1
|
Sun L, Wang J, Li X, Cao C. Effects of phenol on glutathione S-transferase expression and enzyme activity in Chironomus kiiensis larvae. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:754-762. [PMID: 31254185 DOI: 10.1007/s10646-019-02071-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Detoxifying enzyme mRNAs are potentially useful stress biomarkers. Glutathione S-transferase (GST) metabolises lipophilic organic contaminants and mitigates oxidative damage caused by environmental pollutants. Herein, 12 Chironomus kiiensis GSTs (CkGSTs1-6, CkGSTt1-2, CkGSTd1-2, CkGSTm1-2) were cloned and grouped into sigma, theta, delta and microsomal subclasses. Open reading frames (450-699 bp) encode 170-232 amino acid proteins with predicted molecular masses of 17.31-26.84 kDa and isoelectric points from 4.94 to 9.58. All 12 GSTs were expressed during all tested developmental stages, and 11 displayed higher expression in fourth-instar larvae than eggs. GST activity after 24 h of phenol exposure was used to estimate environmental phenol contamination. After exposure to sublethal concentrations of phenol for 48 h, expression and activity of CkGSTs were inhibited in C. kiiensis larvae. Expression of CkGSTd1-2 and CkGSTs1-2 varied with phenol concentration, indicating potential use as biomarkers for monitoring environmental phenol contamination.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Forestry, Northeast Forestry University, 150040, Harbin, People's Republic of China
| | - Jiannan Wang
- Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Forestry, Northeast Forestry University, 150040, Harbin, People's Republic of China
| | - Xiaopeng Li
- Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Forestry, Northeast Forestry University, 150040, Harbin, People's Republic of China
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Forestry, Northeast Forestry University, 150040, Harbin, People's Republic of China.
| |
Collapse
|
2
|
Cheng J, Wang CY, Lyu ZH, Lin T. Multiple Glutathione S-Transferase Genes in Heortia vitessoides (Lepidoptera: Crambidae): Identification and Expression Patterns. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5037911. [PMID: 29912411 PMCID: PMC6007275 DOI: 10.1093/jisesa/iey064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/05/2018] [Indexed: 05/13/2023]
Abstract
To elucidate the role of glutathione S-transferases (GSTs) in Heortia vitessoides Moore (Lepidoptera: Crambidae), one of the most destructive defoliating pests in Aquilaria sinensis (Lour.) Gilg (Thymelaeaceae) forests, 16 GST cDNAs were identified in the transcriptome of adult H. vitessoides. All cDNAs included a complete open reading frame and were designated HvGSTd1-HvGSTu2. A phylogenetic analysis showed that the 16 HvGSTs were classified into seven different cytosolic classes; three in delta, two in epsilon, three in omega, three in sigma, one in theta, two in zeta, and two in unclassified. The expression patterns of these HvGSTs in various larval and adult tissues, following exposure to half the lethal concentrations (LC50s) of chlorantraniliprole and beta-cypermethrin, were determined using real-time quantitative polymerase chain reaction (RT-qPCR). The expression levels of the 16 HvGSTs were found to differ among various larval and adult tissues. Furthermore, the RT-qPCR confirmed that the transcription levels of nine (HvGSTd1, HvGSTd3, HvGSTe2, HvGSTe3, HvGSTo3, HvGSTs1, HvGSTs3, HvGSTu1, and HvGSTu2) and six (HvGSTd1, HvGSTd3, HvGSTe2, HvGSTo2, HvGSTs1, and HvGSTu1) HvGST genes were significantly higher in the fourth-instar larvae following exposure to the insecticides chlorantraniliprole and beta-cypermethrin, respectively. These genes are potential candidates involved in the detoxification of these two insecticides. Further studies utilizing the RNA interference approach are required to enhance our understanding of the functions of these genes in this forest pest.
Collapse
Affiliation(s)
- Jie Cheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Wushan Street, Guangzhou, Guangdong, China
| | - Chun-Yan Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Wushan Street, Guangzhou, Guangdong, China
| | - Zi-Hao Lyu
- College of Forestry and Landscape Architecture, South China Agricultural University, Wushan Street, Guangzhou, Guangdong, China
| | - Tong Lin
- College of Forestry and Landscape Architecture, South China Agricultural University, Wushan Street, Guangzhou, Guangdong, China
- Corresponding author, e-mail:
| |
Collapse
|
3
|
Zhang X, Wang J, Liu J, Li Y, Liu X, Wu H, Ma E, Zhang J. Knockdown of NADPH-cytochrome P450 reductase increases the susceptibility to carbaryl in the migratory locust, Locusta migratoria. CHEMOSPHERE 2017; 188:517-524. [PMID: 28910726 DOI: 10.1016/j.chemosphere.2017.08.157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND NADPH-cytochrome P450 reductase (CPR) plays important roles in cytochrome P450-mediated metabolism of endogenous and exogenous compounds, and participates in cytochrome P450-related detoxification of insecticides. However, the CPR from Locusta migratoria has not been well characterized and its function is still undescribed. RESULTS The full-length of CPR gene from Locusta migratoria (LmCPR) was cloned by RT-PCR based on transcriptome information. The membrane anchor region, and 3 conserved domains (FMN binding domain, connecting domain, FAD/NADPH binding domain) were analyzed by bioinformatics analysis. Phylogenetic analysis showed that LmCPR was grouped in the Orthoptera branch and was more closely related to the CPRs from hemimetabolous insects. The LmCPR gene was ubiquitously expressed at all developmental stages and was the most abundant in the fourth-instar nymphs and the lowest in the egg stage. Tissue-specific expression analysis showed that LmCPR was higher expressed in ovary, hindgut, and integument. The CPR activity was relatively higher in Malpighian tubules and integument. Silencing of LmCPR obviously reduced the enzymatic activity of LmCPR, and enhanced the susceptibility of Locusta migratoria to carbaryl. CONCLUSION These results suggest that LmCPR contributes to the susceptibility of L. migratoria to carbaryl and could be considered as a novel target for pest control.
Collapse
Affiliation(s)
- Xueyao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Junxiu Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Jiao Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Yahong Li
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Xiaojian Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China.
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Bi R, Pan Y, Shang Q, Peng T, Yang S, Wang S, Xin X, Liu Y, Xi J. Comparative proteomic analysis in Aphis glycines Mutsumura under lambda-cyhalothrin insecticide stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2016; 19:90-96. [PMID: 27395796 DOI: 10.1016/j.cbd.2016.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/08/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
Abstract
Lambda-cyhalothrin is now widely used in China to control the soybean aphid Aphis glycines. To dissect the resistance mechanism, a laboratory-selected resistant soybean aphid strain (CRR) was established with a 43.42-fold resistance ratio to λ-cyhalothrin than the susceptible strain (CSS) in adult aphids. In this study, a comparative proteomic analysis between the CRR and CSS strains revealed important differences between the susceptible and resistant strains of soybean aphids for λ-cyhalothrin. Approximately 493 protein spots were detected in two-dimensional polyacrylamide gel electrophoresis (2-DE). Thirty-six protein spots displayed differential expression of >2-fold in the CRR strain compared to the CSS strain. Out of these 36 protein spots, 21 had elevated and 15 had decreased expression. Twenty-four differentially expressed proteins were identified by MALDI TOF MS/MS and categorized into the functional groups cytoskeleton-related protein, carbohydrate and energy metabolism, protein folding, antioxidant system, and nucleotide and amino acid metabolism. Function analysis showed that cytoskeleton-related proteins and energy metabolism proteins have been associated with the λ-cyhalothrin resistance of A. glycines. The differential expression of λ-cyhalothrin responsive proteins reflected the overall change in cellular structure and metabolism after insecticide treatment in aphids. In summary, our studies improve understanding of the molecular mechanism resistance of soybean aphid to lambda-cyhalothrin, which will facilitate the development of rational approaches to improve the management of this pest and to improve the yield of soybean.
Collapse
Affiliation(s)
- Rui Bi
- College of Plant Science, Jilin University, ChangChun 130062, PR China; College of Agronomy, Jilin Agricultural University, ChangChun 130118, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Tianfei Peng
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Shuang Yang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Shang Wang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Xuecheng Xin
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Yan Liu
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, ChangChun 130062, PR China.
| |
Collapse
|
5
|
Qiu Z, Liu F, Lu H, Yuan H, Zhang Q, Huang Y. De Novo Assembly and Characterization of the Transcriptome of Grasshopper Shirakiacris shirakii. Int J Mol Sci 2016; 17:ijms17071110. [PMID: 27455245 PMCID: PMC4964485 DOI: 10.3390/ijms17071110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 11/30/2022] Open
Abstract
Background: The grasshopper Shirakiacris shirakii is an important agricultural pest and feeds mainly on gramineous plants, thereby causing economic damage to a wide range of crops. However, genomic information on this species is extremely limited thus far, and transcriptome data relevant to insecticide resistance and pest control are also not available. Methods: The transcriptome of S. shirakii was sequenced using the Illumina HiSeq platform, and we de novo assembled the transcriptome. Results: Its sequencing produced a total of 105,408,878 clean reads, and the de novo assembly revealed 74,657 unigenes with an average length of 680 bp and N50 of 1057 bp. A total of 28,173 unigenes were annotated for the NCBI non-redundant protein sequences (Nr), NCBI non-redundant nucleotide sequences (Nt), a manually-annotated and reviewed protein sequence database (Swiss-Prot), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Based on the Nr annotation results, we manually identified 79 unigenes encoding cytochrome P450 monooxygenases (P450s), 36 unigenes encoding carboxylesterases (CarEs) and 36 unigenes encoding glutathione S-transferases (GSTs) in S. shirakii. Core RNAi components relevant to miroRNA, siRNA and piRNA pathways, including Pasha, Loquacious, Argonaute-1, Argonaute-2, Argonaute-3, Zucchini, Aubergine, enhanced RNAi-1 and Piwi, were expressed in S. shirakii. We also identified five unigenes that were homologous to the Sid-1 gene. In addition, the analysis of differential gene expressions revealed that a total of 19,764 unigenes were up-regulated and 4185 unigenes were down-regulated in larvae. In total, we predicted 7504 simple sequence repeats (SSRs) from 74,657 unigenes. Conclusions: The comprehensive de novo transcriptomic data of S. shirakii will offer a series of valuable molecular resources for better studying insecticide resistance, RNAi and molecular marker discovery in the transcriptome.
Collapse
Affiliation(s)
- Zhongying Qiu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | - Fei Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710061, China.
| | - Huimeng Lu
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | - Qin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|