indicate that circadian and sleep homeostatic processes impact on vigilant attention via specific mechanisms; mirrored in a decline of cortical resources under high sleep pressure, opposed by a subcortical “rescuing” at adverse circadian times.
Collapse
Affiliation(s)
- Micheline Maire
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Carolin F Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Virginie Gabel
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Antoine U Viola
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.,PPRS, Paris, France
| | | | | | - Stefan Borgwardt
- Medical Image Analysis Center, University Hospital of Basel, Basel, Switzerland.,Department of Psychiatry, University Hospital of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland. .,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
| | - Christina Schmidt
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
|
7
|
Reichert CF, Maire M, Gabel V, Viola AU, Götz T, Scheffler K, Klarhöfer M, Berthomier C, Strobel W, Phillips C, Salmon E, Cajochen C, Schmidt C. Cognitive brain responses during circadian wake-promotion: evidence for sleep-pressure-dependent hypothalamic activations. Sci Rep 2017; 7:5620. [PMID: 28717201 PMCID: PMC5514145 DOI: 10.1038/s41598-017-05695-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 06/09/2017] [Indexed: 11/08/2022] Open
Abstract
The two-process model of sleep-wake regulation posits that sleep-wake-dependent homeostatic processes interact with the circadian timing system to affect human behavior. The circadian timing system is fundamental to maintaining stable cognitive performance, as it counteracts growing homeostatic sleep pressure during daytime. Using magnetic resonance imaging, we explored brain responses underlying working memory performance during the time of maximal circadian wake-promotion under varying sleep pressure conditions. Circadian wake-promoting strength was derived from the ability to sleep during an evening nap. Hypothalamic BOLD activity was positively linked to circadian wake-promoting strength under normal, but not under disproportionally high or low sleep pressure levels. Furthermore, higher hypothalamic activity under normal sleep pressure levels predicted better performance under sleep loss. Our results reappraise the two-process model by revealing a homeostatic-dose-dependent association between circadian wake-promotion and cognition-related hypothalamic activity.
Collapse
Affiliation(s)
- Carolin F Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Micheline Maire
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Virginie Gabel
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Antoine U Viola
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- PPRS, Paris, France
| | - Thomas Götz
- Department of Psychiatry, Public Health Office, Frankfurt am Main, Germany
| | - Klaus Scheffler
- Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Markus Klarhöfer
- Department of Medical Radiology, MR-Physics, University of Basel, Basel, Switzerland
| | | | - Werner Strobel
- Respiratory Medicine, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Eric Salmon
- GIGA-CRC, In Vivo Imaging Unit, University of Liège, Liège, Belgium
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
| | - Christina Schmidt
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- GIGA-CRC, In Vivo Imaging Unit, University of Liège, Liège, Belgium
| |
Collapse
|
8
|
Sleep-Wake Regulation and Its Impact on Working Memory Performance: The Role of Adenosine. BIOLOGY 2016; 5:biology5010011. [PMID: 26861410 PMCID: PMC4810168 DOI: 10.3390/biology5010011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 11/28/2022]
Abstract
The sleep-wake cycle is regulated by a fine-tuned interplay between sleep-homeostatic and circadian mechanisms. Compelling evidence suggests that adenosine plays an important role in mediating the increase of homeostatic sleep pressure during time spent awake and its decrease during sleep. Here, we summarize evidence that adenosinergic mechanisms regulate not only the dynamic of sleep pressure, but are also implicated in the interaction of homeostatic and circadian processes. We review how this interaction becomes evident at several levels, including electrophysiological data, neuroimaging studies and behavioral observations. Regarding complex human behavior, we particularly focus on sleep-wake regulatory influences on working memory performance and underlying brain activity, with a specific emphasis on the role of adenosine in this interplay. We conclude that a change in adenosinergic mechanisms, whether exogenous or endogenous, does not only impact on sleep-homeostatic processes, but also interferes with the circadian timing system.
Collapse
|
9
|
Correction: the circadian regulation of sleep: impact of a functional ADA-polymorphism and its association to working memory improvements. PLoS One 2015; 10:e0123502. [PMID: 25826472 PMCID: PMC4380494 DOI: 10.1371/journal.pone.0123502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|