1
|
Liu G, Huang L, Tan J, Wang Y, Lan C, Chen Y, Mao Y, Wang X, Fan N, Zhu Y, Zhu X, Liu X. Characterization of a monkey model with experimental retinal damage induced by N-methyl-D-aspartate. Dis Model Mech 2024; 17:dmm050033. [PMID: 39056117 PMCID: PMC11554257 DOI: 10.1242/dmm.050033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
N-methyl-D-aspartate (NMDA)-induced retinal damage has been well studied in rodents, but the detailed mechanisms have not yet been characterized in nonhuman primates. Here, we characterized the retinal degenerative effects of NMDA on rhesus monkeys in vivo. NMDA saline or saline-only control was injected intravitreally to the randomly assigned eyes and contralateral eyes of four rhesus monkeys, respectively. The structural and functional changes of retina were characterized by optical coherence tomography and electroretinography on days 0, 4, 30 and 60 post injection. Both optic discs and macular areas of the NMDA-injected eyes initially presented with a transient retinal thickening, followed by continued retinal thinning. The initial, transient retinal thickening has also been observed in glaucoma patients, but this has not been reported in rodent NMDA models. This initial response was followed by loss of retina ganglion cells (RGCs), which is similar to glaucomatous optic neuropathy and other RGC-related retinal degenerations. The amplitudes of both the photopic negative response and pattern electroretinogram decreased significantly and remained low until the end of the study. Thus, the NMDA monkey model may serve as a more clinically relevant animal model of retinal damage.
Collapse
Affiliation(s)
- Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Longxiang Huang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen, 361004, China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, 518040, China
| | - Chunlin Lan
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Yaxi Chen
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, 518040, China
| | - Yukai Mao
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Xizhen Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, 518040, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, 518040, China
| | - Yihua Zhu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen, 361004, China
- Department of Ophthalmology, Shenzhen People's Hospital, the 2nd Clinical Medical College, Jinan University, Shenzhen, 518020, China
| |
Collapse
|
2
|
Nishida T, Moghimi S, Walker E, Gunasegaran G, Wu JH, Kamalipour A, Mahmoudinezhad G, Zangwill LM, Weinreb RN. Association of foveal avascular zone change and glaucoma progression. Br J Ophthalmol 2024; 108:1101-1106. [PMID: 38164585 PMCID: PMC11192860 DOI: 10.1136/bjo-2023-323970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND/AIMS To investigate the association between longitudinal changes of foveal avascular zone (FAZ) area and the rate of structural and functional progression in glaucoma. METHODS A longitudinal cohort included 115 eyes (46 glaucoma suspect and 66 primary open-angle glaucoma) of 81 patients having ≥2 year follow-up, and ≥4 visits with optical coherence tomography angiography and visual field (VF). Eyes in the longitudinal cohort with a slope greater than that found in 95 percentile of separate healthy test-retest series for FAZ area were categorised into FAZ progressors; all other eyes were defined as FAZ non-progressors. A generalised linear mixed-effect model was used to investigate the association of FAZ progressors with demographic and clinical characteristics. RESULTS Faster ganglion cell complex (GCC) thinning and faster VF mean deviation (MD) loss were found in eyes with FAZ progressors compared with FAZ non-progressors (mean difference: -0.7 (95% CI, -1.4 to -0.1) µm/y; p=0.026, -0.3 (-0.5 to -0.1) dB/y; p=0.017, respectively), while whole image vessel density was not associated with FAZ progressors (p=0.929). SD of intraocular pressure (IOP) and IOP range were also associated with FAZ progressors in separate multivariable models (OR: 1.54 (1.02 to 2.32) per 1 mm Hg higher, p=0.041; OR: 1.20 (1.01 to 1.41) per 1 mm Hg higher; p=0.035, respectively). CONCLUSIONS Significant FAZ increase was weakly associated with moderately faster rates of both GCC thinning and VF MD loss, but not macular vessel density change in glaucoma eyes. Additional studies are needed to elucidate the pathophysiological associations between macula GCC thinning and FAZ area increases in glaucoma.
Collapse
Affiliation(s)
- Takashi Nishida
- University of California at San Diego Department of Ophthalmology at the Shiley Eye Institute, La Jolla, California, USA
| | - Sasan Moghimi
- University of California at San Diego Department of Ophthalmology at the Shiley Eye Institute, La Jolla, California, USA
| | - Evan Walker
- University of California at San Diego Department of Ophthalmology at the Shiley Eye Institute, La Jolla, California, USA
| | - Gopikasree Gunasegaran
- University of California at San Diego Department of Ophthalmology at the Shiley Eye Institute, La Jolla, California, USA
| | - Jo-Hsuan Wu
- University of California at San Diego Department of Ophthalmology at the Shiley Eye Institute, La Jolla, California, USA
| | - Alireza Kamalipour
- University of California at San Diego Department of Ophthalmology at the Shiley Eye Institute, La Jolla, California, USA
| | - Golnoush Mahmoudinezhad
- University of California at San Diego Department of Ophthalmology at the Shiley Eye Institute, La Jolla, California, USA
| | - Linda M Zangwill
- University of California at San Diego Department of Ophthalmology at the Shiley Eye Institute, La Jolla, California, USA
| | - Robert N Weinreb
- University of California at San Diego Department of Ophthalmology at the Shiley Eye Institute, La Jolla, California, USA
| |
Collapse
|
3
|
Venkata Srinivasan V, Carter-Dawson L, Patel NB. Retinal Ganglion Cell Content Underlying Standard Automated Perimetry Size I to V Visual Sensitivities in the Non-Human Primate Experimental Glaucoma Model. Invest Ophthalmol Vis Sci 2024; 65:22. [PMID: 38995114 PMCID: PMC11246096 DOI: 10.1167/iovs.65.8.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Purpose To determine the relationship between visual sensitivities from white-on-white Goldmann size I to V stimuli and the underlying retinal ganglion cell (RGC) content in the non-human primate (NHP) experimental glaucoma model. Methods Normative data were collected from 13 NHPs. Unilateral experimental glaucoma was induced in seven animals with the least variable fields who were monitored using optical coherence tomography and 30-2 full-threshold standard automated perimetry (SAP). At varying endpoints, animals were euthanized followed by perfusion fixation, and 1-mm retinal punches were obtained from 34 corresponding SAP locations. RGCs were immunolabeled with an antibody against an RNA-binding protein (RBPMS) marker and imaged using confocal microscopy. RGC counts from each location were then related to visual sensitivities for each stimulus size, after accounting for ocular magnification. Results At the endpoint, the circumpapillary retinal nerve fiber layer thickness for experimental glaucoma eyes ranged from 47 to 113 µm. RGC density in control eyes was greatest for the 4.24° sample (18,024 ± 6869 cells/mm2) and decreased with eccentricity. Visual sensitivity at each tested location followed that predicted by spatial summation, with the critical area increasing with eccentricity (slope = 0.0036, R2 = 0.44). The relationship between RGC counts and visual sensitivity was described using a two-line fit, where the intercept of the first segment and hinge points were dependent on eccentricity. Conclusions In NHPs, SAP visual thresholds are related to the underlying RGCs. The resulting spatial summation based structure-function model can be used to estimate RGC content from any standard white-on-white stimulus size.
Collapse
Affiliation(s)
| | | | - Nimesh B Patel
- University of Houston College of Optometry, Houston, Texas, United States
| |
Collapse
|
4
|
Grannonico M, Miller DA, Gao J, McHaney KM, Liu M, Krause MA, Netland PA, Zhang HF, Liu X. Longitudinal Analysis of Retinal Ganglion Cell Damage at Individual Axon Bundle Level in Mice Using Visible-Light Optical Coherence Tomography Fibergraphy. Transl Vis Sci Technol 2023; 12:10. [PMID: 37163286 PMCID: PMC10179604 DOI: 10.1167/tvst.12.5.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/09/2023] [Indexed: 05/11/2023] Open
Abstract
Purpose We developed a new analytic tool based on visible-light optical coherence tomography fibergraphy (vis-OCTF) to longitudinally track individual axon bundle transformation as a new in vivo biomarker for retinal ganglion cell (RGC) damage. Methods After acute optic nerve crush injury (ONC) in mice, we analyzed four parameters: lateral bundle width, axial bundle height, cross-sectional area, and the shape of individual bundles. We next correlated the morphological changes in RGC axon bundles with RGC soma loss. Results We showed that axon bundles became wider and taller at three days post ONC (pONC), which correlated with about 15% RGC soma loss. At six days pONC, axon bundles showed a significant reduction in lateral width and cross-sectional area, followed by a reduction in bundle height at nine days pONC. Bundle shrinking at nine days pONC correlated with about 68% RGC soma loss. Both experimental and simulated results suggested that the cross-sectional area of individual RGC axon bundles is more sensitive than bundle width and height to indicate RGC soma loss. Conclusions This study is the first to track and quantify individual RGC axon bundles in vivo after ONC injury. Translational Relevance Recognizing RGC loss at its earliest stage is crucial for disease diagnosis and treatment. However, current clinical methods to detect the functional and structural changes in the inner retina are not sensitive enough to directly assess RGC health. In this study, we developed vis-OCTF-based parameters to track RGC damage, making possible to establishing a quantifiable biomarker for glaucoma.
Collapse
Affiliation(s)
- Marta Grannonico
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - David A. Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Jingyi Gao
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Kara M. McHaney
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Mingna Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Michael A. Krause
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Peter A. Netland
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Apoptosis Detection in Retinal Ganglion Cells Using Quantitative Changes in Multichannel Fluorescence Colocalization. BIOSENSORS 2022; 12:bios12090693. [PMID: 36140078 PMCID: PMC9496076 DOI: 10.3390/bios12090693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
KcapTR488 is a dual-fluorophore peptide sensor for the real-time reporting of programmed cell death by fluorescence imaging. KcapTR488 contains a nuclear localization sequence (NLS) conjugated with Texas Red, a caspase-cleavable sequence (DEVD), and a C-terminus conjugated to Alexa Fluor 488 (AF488). The synthesis and preliminary evaluation in cellulo of KcapTR488 for monitoring cell death by fluorescence imaging has been previously reported, but its utility in vivo has yet to be tested or validated. Herein, in vitro solution experiments verified the intramolecular fluorescence resonance energy transfer (FRET) between the two fluorophores and enabled a quantitative analysis of enzyme rates and selectivity. The sensor delivery kinetics in live rat models were quantified by ex vivo fluorescence microscopy. Studies in healthy control retinas demonstrated that KcapTR488 concentrated in the nucleus of retinal ganglion cells (RGC), with a strong colocalization of red and green fluorescence signals producing robust FRET signals, indicating an intact reporter. By contrast, using an acute but mild NMDA-induced retinal injury model, dual-color confocal ex vivo microscopy of cleaved KcapTR488 identified sensor activation as early as 2 h after injection. Quantitative changes in fluorescence colocalization were superior to changes in FRET for monitoring injury progression. Longitudinal monitoring revealed that the NLS-Texas Red fragment of the cleaved sensor moved out of the cell body, down the axon, and exited the retina, consistent with anterograde axonal transport. Thus, KcapTR488 may be a powerful tool to study RGC death pathways in live preclinical models of glaucoma.
Collapse
|
6
|
Sodhi PK, Shaw E, Gautam A, Yadav A, R AT, Rao KC, Sharma S, Tewari R. Evaluating the Quantitative Foveal Avascular Zone and Retino-Choroidal Vessel Density Using Optical Coherence Tomography Angiography in a Healthy Indian Population. Cureus 2022; 14:e27669. [PMID: 36072178 PMCID: PMC9440613 DOI: 10.7759/cureus.27669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/05/2022] Open
|
7
|
Henriques LD, Hauzman E, Bonci DMO, Chang BSW, Muniz JAPC, da Silva Souza G, de Lima Silveira LC, de Faria Galvão O, Goulart PRK, Ventura DF. Uniform trichromacy in Alouatta caraya and Alouatta seniculus: behavioural and genetic colour vision evaluation. Front Zool 2021; 18:36. [PMID: 34238318 PMCID: PMC8268213 DOI: 10.1186/s12983-021-00421-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
Primate colour vision depends on a matrix of photoreceptors, a neuronal post receptoral structure and a combination of genes that culminate in different sensitivity through the visual spectrum. Along with a common cone opsin gene for short wavelengths (sws1), Neotropical primates (Platyrrhini) have only one cone opsin gene for medium-long wavelengths (mws/lws) per X chromosome while Paleotropical primates (Catarrhini), including humans, have two active genes. Therefore, while female platyrrhines may be trichromats, males are always dichromats. The genus Alouatta is inferred to be an exception to this rule, as electrophysiological, behavioural and molecular analyses indicated a potential for male trichromacy in this genus. However, it is very important to ascertain by a combination of genetic and behavioural analyses whether this potential translates in terms of colour discrimination capability. We evaluated two howler monkeys (Alouatta spp.), one male A. caraya and one female A. seniculus, using a combination of genetic analysis of the opsin gene sequences and a behavioral colour discrimination test not previously used in this genus. Both individuals completed the behavioural test with performances typical of trichromatic colour vision and the genetic analysis of the sws1, mws, and lws opsin genes revealed three different opsin sequences in both subjects. These results are consistent with uniform trichromacy in both male and female, with presumed spectral sensitivity peaks similar to Catarrhini, at ~ 430 nm, 532 nm, and 563 nm for S-, M- and L-cones, respectively.
Collapse
Affiliation(s)
- Leonardo Dutra Henriques
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil.
| | - Einat Hauzman
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Belinda S W Chang
- Department of Cell and System Biology, University of Toronto, Toronto, Canada
| | | | - Givago da Silva Souza
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Luiz Carlos de Lima Silveira
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Olavo de Faria Galvão
- Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Dora Fix Ventura
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
8
|
Antwi-Boasiako K, Carter-Dawson L, Harwerth R, Gondo M, Patel N. The Relationship Between Macula Retinal Ganglion Cell Density and Visual Function in the Nonhuman Primate. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 33393971 PMCID: PMC7794274 DOI: 10.1167/iovs.62.1.5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose Loss of ganglion cell inner plexiform layer (GCIPL) and visual sensitivity in the macula region are known to occur at all stages of glaucoma. While both are dependent on the underlying retinal ganglion cells (RGCs), the relationship between structure and function is modest. We hypothesize that the imprecise relationship is due to a lack of direct correspondence between in vivo measures and RGC counts, as well as the relatively large stimulus size used by standard perimetry, which exceeds spatial summation. Methods The relationship between optical coherence tomography (OCT)–derived GCIPL thickness and corresponding inner cell density from retinal flat mounts was determined for four nonhuman primates with varying stages of neuropathy. Normative data for 10-2 threshold using Goldman size I to V stimuli were established for 10 animals, 4 of which were then followed longitudinally with OCT and perimetry. The relationship between GCIPL volume, which incorporated stimulus size after removal of residual thickness, and differential light sensitivity was determined for both experimental glaucoma and healthy eyes. Results Peak inner retinal cell density was 63,052 ± 9238 cells/mm2 in the healthy eye. Cell density was related to both GCIPL thickness and eccentricity (R2 = 0.74, P < .01). For all 10-2 eccentricities, size III stimuli were greater than the critical area (P < 0.01). Based on the structural and histologic relationship, the critical area corresponds to approximately 156 RGCs. Conclusions The relationship between cell density and GCIPL thickness is dependent on retinal eccentricity. For 10-2 perimetry, perimetric loss, especially at earlier stages of neuropathy, may best be detected using size II or smaller stimuli.
Collapse
Affiliation(s)
| | | | - Ronald Harwerth
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Margaret Gondo
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Nimesh Patel
- College of Optometry, University of Houston, Houston, Texas, United States
| |
Collapse
|
9
|
Multi-channel transorbital electrical stimulation for effective stimulation of posterior retina. Sci Rep 2021; 11:9745. [PMID: 33963229 PMCID: PMC8105361 DOI: 10.1038/s41598-021-89243-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/23/2021] [Indexed: 02/03/2023] Open
Abstract
Transorbital electrical stimulation (tES) has been studied as a new noninvasive method for treating intractable eye diseases by delivering weak electrical current to the eye through a pair of electrodes attached to the skin around the eye. Studies have reported that the therapeutic effect of tES is determined by the effective stimulation of retinal cells that are densely distributed in the posterior part of the retina. However, in conventional tES with a pair of electrodes, a greater portion of the electric field is delivered to the anterior part of the retina. In this study, to address this issue, a new electrode montage with multiple electrodes was proposed for the effective delivery of electric fields to the posterior retina. Electric field analysis based on the finite element method was performed with a realistic human head model, and optimal injection currents were determined using constrained convex optimization. The resultant electric field distributions showed that the proposed multi-channel tES enables a more effective stimulation of the posterior retina than the conventional tES with a pair of electrodes.
Collapse
|
10
|
Abstract
Normal retina and its cell layers are essential for processing visual stimuli, and loss of its integrity has been documented in many disease processes. The numbers and the axonal processes of retinal ganglion cells are reduced substantially in glaucoma, leading to vision loss and blindness. Similarly, selective loss of photoreceptors in age-related macular degeneration and hereditary retinal dystrophies also results in the compromise of visual acuity. Development of genetically modified mice has led to increased understanding of the pathogenesis of many retinal diseases. Similarly, in this digital era, usage of modalities to quantify the retinal cell loss has grown exponentially leading to a better understanding of the suitability of animal models to study human retinal diseases. These quantification modalities provide valuable quantifiable data in studying pathogenesis and disease progression. This review will discuss the immunohistochemical markers for various retinal cells, available automated tools to quantify retinal cells, and present an example of retinal ganglion cell quantification using HALO image analysis platform. Additionally, we briefly review retinal cell types and subtypes, salient features of retina in various laboratory animal species, and a few of the main disease processes that affect retinal cell numbers in humans.
Collapse
Affiliation(s)
| | - Henry Chen
- 7845Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Ying Hu
- 7845Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Oliver C Turner
- Novartis, 98557Novartis Institutes for BioMedical Research, Preclinical Safety, East Hanover, NJ, USA
| | - Olulanu H Aina
- 426218Janssen Pharmaceutical Company of Johnson & Johnson, Spring House, PA, USA
| |
Collapse
|
11
|
Costa KHA, Gomes BD, Silveira LCDL, Souza GDS, Martins ICVDS, Lacerda EMDCB, Rocha FADF. Ganglion cells and displaced amacrine cells density in the retina of the collared peccary (Pecari tajacu). PLoS One 2020; 15:e0239719. [PMID: 33002017 PMCID: PMC7529232 DOI: 10.1371/journal.pone.0239719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/11/2020] [Indexed: 11/18/2022] Open
Abstract
In the present study, we investigated the topographical distribution of ganglion cells and displaced amacrine cells in the retina of the collared peccary (Pecari tajacu), a diurnal neotropical mammal of the suborder Suina (Order Artiodactyla) widely distributed across central and mainly South America. Retinas were prepared and processed following the Nissl staining method. The number and distribution of retinal ganglion cells and displaced amacrine cells were determined in six flat-mounted retinas from three animals. The average density of ganglion cells was 351.822 ± 31.434 GC/mm2. The peccary shows a well-developed visual streak. The average peak density was 6,767 GC/mm2 and located within the visual range and displaced temporally as an area temporalis. Displaced amacrine cells have an average density of 300 DAC/mm2, but the density was not homogeneous along the retina, closer to the center of the retina the number of cells decreases and when approaching the periphery the density increases, in addition, amacrine cells do not form retinal specialization like ganglion cells. Outside the area temporalis, amacrine cells reach up to 80% in the ganglion cell layer. However, in the region of the area temporalis, the proportion of amacrine cells drops to 32%. Thus, three retinal specializations were found in peccary’s retina by ganglion cells: visual streak, area temporalis and dorsotemporal extension. The topography of the ganglion cells layer in the retina of the peccary resembles other species of Order Artiodactyla already described and is directly related to its evolutionary history and ecology of the species.
Collapse
Affiliation(s)
- Kelly Helorany Alves Costa
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Bruno Duarte Gomes
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Luiz Carlos de Lima Silveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brasil
- Universidade CEUMA, São Luís, Maranhão, Brasil
| | | | | | | | | |
Collapse
|
12
|
Sánchez-Solano KG, Morales-Mávil JÉ, Laska M, Melin A, Hernández-Salazar LT. Visual detection and fruit selection by the mantled howler monkey (Alouatta palliata). Am J Primatol 2020; 82:e23186. [PMID: 32812274 DOI: 10.1002/ajp.23186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 11/05/2022]
Abstract
Howler monkeys (platyrrhini) have evolved routine trichromatic color vision independently from catarrhines, which presents an opportunity to test hypotheses concerning the adaptive value of distinguishing reddish from greenish hues. A longstanding hypothesis posits that trichromacy aids in the efficient detection of reddish-ripe fruits, which could be an advantage for the detection of the nutritional content of the fruit, such as sugars. In the present study, we assessed fruit visual conspicuity and selection based on color and sucrose content by wild mantled howler monkeys (Alouatta palliata) on Agaltepec Island, Mexico. We used colorimetry to classify dietary fruits as cryptic (greenish) or conspicuous (reddish) against their background leaves. Species-specific color models indicate that trichromatic howler monkeys should be more efficient in discriminating the conspicuous ripe fruits from leaves compared to detecting cryptic ripe fruits from leaves. We found howler monkeys consume more cryptic fruits compared to conspicuous fruits, and that they consume more unripe fruits than ripe fruits. The consumption (acceptance) of fruit was independent of sucrose content, and thus this disaccharide may not play an essential role in mantled howler food selection. Our findings suggest that routine trichromatic color vision may aid in the detection and discrimination of conspicuously colored fruits, but that the final decision whether to accept or reject a fruit probably involves the use of other senses in addition to vision.
Collapse
Affiliation(s)
- Karem G Sánchez-Solano
- Biología de la Conducta, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Jorge É Morales-Mávil
- Biología de la Conducta, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Matthias Laska
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping, Sweden
| | - Amanda Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laura T Hernández-Salazar
- Biología de la Conducta, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
13
|
Cuenca N, Ortuño-Lizarán I, Sánchez-Sáez X, Kutsyr O, Albertos-Arranz H, Fernández-Sánchez L, Martínez-Gil N, Noailles A, López-Garrido JA, López-Gálvez M, Lax P, Maneu V, Pinilla I. Interpretation of OCT and OCTA images from a histological approach: Clinical and experimental implications. Prog Retin Eye Res 2020; 77:100828. [PMID: 31911236 DOI: 10.1016/j.preteyeres.2019.100828] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022]
Abstract
Optical coherence tomography (OCT) and OCT angiography (OCTA) have been a technological breakthrough in the diagnosis, treatment, and follow-up of many retinal diseases, thanks to its resolution and its ability to inform of the retinal state in seconds, which gives relevant information about retinal degeneration. In this review, we present an immunohistochemical description of the human and mice retina and we correlate it with the OCT bands in health and pathological conditions. Here, we propose an interpretation of the four outer hyperreflective OCT bands with a correspondence to retinal histology: the first and innermost band as the external limiting membrane (ELM), the second band as the cone ellipsoid zone (EZ), the third band as the outer segment tips phagocytosed by the pigment epithelium (PhaZ), and the fourth band as the mitochondria in the basal portion of the RPE (RPEmitZ). The integrity of these bands would reflect the health of photoreceptors and retinal pigment epithelium. Moreover, we describe how the vascular plexuses vary in different regions of the healthy human and mice retina, using OCTA and immunohistochemistry. In humans, four, three, two or one plexuses can be observed depending on the distance from the fovea. Also, specific structures such as vascular loops in the intermediate capillary plexus, or spider-like structures of interconnected capillaries in the deep capillary plexus are found. In mice, three vascular plexuses occupy the whole retina, except in the most peripheral retina where only two plexuses are found. These morphological issues should be considered when assessing a pathology, as some retinal diseases are associated with structural changes in blood vessels. Therefore, the analysis of OCT bands and OCTA vascular plexuses may be complementary for the diagnosis and prognosis of retinal degenerative processes, useful to assess therapeutic approaches, and it is usually correlated to visual acuity.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain; Institute Ramón Margalef, University of Alicante, Alicante, Spain.
| | | | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | | | | | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Agustina Noailles
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | | | | | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa, University Hospital, Zaragoza, Spain
| |
Collapse
|
14
|
Murali A, Ramlogan-Steel CA, Andrzejewski S, Steel JC, Layton CJ. Retinal explant culture: A platform to investigate human neuro-retina. Clin Exp Ophthalmol 2018; 47:274-285. [PMID: 30378239 DOI: 10.1111/ceo.13434] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 01/09/2023]
Abstract
The retina is the tissue responsible for light detection, in which retinal neurons convert light energy into electrical signals to be transported towards the visual cortex. Damage of retinal neurons leads to neuronal cell death and retinal pathologies, compromising visual acuity and eventually leading to irreversible blindness. Models of retinal neurodegeneration include 2D systems like cell lines, disassociated cultures and co-cultures, and 3D models like organoids, organotypic retinal cultures and animal models. Of these, ex vivo human retinal cultures are arguably the most suitable models for translational research as they retain complex inter-cellular interactions of the retina and precisely mimic in-situ responses. In this review, we summarize the distinguishing features of the human retina which are important to preserve in experimental culture, the historical development of human retinal culture systems, the factors affecting ex vivo human retinal culture and the applications and challenges associated with current methods of human retinal explant culture.
Collapse
Affiliation(s)
- Aparna Murali
- LVF Ophthalmology Research Centre, Translational Research Institute, Woolloongabba, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Charmaine A Ramlogan-Steel
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia.,School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia
| | - Slawomir Andrzejewski
- LVF Ophthalmology Research Centre, Translational Research Institute, Woolloongabba, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Jason C Steel
- School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Woolloongabba, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Greenslopes Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Yu AK, Datta S, McMackin MZ, Cortopassi GA. Rescue of cell death and inflammation of a mouse model of complex 1-mediated vision loss by repurposed drug molecules. Hum Mol Genet 2018; 26:4929-4936. [PMID: 29040550 DOI: 10.1093/hmg/ddx373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/28/2017] [Indexed: 11/14/2022] Open
Abstract
Inherited mitochondrial optic neuropathies, such as Leber's hereditary optic neuropathy (LHON) and Autosomal dominant optic atrophy (ADOA) are caused by mutant mitochondrial proteins that lead to defects in mitochondrial complex 1-driven ATP synthesis, and cause specific retinal ganglion cell (RGC) loss. Complex 1 defects also occur in patients with primary open angle glaucoma (POAG), in which there is specific RGC loss. The treatment of mitochondrial optic neuropathy in the US is only supportive. The Ndufs4 knockout (Ndufs4 KO) mouse is a mitochondrial complex 1-deficient model that leads to RGC loss and rapid vision loss and allows for streamlined testing of potential therapeutics. Preceding RGC loss in the Ndufs4 KO is the loss of starburst amacrine cells, which may be an important target in the mechanism of complex 1-deficient vision loss. Papaverine and zolpidem were recently shown to be protective of bioenergetic loss in cell models of optic neuropathy. Treatment of Ndufs4 KO mice with papaverine, zolpidem, and rapamycin-suppressed inflammation, prevented cell death, and protected from vision loss. Thus, in the Ndufs4 KO mouse model of mitochondrial optic neuropathy, papaverine and zolpidem provided significant protection from multiple pathophysiological features, and as approved drugs in wide human use could be considered for the novel indication of human optic neuropathy.
Collapse
Affiliation(s)
- Alfred K Yu
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sandipan Datta
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Marissa Z McMackin
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Gino A Cortopassi
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| |
Collapse
|
16
|
Choi J, Kwon J, Shin JW, Lee J, Lee S, Kook MS. Quantitative optical coherence tomography angiography of macular vascular structure and foveal avascular zone in glaucoma. PLoS One 2017; 12:e0184948. [PMID: 28934255 PMCID: PMC5608222 DOI: 10.1371/journal.pone.0184948] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/02/2017] [Indexed: 01/28/2023] Open
Abstract
Objective The study aimed to evaluate the quantitative characteristics of the macular vessel density (VD) and foveal avascular zone (FAZ) in glaucoma using optical coherence tomography angiography (OCT-A). Design Cross-sectional, age- and sex-matched case–control study. Methods Fifty-two eyes of 52 patients with primary open angle glaucoma and 52 eyes from 52 healthy participants were recruited retrospectively. OCT-A was performed on a 3 x 3-mm macular region centered on the fovea. OCT-A scans were manually graded to define the FAZ. Parafoveal VD in superficial and deep retina were analyzed in the circular- and quadrant-segmented zone. The FAZ parameters included size, perimeter, and circularity index. The regression analysis among VD and FAZ-related parameters and ocular parameters was performed, and the diagnostic ability was calculated with refractive error adjusted. Results For both groups, the mean age and the sex ratio was not different between groups. With refractive error adjusted, the average macular VD was lower in glaucoma than in the control group for superficial (P = 0.013), deep (P<0.001), and the whole retina (P = 0.002). There were increased FAZ perimeter and decreased FAZ circularity index in glaucoma when compared with controls (P<0.001). In the multivariate regression models, FAZ circularity index were significantly associated with decreased peripapillary RNFL thickness (P = 0.007) and macular GCIPL thickness (P = 0.009) measured by OCT. The refractive-error adjusted area under receiver operating characteristics was highest for FAZ circularity index (0.905; 95% CI, 0.844–0.966), followed by temporal deep retinal VD (0.870; 95% CI, 0.803–0.937) and FAZ perimeter (0.858; 95% CI, 0.784–0.932). Conclusions Decreased macular VD, increased FAZ perimeter, and decreased FAZ circularity index were observed in eyes with glaucoma using OCT-A. With refractive error adjusted, these parameters showed considerable diagnostic value for glaucoma. FAZ circularity index may be a novel biomarker representing disruption of the parafoveal capillary network in glaucoma, as supported by its association with structural parameters.
Collapse
Affiliation(s)
- Jaewan Choi
- Central Seoul Eye Center, Seoul, Republic of Korea
| | - Junki Kwon
- Department of Ophthalmology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Joong Won Shin
- Department of Ophthalmology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jiyun Lee
- Department of Ophthalmology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Saem Lee
- Central Seoul Eye Center, Seoul, Republic of Korea
| | - Michael S. Kook
- Department of Ophthalmology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
Melin AD, Khetpal V, Matsushita Y, Zhou K, Campos FA, Welker B, Kawamura S. Howler monkey foraging ecology suggests convergent evolution of routine trichromacy as an adaptation for folivory. Ecol Evol 2017; 7:1421-1434. [PMID: 28261454 PMCID: PMC5330884 DOI: 10.1002/ece3.2716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/28/2016] [Accepted: 12/18/2016] [Indexed: 02/03/2023] Open
Abstract
Primates possess remarkably variable color vision, and the ecological and social factors shaping this variation remain heavily debated. Here, we test whether central tenants of the folivory hypothesis of routine trichromacy hold for the foraging ecology of howler monkeys. Howler monkeys (genus Alouatta) and paleotropical primates (Parvorder: Catarrhini) have independently acquired routine trichromacy through fixation of distinct mid- to long-wavelength-sensitive (M/LWS) opsin genes on the X-chromosome. The presence of routine trichromacy in howlers, while other diurnal neotropical monkeys (Platyrrhini) possess polymorphic trichromacy, is poorly understood. A selective force proposed to explain the evolution of routine trichromacy in catarrhines-reliance on young, red leaves-has received scant attention in howlers, a gap we fill in this study. We recorded diet, sequenced M/LWS opsin genes in four social groups of Alouatta palliata, and conducted colorimetric analysis of leaves consumed in Sector Santa Rosa, Costa Rica. For a majority of food species, including Ficus trees, an important resource year-round, young leaves were more chromatically conspicuous from mature leaves to trichromatic than to hypothetical dichromatic phenotypes. We found that 18% of opsin genes were MWS/LWS hybrids; when combined with previous research, the incidence of hybrid M/LWS opsins in this species is 13%. In visual models of food discrimination ability, the hybrid trichromatic phenotype performed slightly poorer than normal trichromacy, but substantially better than dichromacy. Our results provide support for the folivory hypothesis of routine trichromacy. Similar ecological pressures, that is, the search for young, reddish leaves, may have driven the independent evolution of routine trichromacy in primates on separate continents. We discuss our results in the context of balancing selection acting on New World monkey opsin genes and hypothesize that howlers experience stronger selection against dichromatic phenotypes than other sympatric species, which rely more heavily on cryptic foods.
Collapse
Affiliation(s)
- Amanda D. Melin
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABCanada
- Department of Medical Genetics and Alberta Children’s Hospital Research InstituteUniversity of CalgaryCalgaryABCanada
| | - Vishal Khetpal
- Department of AnthropologyWashington University in St. LouisSt. LouisMOUSA
| | - Yuka Matsushita
- Department of Integrated BiosciencesGraduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Kaile Zhou
- Department of Integrated BiosciencesGraduate School of Frontier SciencesThe University of TokyoTokyoJapan
- Department of Plant ProtectionCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouZhejiangChina
| | - Fernando A. Campos
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABCanada
- Department of AnthropologyTulane UniversityNew OrleansLAUSA
| | - Barbara Welker
- Department of AnthropologyState University of New York at GeneseoGeneseoNYUSA
| | - Shoji Kawamura
- Department of Integrated BiosciencesGraduate School of Frontier SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
18
|
Kawamura S, Melin AD. Evolution of Genes for Color Vision and the Chemical Senses in Primates. EVOLUTION OF THE HUMAN GENOME I 2017. [DOI: 10.1007/978-4-431-56603-8_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
19
|
Xu H, Yu J, Kong X, Sun X, Jiang C. Macular microvasculature alterations in patients with primary open-angle glaucoma: A cross-sectional study. Medicine (Baltimore) 2016; 95:e4341. [PMID: 27537559 PMCID: PMC5370786 DOI: 10.1097/md.0000000000004341] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To evaluate and compare macular microvasculature changes in eyes with primary open-angle glaucoma (POAG) to normal eyes, and to assess associations among the retinal microvasculature, neural structural damage, and visual field loss.Ninety-nine eyes (68 patients with POAG and 31 normal subjects) were enrolled in this study. Thirty-five eyes with early-stage glaucoma (EG), 33 eyes with advanced-stage glaucoma (AG), and 31 normal eyes were included. An optical coherence tomography system with a split-spectrum amplitude-decorrelation angiography algorithm was used to measure the macular capillary vessel area density and retinal thickness. Visual field testing (30-2 and 10-2 programs) was performed using a Humphrey field analyzer. Correlations between the capillary vessel area density, retinal thickness, and visual field parameters were analyzed.Compared to normal eyes, those with EG and AG had a lower macular capillary vessel area density and lesser retinal thickness (P < 0.001, all). Results of multivariate linear regression analyses showed that each standard deviation (SD) decrease in the vessel area density was associated with a 1.5% and 4.2% thinning of the full retinal thickness and inner retinal layer thickness, respectively. Each SD decrease in the vessel area density was also associated with a 12.9% decrease in the mean sensitivity and a 33.6% increase in the pattern standard deviation (P < 0.001, both). The Pearson partial regression analysis model showed that the vessel area density was most strongly associated with the inner retinal layer thickness and inferior hemimacular thickness. Furthermore, a lower vessel area density was strongly associated with a more severe hemimacular visual field defect and the corresponding hemimacular retinal thickness.The macular capillary vessel area density and retinal thickness were significantly lower in eyes with POAG than in normal eyes. A diminished macular microvasculature network is closely associated with visual field defects, which are dependent on structural damage due to POAG.
Collapse
Affiliation(s)
- Huan Xu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University
- Key Laboratory of Myopia, Ministry of Health (Fudan University)
- Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University)
| | - Jian Yu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University
- Key Laboratory of Myopia, Ministry of Health (Fudan University)
- Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University)
| | - Xiangmei Kong
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University
- Key Laboratory of Myopia, Ministry of Health (Fudan University)
- Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University)
- Correspondence: Xiangmei Kong, Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai 200031, China (e-mail: )
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University
- Key Laboratory of Myopia, Ministry of Health (Fudan University)
- Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University)
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chunhui Jiang
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University
- Key Laboratory of Myopia, Ministry of Health (Fudan University)
- Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University)
| |
Collapse
|
20
|
Kawamura S. Color vision diversity and significance in primates inferred from genetic and field studies. Genes Genomics 2016; 38:779-791. [PMID: 27594978 PMCID: PMC4987397 DOI: 10.1007/s13258-016-0448-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/26/2022]
Abstract
Color provides a reliable cue for object detection and identification during various behaviors such as foraging, mate choice, predator avoidance and navigation. The total number of colors that a visual system can discriminate is largely dependent on the number of different spectral types of cone opsins present in the retina and the spectral separations among them. Thus, opsins provide an excellent model system to study evolutionary interconnections at the genetic, phenotypic and behavioral levels. Primates have evolved a unique ability for three-dimensional color vision (trichromacy) from the two-dimensional color vision (dichromacy) present in the majority of other mammals. This was accomplished via allelic differentiation (e.g. most New World monkeys) or gene duplication (e.g. Old World primates) of the middle to long-wavelength sensitive (M/LWS, or red-green) opsin gene. However, questions remain regarding the behavioral adaptations of primate trichromacy. Allelic differentiation of the M/LWS opsins results in extensive color vision variability in New World monkeys, where trichromats and dichromats are found in the same breeding population, enabling us to directly compare visual performances among different color vision phenotypes. Thus, New World monkeys can serve as an excellent model to understand and evaluate the adaptive significance of primate trichromacy in a behavioral context. I shall summarize recent findings on color vision evolution in primates and introduce our genetic and behavioral study of vision-behavior interrelationships in free-ranging sympatric capuchin and spider monkey populations in Costa Rica.
Collapse
Affiliation(s)
- Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience BLDG 502, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| |
Collapse
|
21
|
Coimbra JP, Kaswera-Kyamakya C, Gilissen E, Manger PR, Collin SP. The Topographic Organization of Retinal Ganglion Cell Density and Spatial Resolving Power in an Unusual Arboreal and Slow-Moving Strepsirhine Primate, the Potto (Perodicticus potto). BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:4-18. [DOI: 10.1159/000443015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/01/2015] [Indexed: 11/19/2022]
Abstract
The potto (Perodicticus potto) is an arboreal strepsirhine found in the rainforests of central Africa. In contrast to most primates, the potto shows slow-moving locomotion over the upper surface of branches, where it forages for exudates and crawling invertebrates with its head held very close to the substrate. Here, we asked whether the retina of the potto displays topographic specializations in neuronal density that correlate with its unusual lifestyle. Using stereology and retinal wholemounts, we measured the total number and topographic distribution of retinal ganglion cells (total and presumed parasol), as well as estimating the upper limits of the spatial resolution of the potto eye. We estimated ∼210,000 retinal ganglion cells, of which ∼7% (∼14,000) comprise presumed parasol ganglion cells. The topographic distribution of both total and parasol ganglion cells reveals a concentric centroperipheral organization with a nasoventral asymmetry. Combined with the upwardly shifted orbits of the potto, this nasoventral increase in parasol ganglion cell density enhances contrast sensitivity and motion detection skywards, which potentially assists with the detection of predators in the high canopy. The central area of the potto occurs ∼2.5 mm temporal to the optic disc and contains a maximum ganglion cell density of ∼4,300 cells/mm2. We found no anatomical evidence of a fovea within this region. Using maximum ganglion cell density and eye size (∼14 mm), we estimated upper limits of spatial resolving power between 4.1 and 4.4 cycles/degree. Despite their reported reliance on olfaction to detect exudates, this level of spatial resolution potentially assists pottos with foraging for small invertebrates and in the detection of predators.
Collapse
|