1
|
Xu H, El-Asal S, Zakri H, Mutlaq R, Krikke NTB, Casewell NR, Slagboom J, Kool J. Aligning Post-Column ESI-MS, MALDI-MS, and Coagulation Bioassay Data of Naja spp., Ophiophagus hannah, and Pseudonaja textillis Venoms Chromatographically to Assess MALDI-MS and ESI-MS Complementarity with Correlation of Bioactive Toxins to Mass Spectrometric Data. Toxins (Basel) 2024; 16:379. [PMID: 39330837 PMCID: PMC11435639 DOI: 10.3390/toxins16090379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
Snakebite is a serious health issue in tropical and subtropical areas of the world and results in various pathologies, such as hemotoxicity, neurotoxicity, and local swelling, blistering, and tissue necrosis around the bite site. These pathologies may ultimately lead to permanent morbidity and may even be fatal. Understanding the chemical and biological properties of individual snake venom toxins is of great importance when developing a newer generation of safer and more effective snakebite treatments. Two main approaches to ionizing toxins prior to mass spectrometry (MS) analysis are electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). In the present study, we investigated the use of both ESI-MS and MALDI-MS as complementary techniques for toxin characterization in venom research. We applied nanofractionation analytics to separate crude elapid venoms using reversed-phase liquid chromatography (RPLC) and high-resolution fractionation of the eluting toxins into 384-well plates, followed by online LC-ESI-MS measurements. To acquire clear comparisons between the two ionization approaches, offline MALDI-MS measurements were performed on the nanofractionated toxins. For comparison to the LC-ESI-MS data, we created so-called MALDI-MS chromatograms of each toxin. We also applied plasma coagulation assaying on 384-well plates with nanofractionated toxins to demonstrate parallel biochemical profiling within the workflow. The plotting of post-column acquired MALDI-MS data as so-called plotted MALDI-MS chromatograms to directly align the MALDI-MS data with ESI-MS extracted ion chromatograms allows the efficient correlation of intact mass toxin results from the two MS-based soft ionization approaches with coagulation bioassay chromatograms. This facilitates the efficient correlation of chromatographic bioassay peaks with the MS data. The correlated toxin masses from ESI-MS and/or MALDI-MS were all around 6-8 or 13-14 kDa, with one mass around 20 kDa. Between 24 and 67% of the toxins were observed with good intensity from both ionization methods, depending on the venom analyzed. All Naja venoms analyzed presented anticoagulation activity, whereas pro-coagulation was only observed for the Pseudonaja textillis venom. The data of MALDI-MS can provide complementary identification and characterization power for toxin research on elapid venoms next to ESI-MS.
Collapse
Affiliation(s)
- Haifeng Xu
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Susan El-Asal
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Hafsa Zakri
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Rama Mutlaq
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Natascha T. B. Krikke
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
2
|
Bele T, Turk T, Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166875. [PMID: 37673358 DOI: 10.1016/j.bbadis.2023.166875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
Collapse
Affiliation(s)
- T Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - T Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Couceiro FYGM, Demico PJ, Dias SR, Oliveira IN, Pacagnelli FL, Silva EO, Sant'Anna SS, Grego KF, Morais-Zani K, Torres-Bonilla KA, Hyslop S, Floriano RS. Involvement of phospholipase A 2 in the neuromuscular blockade caused by coralsnake (Micrurus spp.) venoms in mouse phrenic nerve-diaphragm preparations in vitro. Toxicon 2023; 234:107263. [PMID: 37659667 DOI: 10.1016/j.toxicon.2023.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
In this work, we examined the neuromuscular blockade caused by venoms from four South-American coralsnakes (Micrurus altirostris - MA, M. corallinus - MC, M. spixii - MS, and M. dumerilii carinicauda - MDC) and the ability of varespladib (VPL), a phospholipase A2 (PLA2) inhibitor, to attenuate this blockade. PLA2 activity was determined using a colorimetric assay and a fixed amount of venom (10 μg). Neurotoxicity was assayed using a single concentration of venom (10 μg/ml) in mouse phrenic nerve-diaphragm (PND) preparations mounted for myographic recordings and then subjected to histological analysis. All venoms showed PLA2 activity, with MS and MA venoms having the highest (15.53 ± 1.9 A425 nm/min) and lowest (0.23 ± 0.14 A425 nm/min) activities, respectively. VPL (292 and 438 μM) inhibited the PLA2 activity of all venoms, although that of MA venom was least affected. All venoms caused neuromuscular blockade, with MS and MDC venoms causing the fastest and slowest 100% blockade [in 40 ± 3 min and 120 ± 6 min (n = 4), respectively]; MA and MC produced complete blockade within 90-100 min. Preincubation of venoms with 292 μM VPL attenuated the blockade to varying degrees: the greatest inhibition was seen with MDC venom and blockade by MS venom was unaffected by this inhibitor. These results indicate that PLA2 has a variable contribution to coralsnake venom-induced neuromuscular blockade in vitro, with the insensitivity of MS venom to VPL suggesting that blockade by this venom is mediated predominantly by post-synaptically-active α-neurotoxins.
Collapse
Affiliation(s)
- Fernanda Y G M Couceiro
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Poliana J Demico
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Samuel R Dias
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Isabele N Oliveira
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Francis L Pacagnelli
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Elisangela O Silva
- Laboratory of Pathological Anatomy, Veterinary Hospital, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Sávio S Sant'Anna
- Laboratory of Herpetology, Butantan Institute (IB), São Paulo, SP, Brazil
| | - Kathleen F Grego
- Laboratory of Herpetology, Butantan Institute (IB), São Paulo, SP, Brazil
| | - Karen Morais-Zani
- Laboratory of Herpetology, Butantan Institute (IB), São Paulo, SP, Brazil
| | - Kristian A Torres-Bonilla
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Stephen Hyslop
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil.
| |
Collapse
|
4
|
Tsetlin V, Shelukhina I, Kozlov S, Kasheverov I. Fifty Years of Animal Toxin Research at the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS. Int J Mol Sci 2023; 24:13884. [PMID: 37762187 PMCID: PMC10530976 DOI: 10.3390/ijms241813884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
This review covers briefly the work carried out at our institute (IBCh), in many cases in collaboration with other Russian and foreign laboratories, for the last 50 years. It discusses the discoveries and studies of various animal toxins, including protein and peptide neurotoxins acting on the nicotinic acetylcholine receptors (nAChRs) and on other ion channels. Among the achievements are the determination of the primary structures of the α-bungarotoxin-like three-finger toxins (TFTs), covalently bound dimeric TFTs, glycosylated cytotoxin, inhibitory cystine knot toxins (ICK), modular ICKs, and such giant molecules as latrotoxins and peptide neurotoxins from the snake, as well as from other animal venoms. For a number of toxins, spatial structures were determined, mostly by 1H-NMR spectroscopy. Using this method in combination with molecular modeling, the molecular mechanisms of the interactions of several toxins with lipid membranes were established. In more detail are presented the results of recent years, among which are the discovery of α-bungarotoxin analogs distinguishing the two binding sites in the muscle-type nAChR, long-chain α-neurotoxins interacting with α9α10 nAChRs and with GABA-A receptors, and the strong antiviral effects of dimeric phospholipases A2. A summary of the toxins obtained from arthropod venoms includes only highly cited works describing the molecules' success story, which is associated with IBCh. In marine animals, versatile toxins in terms of structure and molecular targets were discovered, and careful work on α-conotoxins differing in specificity for individual nAChR subtypes gave information about their binding sites.
Collapse
Affiliation(s)
- Victor Tsetlin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia; (I.S.); (I.K.)
| | - Irina Shelukhina
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia; (I.S.); (I.K.)
| | - Sergey Kozlov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia;
| | - Igor Kasheverov
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia; (I.S.); (I.K.)
| |
Collapse
|
5
|
Osipov A, Utkin Y. What Are the Neurotoxins in Hemotoxic Snake Venoms? Int J Mol Sci 2023; 24:ijms24032919. [PMID: 36769242 PMCID: PMC9917609 DOI: 10.3390/ijms24032919] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Snake venoms as tools for hunting are primarily aimed at the most vital systems of the prey, especially the nervous and circulatory systems. In general, snakes of the Elapidae family produce neurotoxic venoms comprising of toxins targeting the nervous system, while snakes of the Viperidae family and most rear-fanged snakes produce hemotoxic venoms directed mainly on blood coagulation. However, it is not all so clear. Some bites by viperids results in neurotoxic signs and it is now known that hemotoxic venoms do contain neurotoxic components. For example, viperid phospholipases A2 may manifest pre- or/and postsynaptic activity and be involved in pain and analgesia. There are other neurotoxins belonging to diverse families ranging from large multi-subunit proteins (e.g., C-type lectin-like proteins) to short peptide neurotoxins (e.g., waglerins and azemiopsin), which are found in hemotoxic venoms. Other neurotoxins from hemotoxic venoms include baptides, crotamine, cysteine-rich secretory proteins, Kunitz-type protease inhibitors, sarafotoxins and three-finger toxins. Some of these toxins exhibit postsynaptic activity, while others affect the functioning of voltage-dependent ion channels. This review represents the first attempt to systematize data on the neurotoxins from "non-neurotoxic" snake venom. The structural and functional characteristic of these neurotoxins affecting diverse targets in the nervous system are considered.
Collapse
|
6
|
Corrêa-Netto C, Strauch MA, Monteiro-Machado M, Teixeira-Araújo R, Fonseca JG, Leitão-Araújo M, Machado-Alves ML, Sanz L, Calvete JJ, Melo PA, Zingali RB. Monoclonal-Based Antivenomics Reveals Conserved Neutralizing Epitopes in Type I PLA 2 Molecules from Coral Snakes. Toxins (Basel) 2022; 15:toxins15010015. [PMID: 36668835 PMCID: PMC9863321 DOI: 10.3390/toxins15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
For over a century, polyclonal antibodies have been used to treat snakebite envenoming and are still considered by the WHO as the only scientifically validated treatment for snakebites. Nevertheless, moderate innovations have been introduced to this immunotherapy. New strategies and approaches to understanding how antibodies recognize and neutralize snake toxins represent a challenge for next-generation antivenoms. The neurotoxic activity of Micrurus venom is mainly due to two distinct protein families, three-finger toxins (3FTx) and phospholipases A2 (PLA2). Structural conservation among protein family members may represent an opportunity to generate neutralizing monoclonal antibodies (mAbs) against family-conserved epitopes. In this work, we sought to produce a set of monoclonal antibodies against the most toxic components of M. altirostris venom. To this end, the crude venom was fractionated, and its major toxic proteins were identified and used to generate a panel of five mAbs. The specificity of these mAbs was characterized by ELISA and antivenomics approaches. Two of the generated mAbs recognized PLA2 epitopes. They inhibited PLA2 catalytic activity and showed paraspecific neutralization against the myotoxicity from the lethal effect of Micrurus and Naja venoms' PLA2s. Epitope conservation among venom PLA2 molecules suggests the possibility of generating pan-PLA2 neutralizing antibodies.
Collapse
Affiliation(s)
- Carlos Corrêa-Netto
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (C.C.-N.); (R.B.Z.); Tel.: +55-213-938-6782 (R.B.Z.)
| | - Marcelo A. Strauch
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Marcos Monteiro-Machado
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ricardo Teixeira-Araújo
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | | | - Moema Leitão-Araújo
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Porto Alegre 90690-000, RS, Brazil
| | - Maria Lúcia Machado-Alves
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Porto Alegre 90690-000, RS, Brazil
| | - Libia Sanz
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, 46010 Valencia, Spain
| | - Juan J. Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, 46010 Valencia, Spain
| | - Paulo A. Melo
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (C.C.-N.); (R.B.Z.); Tel.: +55-213-938-6782 (R.B.Z.)
| |
Collapse
|
7
|
Youngman NJ, Peng YH, Harris RJ, Jones L, Llinas J, Haworth M, Gillett A, Fry BG. Differential coagulotoxic and neurotoxic venom activity from species of the arboreal viperid snake genus Bothriechis (palm-pitvipers). Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109326. [PMID: 35248757 DOI: 10.1016/j.cbpc.2022.109326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022]
Abstract
The viperid snake genus Bothriechis consists of eleven species distributed among Central and South America, living across low and high-altitude habitats. Despite Bothriechis envenomations being prominent across the Central and South American region, the functional effects of Bothriechis venoms are poorly understood. Thus, the aim of this study was to investigate the coagulotoxic and neurotoxic activities of Bothriechis venoms to fill this knowledge gap. Coagulotoxic investigations revealed Bothriechis nigroviridis and B. schlegelii to have pseudo-procoagulant venom activity, forming weak clots that rapidly break down, thereby depleting fibrinogen levels and thus contributing to a net anticoagulant state. While one sample of B. lateralis also showed weaker pseudo-procoagulant activity, directly clotting fibrinogen, two samples of B. lateralis venom were anticoagulant through the inhibition of thrombin and factor Xa activity. Differential efficacy of PoliVal-ICP antivenom was also observed, with the pseudo-procoagulant effect of B. nigroviridis venom poorly neutralised, despite this same activity in the venom of B. schlegelii being effectively neutralised. Significant specificity of these fibrinogen cleaving toxins was also observed, with no activity upon model amphibian, avian, lizard or rodent plasma observed. However, upon avian plasma the venom of B. nigroviridis exerted a complete anticoagulant effect, in contrast to the pseudo-procoagulant effect seen on human plasma. Neurotoxic investigations revealed B. schlegelii to be unique among the genus in having potent binding to the orthosteric site of the alpha-1 postsynaptic nicotinic acetylcholine receptor (with B. lateralis having a weaker but still discernible effect). This represents the first identification of postsynaptic nAChR neurotoxic activity for Bothriechis. In conclusion this study identifies notable differential activity within the coagulotoxic and postsynaptic neurotoxic activity of Bothriechis venoms, supporting previous research, and highlights the need for further studies with respect to antivenom efficacy as well as coagulotoxin specificity for Bothriechis venoms.
Collapse
Affiliation(s)
- Nicholas J Youngman
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yin-Hsuan Peng
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lee Jones
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Mark Haworth
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Amber Gillett
- FaunaVet Wildlife Consultancy, Glass House Mountains, QLD 4518, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
8
|
Ivanušec A, Šribar J, Križaj I. Secreted Phospholipases A 2 - not just Enzymes: Revisited. Int J Biol Sci 2022; 18:873-888. [PMID: 35002531 PMCID: PMC8741859 DOI: 10.7150/ijbs.68093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. The physiological roles of sPLA2s as enzymes have been very well described, while their functions as ligands are still poorly known. Since the last overview of sPLA2-binding proteins (sPLA2-BPs) 10 years ago, several important discoveries have occurred in this area. New and more sensitive analytical tools have enabled the discovery of additional sPLA2-BPs, which are presented and critically discussed here. The structural diversity of sPLA2-BPs reveals sPLA2s as very promiscuous proteins, and we offer some structural explanations for this nature that makes these proteins evolutionarily highly advantageous. Three areas of physiological engagement of sPLA2-BPs have appeared most clearly: cellular transport and signalling, and regulation of the enzymatic activity of sPLA2s. Due to the multifunctionality of sPLA2s, they appear to be exceptional pharmacological targets. We reveal the potential to exploit interactions of sPLA2s with other proteins in medical terms, for the development of original diagnostic and therapeutic procedures. We conclude this survey by suggesting the priority questions that need to be answered.
Collapse
Affiliation(s)
- Adrijan Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Nirthanan S. Snake three-finger α-neurotoxins and nicotinic acetylcholine receptors: molecules, mechanisms and medicine. Biochem Pharmacol 2020; 181:114168. [PMID: 32710970 DOI: 10.1016/j.bcp.2020.114168] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Snake venom three-finger α-neurotoxins (α-3FNTx) act on postsynaptic nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction (NMJ) to produce skeletal muscle paralysis. The discovery of the archetypal α-bungarotoxin (α-BgTx), almost six decades ago, exponentially expanded our knowledge of membrane receptors and ion channels. This included the localisation, isolation and characterization of the first receptor (nAChR); and by extension, the pathophysiology and pharmacology of neuromuscular transmission and associated pathologies such as myasthenia gravis, as well as our understanding of the role of α-3FNTxs in snakebite envenomation leading to novel concepts of targeted treatment. Subsequent studies on a variety of animal venoms have yielded a plethora of novel toxins that have revolutionized molecular biomedicine and advanced drug discovery from bench to bedside. This review provides an overview of nAChRs and their subtypes, classification of α-3FNTxs and the challenges of typifying an increasing arsenal of structurally and functionally unique toxins, and the three-finger protein (3FP) fold in the context of the uPAR/Ly6/CD59/snake toxin superfamily. The pharmacology of snake α-3FNTxs including their mechanisms of neuromuscular blockade, variations in reversibility of nAChR interactions, specificity for nAChR subtypes or for distinct ligand-binding interfaces within a subtype and the role of α-3FNTxs in neurotoxic envenomation are also detailed. Lastly, a reconciliation of structure-function relationships between α-3FNTx and nAChRs, derived from historical mutational and biochemical studies and emerging atomic level structures of nAChR models in complex with α-3FNTxs is discussed.
Collapse
Affiliation(s)
- Selvanayagam Nirthanan
- School of Medical Science, Griffith Health Group, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
10
|
Kryukova EV, Vulfius CA, Ziganshin RH, Andreeva TV, Starkov VG, Tsetlin VI, Utkin YN. Snake C-type lectin-like proteins inhibit nicotinic acetylcholine receptors. JOURNAL OF VENOM RESEARCH 2020; 10:23-29. [PMID: 33024544 PMCID: PMC7512478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 10/26/2022]
Abstract
Venoms of viperid snakes affect mostly hemostasis, while C-type lectin-like proteins (CTLPs), one of the main components of viperid venoms, act as anticoagulants, procoagulants, or agonists/antagonists of platelet activation. However, we have shown earlier that CTLPs from the saw-scaled viper Echis multisquamatus, called emunarecins EM1 and EM2, were able to inhibit nicotinic acetylcholine receptors (nAChRs) in neurons of a pond snail (Lymnaea stagnalis). Here we analysed the structure of the emunarecins by mass spectrometry and report that EM1 and EM2 inhibit fluorescent α-bungarotoxin binding to both muscle-type nAChRs from Torpedo californica and human neuronal α7 nAChRs. EM1 at 23µM and EM2 at 9µM almost completely prevented fluorecsent α-bungarotoxin binding to muscle-type nAChRs. Interaction with human neuronal α7 nAChR was weaker; EM1 at the concentration of 23µM blocked the α-bungarotoxin binding only by about 40% and EM2 at 9µM by about 20%. The efficiency of the EM2 interaction with nAChRs was comparable to that of a non-conventional toxin, WTX, from Naja kaouthia cobra venom. Together with the data obtained earlier, these results show that CTLPs may represent new nAChR ligands.
Collapse
Affiliation(s)
- Elena V Kryukova
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Catherine A Vulfius
- 2Institute of Cell Biophysics Russian Academy of Sciences, 3 Institutskaya Street, Pushchino Moscow region, 142290, Russia
| | - Rustam H Ziganshin
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Tatyana V Andreeva
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Vladislav G Starkov
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Victor I Tsetlin
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Yuri N Utkin
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia,*Correspondence to: Yuri Utkin, E-mail: ; , Tel/Fax: +74953366522
| |
Collapse
|
11
|
Vulfius CA, Lebedev DS, Kryukova EV, Kudryavtsev DS, Kolbaev SN, Utkin YN, Tsetlin VI. PNU-120596, a positive allosteric modulator of mammalian α7 nicotinic acetylcholine receptor, is a negative modulator of ligand-gated chloride-selective channels of the gastropod Lymnaea stagnalis. J Neurochem 2020; 155:274-284. [PMID: 32248535 DOI: 10.1111/jnc.15020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/27/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
Abstract
Excitatory α7 neuronal nicotinic receptors (nAChR) are widely expressed in the central and peripheral nervous and immune systems and are important for learning, memory, and immune response regulation. Specific α7 nAChR ligands, including positive allosteric modulators are promising to treat cognitive disorders, inflammatory processes, and pain. One of them, PNU-120596, highly increased the neuron response to α7 agonists and retarded desensitization, showing selectivity for α7 as compared to heteromeric nAChRs, but was not examined at the inhibitory ligand-gated channels. We studied PNU-120596 action on anion-conducting channels using voltage-clamp techniques: it slightly potentiated the response of human glycine receptors expressed in PC12 cells, of rat GABAA receptors in cerebellar Purkinje cells and mouse GABAA Rs heterologously expressed in Xenopus oocytes. On the contrary, PNU-120596 exerted an inhibitory effect on the receptors mediating anion currents in Lymnaea stagnalis neurons: two nAChR subtypes, GABA and glutamate receptors. Acceleration of the current decay, contrary to slowing down desensitization in mammalian α7 nAChR, was observed in L. stagnalis neurons predominantly expressing one of the two nAChR subtypes. Thus, PNU-120596 effect on these anion-selective nAChRs was just opposite to the action on the mammalian cation-selective α7 nAChRs. A comparison of PNU-120596 molecule docked to the models of transmembrane domains of the human α7 AChR and two subunits of L. stagnalis nAChR demonstrated some differences in contacts with the amino acid residues important for PNU-120596 action on the α7 nAChR. Thus, our results show that PNU-120596 action depends on a particular subtype of these Cys-loop receptors.
Collapse
Affiliation(s)
- Catherine A Vulfius
- Laboratory of Cellular Neurobilogy, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino Moscow region, Russia
| | - Dmitrii S Lebedev
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Elena V Kryukova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Denis S Kudryavtsev
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Yuri N Utkin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victor I Tsetlin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Dos Santos RTF, Silva MFP, Porto RM, Lebrun I, Gonçalves LRDC, Batista IDFC, Sandoval MRL, Abdalla FMF. Effects of Mlx-8, a phospholipase A 2 from Brazilian coralsnake Micrurus lemniscatus venom, on muscarinic acetylcholine receptors in rat hippocampus. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190041. [PMID: 32063920 PMCID: PMC6986814 DOI: 10.1590/1678-9199-jvatitd-2019-0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022] Open
Abstract
Background: Here, we described the presence of a neurotoxin with phospholipase
A2 activity isolated from Micrurus
lemniscatus venom (Mlx-8) with affinity for muscarinic
acetylcholine receptors (mAChRs). Methods: The purification, molecular mass determination, partial amino acid
sequencing, phospholipase A2 activity determination, inhibition
of the binding of the selective muscarinic ligand [3H]QNB and
inhibition of the total [3H]inositol phosphate accumulation in
rat hippocampus of the Mlx-8 were determined. Results: Thirty-one fractions were collected from HPLC chromatography, and the Mlx-8
toxin was used in this work. The molecular mass of Mlx-8 is 13.628 Da. Edman
degradation yielded the following sequence:
NLYQFKNMIQCTNTRSWL-DFADYG-CYCGRGGSGT. The Mlx-8 had phospholipase
A2 enzymatic activity. The pKi values were
determined for Mlx-8 toxin and the M1 selective muscarinic
antagonist pirenzepine in hippocampus membranes via [3H]QNB
competition binding assays. The pKi values obtained from the
analysis of Mlx-8 and pirenzepine displacement curves were 7.32 ± 0.15, n =
4 and 5.84 ± 0.18, n = 4, respectively. These results indicate that Mlx-8
has affinity for mAChRs. There was no effect on the inhibition ability of
the [3H]QNB binding in hippocampus membranes when 1 µM Mlx-8 was
incubated with 200 µM DEDA, an inhibitor of phospholipase A2.
This suggests that the inhibition of the phospholipase A2
activity of the venom did not alter its ability to bind to displace
[3H]QNB binding. In addition, the Mlx-8 toxin caused a
blockade of 43.31 ± 8.86%, n = 3 and 97.42 ± 2.02%, n = 3 for 0.1 and 1 µM
Mlx-8, respectively, on the total [3H]inositol phosphate content
induced by 10 µM carbachol. This suggests that Mlx-8 inhibits the
intracellular signaling pathway linked to activation of mAChRs in
hippocampus. Conclusion: The results of the present work show, for the first time, that muscarinic
receptors are also affected by the Mlx-8 toxin, a muscarinic ligand with
phospholipase A2 characteristics, obtained from the venom of the
Elapidae snake Micrurus lemniscatus, since this toxin was
able to compete with muscarinic ligand [3H]QNB in hippocampus of
rats. In addition, Mlx-8 also blocked the accumulation of total
[3H]inositol phosphate induced by muscarinic agonist
carbachol. Thus, Mlx-8 may be a new pharmacological tool for examining
muscarinic cholinergic function.
Collapse
Affiliation(s)
| | | | - Rafael Marques Porto
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, SP, Brazil
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
13
|
Albulescu LO, Kazandjian T, Slagboom J, Bruyneel B, Ainsworth S, Alsolaiss J, Wagstaff SC, Whiteley G, Harrison RA, Ulens C, Kool J, Casewell NR. A Decoy-Receptor Approach Using Nicotinic Acetylcholine Receptor Mimics Reveals Their Potential as Novel Therapeutics Against Neurotoxic Snakebite. Front Pharmacol 2019; 10:848. [PMID: 31417406 PMCID: PMC6683245 DOI: 10.3389/fphar.2019.00848] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/02/2019] [Indexed: 12/24/2022] Open
Abstract
Snakebite is a neglected tropical disease that causes 138,000 deaths each year. Neurotoxic snake venoms contain small neurotoxins, including three-finger toxins (3FTxs), which can cause rapid paralysis in snakebite victims by blocking postsynaptic transmission via nicotinic acetylcholine receptors (nAChRs). These toxins are typically weakly immunogenic and thus are often not effectively targeted by current polyclonal antivenom therapies. We investigated whether nAChR mimics, also known as acetylcholine binding proteins (AChBPs), could effectively capture 3FTxs and therefore be developed as a novel class of snake-generic therapeutics for combatting neurotoxic envenoming. First, we identified the binding specificities of 3FTx from various medically important elapid snake venoms to nAChR using two recombinant nAChR mimics: the AChBP from Lymnaea stagnalis and a humanized neuronal α7 version (α7-AChBP). We next characterized these AChBP-bound and unbound fractions using SDS-PAGE and mass spectrometry. Interestingly, both mimics effectively captured long-chain 3FTxs from multiple snake species but largely failed to capture the highly related short-chain 3FTxs, suggesting a high level of binding specificity. We next investigated whether nAChR mimics could be used as snakebite therapeutics. We showed that while α7-AChBP alone did not protect against Naja haje (Egyptian cobra) venom lethality in vivo, it significantly prolonged survival times when coadministered with a nonprotective dose of antivenom. Thus, nAChR mimics are capable of neutralizing specific venom toxins and may be useful adjunct therapeutics for improving the safety and affordability of existing snakebite treatments by reducing therapeutic doses. Our findings justify exploring the future development of AChBPs as potential snakebite treatments.
Collapse
Affiliation(s)
- Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Taline Kazandjian
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Julien Slagboom
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ben Bruyneel
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Stuart Ainsworth
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jaffer Alsolaiss
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Simon C Wagstaff
- Bioinformatics Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Gareth Whiteley
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Robert A Harrison
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Jeroen Kool
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
14
|
Kasheverov IE, Oparin PB, Zhmak MN, Egorova NS, Ivanov IA, Gigolaev AM, Nekrasova OV, Serebryakova MV, Kudryavtsev DS, Prokopev NA, Hoang AN, Tsetlin VI, Vassilevski AA, Utkin YN. Scorpion toxins interact with nicotinic acetylcholine receptors. FEBS Lett 2019; 593:2779-2789. [PMID: 31276191 DOI: 10.1002/1873-3468.13530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
Abstract
Neurotoxins are among the main components of scorpion and snake venoms. Scorpion neurotoxins affect voltage-gated ion channels, while most snake neurotoxins target ligand-gated ion channels, mainly nicotinic acetylcholine receptors (nAChRs). We report that scorpion venoms inhibit α-bungarotoxin binding to both muscle-type nAChR from Torpedo californica and neuronal human α7 nAChR. Toxins inhibiting nAChRs were identified as OSK-1 (α-KTx family) from Orthochirus scrobiculosus and HelaTx1 (κ-KTx family) from Heterometrus laoticus, both being blockers of voltage-gated potassium channels. With an IC50 of 1.6 μm, OSK1 inhibits acetylcholine-induced current through mouse muscle-type nAChR heterologously expressed in Xenopus oocytes. Other well-characterized scorpion toxins from these families also bind to Torpedo nAChR with micromolar affinities. Our results indicate that scorpion neurotoxins present target promiscuity.
Collapse
Affiliation(s)
- Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Peter B Oparin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maxim N Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Natalya S Egorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrei M Gigolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikita A Prokopev
- Department of Bioorganic Chemistry, Faculty of Biology, Lomonosov Moscow State University, Russia
| | - Anh N Hoang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Oblast, Russia
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Perez-Riverol A, Lasa AM, Dos Santos-Pinto JRA, Palma MS. Insect venom phospholipases A1 and A2: Roles in the envenoming process and allergy. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 105:10-24. [PMID: 30582958 DOI: 10.1016/j.ibmb.2018.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Insect venom phospholipases have been identified in nearly all clinically relevant social Hymenoptera, including bees, wasps and ants. Among other biological roles, during the envenoming process these enzymes cause the disruption of cellular membranes and induce hypersensitive reactions, including life threatening anaphylaxis. While phospholipase A2 (PLA2) is a predominant component of bee venoms, phospholipase A1 (PLA1) is highly abundant in wasps and ants. The pronounced prevalence of IgE-mediated reactivity to these allergens in sensitized patients emphasizes their important role as major elicitors of Hymenoptera venom allergy (HVA). PLA1 and -A2 represent valuable marker allergens for differentiation of genuine sensitizations to bee and/or wasp venoms from cross-reactivity. Moreover, in massive attacks, insect venom phospholipases often cause several pathologies that can lead to fatalities. This review summarizes the available data related to structure, model of enzymatic activity and pathophysiological roles during envenoming process of insect venom phospholipases A1 and -A2.
Collapse
Affiliation(s)
- Amilcar Perez-Riverol
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil
| | - Alexis Musacchio Lasa
- Center for Genetic Engineering and Biotechnology, Biomedical Research Division, Department of System Biology, Ave. 31, e/158 and 190, P.O. Box 6162, Cubanacan, Playa, Havana, 10600, Cuba
| | - José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil.
| |
Collapse
|
16
|
Slagboom J, Otvos RA, Cardoso FC, Iyer J, Visser JC, van Doodewaerd BR, McCleary RJR, Niessen WMA, Somsen GW, Lewis RJ, Kini RM, Smit AB, Casewell NR, Kool J. Neurotoxicity fingerprinting of venoms using on-line microfluidic AChBP profiling. Toxicon 2018; 148:213-222. [PMID: 29730150 DOI: 10.1016/j.toxicon.2018.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 11/27/2022]
Abstract
Venoms from snakes are rich sources of highly active proteins with potent affinity towards a variety of enzymes and receptors. Of the many distinct toxicities caused by envenomation, neurotoxicity plays an important role in the paralysis of prey by snakes as well as by venomous sea snails and insects. In order to improve the analytical discovery component of venom toxicity profiling, this paper describes the implementation of microfluidic high-resolution screening (HRS) to obtain neurotoxicity fingerprints from venoms that facilitates identification of the neurotoxic components of envenomation. To demonstrate this workflow, 47 snake venoms were profiled using the acetylcholine binding protein (AChBP) to mimic the target of neurotoxic proteins, in particular nicotinic acetylcholine receptors (nAChRs). In the microfluidic HRS system, nanoliquid chromatographic (nanoLC) separations were on-line connected to both AChBP profiling and parallel mass spectrometry (MS). For virtually all neurotoxic elapid snake venoms tested, we obtained bioactivity fingerprints showing major and minor bioactive zones containing masses consistent with three-finger toxins (3FTxs), whereas, viperid and colubrid venoms showed little or no detectable bioactivity. Our findings demonstrate that venom interactions with AChBP correlate with the severity of neurotoxicity observed following human envenoming by different snake species. We further, as proof of principle, characterized bioactive venom peptides from a viperid (Daboia russelli) and an elapid (Aspidelaps scutatus scutatus) snake by nanoLC-MS/MS, revealing that different toxin classes interact with the AChBP, and that this binding correlates with the inhibition of α7-nAChR in calcium-flux cell-based assays. The on-line post-column binding assay and subsequent toxin characterization methodologies described here provide a new in vitro analytic platform for rapidly investigating neurotoxic snake venom proteins.
Collapse
Affiliation(s)
- Julien Slagboom
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Reka A Otvos
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Janaki Iyer
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Jeroen C Visser
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Bjorn R van Doodewaerd
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Ryan J R McCleary
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, 117558, Singapore; Department of Biological Sciences, Stetson University, 421 N. Woodland Blvd, Unit 8264, DeLand, FL, 32723, USA.
| | - Wilfried M A Niessen
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands; hyphen MassSpec, Margrietstraat 34, 2215 HJ, Voorhout, The Netherlands.
| | - Govert W Somsen
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, 117558, Singapore.
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK; Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jeroen Kool
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Vulfius CA, Kasheverov IE, Kryukova EV, Spirova EN, Shelukhina IV, Starkov VG, Andreeva TV, Faure G, Zouridakis M, Tsetlin VI, Utkin YN. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors. PLoS One 2017; 12:e0186206. [PMID: 29023569 PMCID: PMC5638340 DOI: 10.1371/journal.pone.0186206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/27/2017] [Indexed: 01/08/2023] Open
Abstract
Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which should be proved by further experiments.
Collapse
Affiliation(s)
- Catherine A. Vulfius
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Igor E. Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Elena V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina N. Spirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Irina V. Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vladislav G. Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatyana V. Andreeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Grazyna Faure
- Unité Récepteurs-Canaux, Institut Pasteur, Paris, France
| | | | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
18
|
Dutertre S, Nicke A, Tsetlin VI. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017. [PMID: 28623170 DOI: 10.1016/j.neuropharm.2017.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) represents the prototype of ligand-gated ion channels. It is vital for neuromuscular transmission and an important regulator of neurotransmission. A variety of toxic compounds derived from diverse species target this receptor and have been of elemental importance in basic and applied research. They enabled milestone discoveries in pharmacology and biochemistry ranging from the original formulation of the receptor concept, the first isolation and structural analysis of a receptor protein (the nAChR) to the identification, localization, and differentiation of its diverse subtypes and their validation as a target for therapeutic intervention. Among the venom-derived compounds, α-neurotoxins and α-conotoxins provide the largest families and still represent indispensable pharmacological tools. Application of modified α-neurotoxins provided substantial structural and functional details of the nAChR long before high resolution structures were available. α-bungarotoxin represents not only a standard pharmacological tool and label in nAChR research but also for unrelated proteins tagged with a minimal α-bungarotoxin binding motif. A major advantage of α-conotoxins is their smaller size, as well as superior selectivity for diverse nAChR subtypes that allows their development into ligands with optimized pharmacological and chemical properties and potentially novel drugs. In the following, these two groups of nAChR antagonists will be described focusing on their respective roles in the structural and functional characterization of nAChRs and their development into research tools. In addition, we provide a comparative overview of the diverse α-conotoxin selectivities that can serve as a practical guide for both structure activity studies and subtype classification. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Nußbaumstr. 26, 80336 Munich, Germany.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str.16/10, Moscow 117999, Russian Federation
| |
Collapse
|
19
|
The effect of physiological levels of South African puff adder (Bitis arietans) snake venom on blood cells: an in vitro model. Sci Rep 2016; 6:35988. [PMID: 27775063 PMCID: PMC5075924 DOI: 10.1038/srep35988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022] Open
Abstract
A significant burden of illness is caused globally by snakebites particularly by the puff adder, Bitis arietans. Presently there is no reliable and rapid method to confirm envenomation on blood chemistry; although coagulation parameters like prothrombin time, partial thromboplastin time, international normalized ratio and also serum electrolytes are tested. Here, we found that direct in vitro exposure of physiological relevant whole venom levels to human healthy blood (N = 32), caused significant physiological changes to platelet activity using a hematology analyzer, and measuring occlusion time, as well as lyses time, with the global thrombosis test (GTT). Disintegrated platelets were confirmed by scanning electron microscopy (SEM). We also confirmed the pathologic effects on erythrocytes (RBCs) (visible as eryptotic RBCs), by looking at both light microscopy and SEM. Thromboelastography showed that no clot formation in whole blood could be induced after addition of whole venom. We propose further clinical studies to investigate the use of light microscopy smears and hematology analyzer results immediately after envenomation, as a possible first-stage of clinical confirmation of envenomation.
Collapse
|
20
|
Kovalchuk SI, Ziganshin RH, Starkov VG, Tsetlin VI, Utkin YN. Quantitative Proteomic Analysis of Venoms from Russian Vipers of Pelias Group: Phospholipases A₂ are the Main Venom Components. Toxins (Basel) 2016; 8:105. [PMID: 27077884 PMCID: PMC4848631 DOI: 10.3390/toxins8040105] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
Venoms of most Russian viper species are poorly characterized. Here, by quantitative chromato-mass-spectrometry, we analyzed protein and peptide compositions of venoms from four Vipera species (V. kaznakovi, V. renardi, V. orlovi and V. nikolskii) inhabiting different regions of Russia. In all these species, the main components were phospholipases A2, their content ranging from 24% in V. orlovi to 65% in V. nikolskii. Altogether, enzyme content in venom of V. nikolskii reached ~85%. Among the non-enzymatic proteins, the most abundant were disintegrins (14%) in the V. renardi venom, C-type lectin like (12.5%) in V. kaznakovi, cysteine-rich venom proteins (12%) in V. orlovi and venom endothelial growth factors (8%) in V. nikolskii. In total, 210 proteins and 512 endogenous peptides were identified in the four viper venoms. They represented 14 snake venom protein families, most of which were found in the venoms of Vipera snakes previously. However, phospholipase B and nucleotide degrading enzymes were reported here for the first time. Compositions of V. kaznakovi and V. orlovi venoms were described for the first time and showed the greatest similarity among the four venoms studied, which probably reflected close relationship between these species within the “kaznakovi” complex.
Collapse
Affiliation(s)
- Sergey I Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Vladislav G Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| |
Collapse
|
21
|
da Fonseca CO, Khandelia H, Salazar MD, Schönthal AH, Meireles OC, Quirico-Santos T. Perillyl alcohol: Dynamic interactions with the lipid bilayer and implications for long-term inhalational chemotherapy for gliomas. Surg Neurol Int 2016; 7:1. [PMID: 26862440 PMCID: PMC4722523 DOI: 10.4103/2152-7806.173301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/26/2015] [Indexed: 01/03/2023] Open
Abstract
Background: Gliomas display a high degree of intratumor heterogeneity, including changes in physiological parameters and lipid composition of the plasma membrane, which may contribute to the development of drug resistance. Biophysical interactions between therapeutic agents and the lipid components at the outer plasma membrane interface are critical for effective drug uptake. Amphipathic molecules such as perillyl alcohol (POH) have a high partition coefficient and generally lead to altered lipid acyl tail dynamics near the lipid-water interface, impacting the lipid bilayer structure and transport dynamics. We therefore hypothesized that glioma cells may display enhanced sensitivity to POH-induced apoptosis due to plasma membrane alterations, while in non-transformed cells, POH may be expelled through thermal agitation. Methods: Interactions between POH and the plasma membrane was studied using molecular dynamics simulations. In this phase I/II trial, we set up to evaluate the clinical effectiveness of long-term (up to 5 years) daily intranasal administration of POH in a cohort of 19 patients with low-grade glioma (LGG). Importantly, in a series of clinical studies previously published by our group, we have successfully established that intranasal delivery of POH to patients with malignant gliomas is a viable and effective therapeutic strategy. Results: POH altered the plasma membrane potential of the lipid bilayer of gliomas and prolonged intranasal administration of POH in a cohort of patients with LGG halted disease progression with virtually no toxicity. Conclusion: Altogether, the results suggest that POH-induced alterations of the plasma membrane might be contributing to its therapeutic efficacy in preventing LGG progression.
Collapse
Affiliation(s)
- Clovis Orlando da Fonseca
- Department of General and Specialized Surgery, Antonio Pedro University Hospital, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Himanshu Khandelia
- Memphys-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | | | - Axel H Schönthal
- Department of Microbiology and Immunology, Keck School of Medicine, University of Southern California, California, USA
| | - Osório C Meireles
- Retired Professor from the Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Thereza Quirico-Santos
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Hassan-Puttaswamy V, Adams DJ, Kini RM. A Distinct Functional Site in Ω-Neurotoxins: Novel Antagonists of Nicotinic Acetylcholine Receptors from Snake Venom. ACS Chem Biol 2015; 10:2805-15. [PMID: 26448325 DOI: 10.1021/acschembio.5b00492] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Snake venom α-neurotoxins from the three-finger toxin (3FTx) family are competitive antagonists with nanomolar affinity and high selectivity for nicotinic acetylcholine receptors (nAChR). Here, we report the characterization of a new group of competitive nAChR antagonists: Ω-neurotoxins. Although they belong to the 3FTx family, the characteristic functional residues of α-neurotoxins are not conserved. We evaluated the subtype specificity and structure-function relationships of Oh9-1, an Ω-neurotoxin from Ophiophagus hannah venom. Recombinant Oh9-1 showed reversible postsynaptic neurotoxicity in the micromolar range. Experiments with different nAChR subtypes expressed in Xenopus oocytes indicated Oh9-1 is selective for rat muscle type α1β1εδ (adult) and α1β1γδ (fetal) and rat neuronal α3β2 subtypes. However, Oh9-1 showed low or no affinity for other human and rat neuronal subtypes. Twelve individual alanine-scan mutants encompassing all three loops of Oh9-1 were evaluated for binding to α1β1εδ and α3β2 subtypes. Oh9-1's loop-II residues (M25, F27) were the most critical for interactions and formed the common binding core. Mutations at T23 and F26 caused a significant loss in activity at α1β1εδ receptors but had no effect on the interaction with the α3β2 subtype. Similarly, mutations at loop-II (H7, K22, H30) and -III (K45) of Oh9-1 had a distinctly different impact on its activity with these subtypes. Thus, Oh9-1 interacts with these nAChRs via distinct residues. Unlike α-neurotoxins, the tip of loop-II is not involved. We reveal a novel mode of interaction, where both sides of the β-strand of Oh9-1's loop-II interact with α1β1εδ, but only one side interacts with α3β2. Phylogenetic analysis revealed functional organization of the Ω-neurotoxins independent of α-neurotoxins. Thus, Ω-neurotoxin: Oh9-1 may be a new, structurally distinct class of 3FTxs that, like α-neurotoxins, antagonize nAChRs. However, Oh9-1 binds to the ACh binding pocket via a different set of functional residues.
Collapse
Affiliation(s)
| | - David J. Adams
- Health
Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia
| | - R. Manjunatha Kini
- Department
of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
23
|
Biological characterization of the Amazon coral Micrurus spixii snake venom: Isolation of a new neurotoxic phospholipase A2. Toxicon 2015; 103:1-11. [DOI: 10.1016/j.toxicon.2015.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/07/2015] [Accepted: 06/08/2015] [Indexed: 11/16/2022]
|
24
|
Natural compounds interacting with nicotinic acetylcholine receptors: from low-molecular weight ones to peptides and proteins. Toxins (Basel) 2015; 7:1683-701. [PMID: 26008231 PMCID: PMC4448168 DOI: 10.3390/toxins7051683] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/07/2015] [Indexed: 12/16/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds.
Collapse
|
25
|
Vulfius CA, Starkov VG, Andreeva TV, Tsetlin VI, Utkin YN. Novel antagonists of nicotinic acetylcholine receptors--proteins from venoms of Viperidae snakes. DOKL BIOCHEM BIOPHYS 2015; 461:119-22. [PMID: 25937229 DOI: 10.1134/s1607672915020143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Indexed: 11/22/2022]
Affiliation(s)
- C A Vulfius
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya 3, Pushchino, Moscow oblast, 142290, Russia
| | | | | | | | | |
Collapse
|