1
|
Foster VS, Saez N, King GF, Rank MM. Acute inhibition of acid sensing ion channel 1a after spinal cord injury selectively affects excitatory synaptic transmission, but not intrinsic membrane properties, in deep dorsal horn interneurons. PLoS One 2023; 18:e0289053. [PMID: 37939057 PMCID: PMC10631665 DOI: 10.1371/journal.pone.0289053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/10/2023] [Indexed: 11/10/2023] Open
Abstract
Following a spinal cord injury (SCI), secondary damage mechanisms are triggered that cause inflammation and cell death. A key component of this secondary damage is a reduction in local blood flow that initiates a well-characterised ischemic cascade. Downstream hypoxia and acidosis activate acid sensing ion channel 1a (ASIC1a) to trigger cell death. We recently showed that administration of a potent venom-derived inhibitor of ASIC1a, Hi1a, leads to tissue sparing and improved functional recovery when delivered up to 8 h after ischemic stroke. Here, we use whole-cell patch-clamp electrophysiology in a spinal cord slice preparation to assess the effect of acute ASIC1a inhibition, via a single dose of Hi1a, on intrinsic membrane properties and excitatory synaptic transmission long-term after a spinal cord hemisection injury. We focus on a population of interneurons (INs) in the deep dorsal horn (DDH) that play a key role in relaying sensory information to downstream motoneurons. DDH INs in mice treated with Hi1a 1 h after a spinal cord hemisection showed no change in active or passive intrinsic membrane properties measured 4 weeks after SCI. DDH INs, however, exhibit significant changes in the kinetics of spontaneous excitatory postsynaptic currents after a single dose of Hi1a, when compared to naive animals (unlike SCI mice). Our data suggest that acute ASIC1a inhibition exerts selective effects on excitatory synaptic transmission in DDH INs after SCI via specific ligand-gated receptor channels, and has no effect on other voltage-activated channels long-term after SCI.
Collapse
Affiliation(s)
- Victoria S. Foster
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- St George’s, University of London, Medical School, London, England
| | - Natalie Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Michelle M. Rank
- Department of Anatomy and Physiology, School of Biomedical Science, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Shin J, Kovacheva L, Thomas D, Stojanovic S, Knowlton CJ, Mankel J, Boehm J, Farassat N, Paladini C, Striessnig J, Canavier CC, Geisslinger G, Roeper J. Ca v1.3 calcium channels are full-range linear amplifiers of firing frequencies in lateral DA SN neurons. SCIENCE ADVANCES 2022; 8:eabm4560. [PMID: 35675413 PMCID: PMC9177074 DOI: 10.1126/sciadv.abm4560] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/22/2022] [Indexed: 05/12/2023]
Abstract
The low-threshold L-type calcium channel Cav1.3 accelerates the pacemaker rate in the heart, but its functional role for the extended dynamic range of neuronal firing is still unresolved. Here, we show that Cav1.3 calcium channels act as unexpectedly simple, full-range linear amplifiers of firing rates for lateral dopamine substantia nigra (DA SN) neurons in mice. This means that they boost in vitro or in vivo firing frequencies between 2 and 50 hertz by about 30%. Furthermore, we demonstrate that clinically relevant, low nanomolar concentrations of the L-type channel inhibitor isradipine selectively reduce the in vivo firing activity of these nigrostriatal DA SN neurons at therapeutic plasma concentrations. Thus, our study identifies the pacemaker function of neuronal Cav1.3 channels and provides direct evidence that repurposing dihydropyridines such as isradipine is feasible to selectively modulate the in vivo activity of highly vulnerable DA SN subpopulations in Parkinson's disease.
Collapse
Affiliation(s)
- Josef Shin
- Goethe University, Institute of Neurophysiology, Neuroscience Center, Frankfurt am Main, Germany
| | - Lora Kovacheva
- Goethe University, Institute of Neurophysiology, Neuroscience Center, Frankfurt am Main, Germany
| | - Dominique Thomas
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Strahinja Stojanovic
- Goethe University, Institute of Neurophysiology, Neuroscience Center, Frankfurt am Main, Germany
| | - Christopher J. Knowlton
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Johanna Mankel
- Goethe University, Institute of Neurophysiology, Neuroscience Center, Frankfurt am Main, Germany
| | - Johannes Boehm
- Goethe University, Institute of Neurophysiology, Neuroscience Center, Frankfurt am Main, Germany
| | - Navid Farassat
- Goethe University, Institute of Neurophysiology, Neuroscience Center, Frankfurt am Main, Germany
| | - Carlos Paladini
- UTSA Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jörg Striessnig
- University of Innsbruck, Department of Pharmacology and Toxicology, Center for Molecular Biosciences, Innsbruck, Austria
| | - Carmen C. Canavier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Jochen Roeper
- Goethe University, Institute of Neurophysiology, Neuroscience Center, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Briggs C, Bowes SC, Semba K, Hirasawa M. Sleep deprivation-induced pre- and postsynaptic modulation of orexin neurons. Neuropharmacology 2018; 154:50-60. [PMID: 30586566 DOI: 10.1016/j.neuropharm.2018.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Sleep/wake states are controlled by sleep- and wake-promoting systems, and transitions between states are thought to be regulated by their reciprocal inhibition and homeostatic sleep need. Orexin neurons are known to promote wake maintenance and stabilize the sleep/wake switch. Thus, we asked whether orexin neurons are modulated by homeostatic sleep need. Rats were sleep deprived or left undisturbed to rest for 6 h, then acute brain slices were generated for patch clamp recordings. We found that sleep deprivation increased firing and reduced spike frequency adaptation in response to excitatory drive in orexin neurons. These changes were specific to D-type orexin neurons which, unlike H-type orexin neurons, lack A-type current. In D-type orexin neurons, sleep deprivation decreased afterhyperpolarizing potential, which was associated with increased gain, measured as the slope of the input-output relationship. These effects were mimicked by inhibition of SK channels. Furthermore, sleep deprivation resulted in presynaptic inhibition of excitatory inputs to both D-type and H-type orexin neurons, which preferentially affected sparse synaptic inputs while sparing high frequency synaptic activities. Taken together, our results indicate that sleep deprivation modulates the gain control and synaptic gating in orexin neurons. These pre-and postsynaptic changes would tune orexin neurons to strong wake-promoting excitatory signals, while dampening weak synaptic inputs to allow transition to sleep in the absence of such strong signals. These mechanisms are consistent with a role of orexin neurons not only as a key state stabilizer, but also as a homeostatic wake integrator in the sleep/wake switch. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Chantalle Briggs
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada; Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada
| | - Sherri C Bowes
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada; Department of Psychiatry, Faculty of Medicine, Dalhousie University, 5909 Veterans' Memorial Lane, Halifax, NS, B3H 2E2, Canada; Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
4
|
Reuveni I, Barkai E. Tune it in: mechanisms and computational significance of neuron-autonomous plasticity. J Neurophysiol 2018; 120:1781-1795. [DOI: 10.1152/jn.00102.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of a neural network is a result of synaptic signals that convey the communication between neurons and neuron-based intrinsic currents that determine the neuron’s input-output transfer function. Ample studies have demonstrated that cell-based excitability, and in particular intrinsic excitability, is modulated by learning and that these modifications play a key role in learning-related behavioral changes. The field of cell-based plasticity is largely growing, and it entails numerous experimental findings that demonstrate a large diversity of currents that are affected by learning. The diverse effect of learning on the neuron’s excitability emphasizes the need for a framework under which cell-based plasticity can be categorized to enable the assessment of the computational roles of the intrinsic modifications. We divide the domain of cell-based plasticity into three main categories, where the first category entails the currents that mediate the passive properties and single-spike generation, the second category entails the currents that mediate spike frequency adaptation, and the third category entails a novel learning-induced mechanism where all excitatory and inhibitory synapses double their strength. Curiously, this elementary division enables a natural categorization of the computational roles of these learning-induced plasticities. The computational roles are diverse and include modification of the neuronal mode of action, such as bursting, prolonged, and fast responsive; attention-like effect where the signal detection is improved; transfer of the network into an active state; biasing the competition for memory allocation; and transforming an environmental cue into a dominant cue and enabling a quicker formation of new memories.
Collapse
Affiliation(s)
- Iris Reuveni
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Edi Barkai
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
5
|
Is more always better? How different 'doses' of exercise after incomplete spinal cord injury affects the membrane properties of deep dorsal horn interneurons. Exp Neurol 2017; 300:201-211. [PMID: 29146456 DOI: 10.1016/j.expneurol.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/22/2017] [Accepted: 11/12/2017] [Indexed: 01/12/2023]
Abstract
Interneurons in the deep dorsal horn (DDH) of the spinal cord process somatosensory input, and form an important link between upper and lower motoneurons to subsequently shape motor output. Exercise training after SCI is known to improve functional motor recovery, but little is known about the mechanisms within spinal cord neurons that underlie these improvements. Here we investigate how the properties of DDH interneurons are affected by spinal cord injury (SCI) alone, and SCI in combination with different 'doses' of treadmill exercise training (3, 6, and 9wks). In an adult mouse hemisection model of SCI we used whole-cell patch-clamp electrophysiology to record intrinsic, AP firing and gain modulation properties from DDH interneurons in a horizontal spinal cord slice preparation. We find that neurons within two segments of the injury, both ipsi- and contralateral to the hemisection, are similarly affected by SCI and SCI plus exercise. The passive intrinsic membrane properties input resistance (Rin) and rheobase are sensitive to the effects of recovery time and exercise training after SCI thus altering DDH interneuron excitability. Conversely, select active membrane properties are largely unaffected by either SCI or exercise training. SCI itself causes a mismatch in the expression of voltage-gated subthreshold currents and AP discharge firing type. Over time after SCI, and especially with exercise training (9wks), this mismatched expression is exacerbated. Lastly, amplification properties (i.e. gain of frequency-current relationship) of DDH interneurons are altered by SCI alone and recover spontaneously with no clear effect of exercise training. These results suggest a larger 'dose' of exercise training (9wks) has a strong and selective effect on specific membrane properties, and on the output of interneurons in the vicinity of a SCI. These electrophysiological data provide new insights into the plasticity of DDH interneurons and the mechanisms by which exercise therapy after SCI can improve recovery.
Collapse
|
6
|
Melonakos ED, White JA, Fernandez FR. Gain Modulation of Cholinergic Neurons in the Medial Septum-Diagonal Band of Broca Through Hyperpolarization. Hippocampus 2016; 26:1525-1541. [PMID: 27588894 DOI: 10.1002/hipo.22653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/19/2023]
Abstract
Hippocampal network oscillations are important for learning and memory. Theta rhythms are involved in attention, navigation, and memory encoding, whereas sharp wave-ripple complexes are involved in memory consolidation. Cholinergic neurons in the medial septum-diagonal band of Broca (MS-DB) influence both types of hippocampal oscillations, promoting theta rhythms and suppressing sharp wave-ripples. They also receive frequency-dependent hyperpolarizing feedback from hippocamposeptal connections, potentially affecting their role as neuromodulators in the septohippocampal circuit. However, little is known about how the integration properties of cholinergic MS-DB neurons change with hyperpolarization. By potentially altering firing behavior in cholinergic neurons, hyperpolarizing feedback from the hippocampal neurons may, in turn, change hippocampal network activity. To study changes in membrane integration properties in cholinergic neurons in response to hyperpolarizing inputs, we used whole-cell patch-clamp recordings targeting genetically labeled, choline acetyltransferase-positive neurons in mouse brain slices. Hyperpolarization of cholinergic MS-DB neurons resulted in a long-lasting decrease in spike firing rate and input-output gain. Additionally, voltage-clamp measures implicated a slowly inactivating, 4-AP-insensitive, outward K+ conductance. Using a conductance-based model of cholinergic MS-DB neurons, we show that the ability of this conductance to modulate firing rate and gain depends on the expression of an experimentally verified shallow intrinsic spike frequency-voltage relationship. Together, these findings point to a means through which negative feedback from hippocampal neurons can influence the role of cholinergic MS-DB neurons. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eric D Melonakos
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - John A White
- Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Fernando R Fernandez
- Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
7
|
Carrascal L, Nieto-González J, Pardillo-Díaz R, Pásaro R, Barrionuevo G, Torres B, Cameron WE, Núñez-Abades P. Time windows for postnatal changes in morphology and membrane excitability of genioglossal and oculomotor motoneurons. World J Neurol 2015; 5:113-131. [DOI: 10.5316/wjn.v5.i4.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/07/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Time windows for postnatal changes in morphology and membrane excitability of genioglossal (GG) and oculomotor (OCM) motoneurons (MNs) are yet to be fully described. Analysis of data on brain slices in vitro of the 2 populations of MNs point to a well-defined developmental program that progresses with common age-related changes characterized by: (1) increase of dendritic surface along with length and reshaping of dendritic tree complexity; (2) disappearance of gap junctions early in development; (3) decrease of membrane passive properties, such as input resistance and time constant, together with an increase in the number of cells displaying sag, and modifications in rheobase; (4) action potential shortening and afterhyperpolarization; and (5) an increase in gain and maximum firing frequency. These modifications take place at different time windows for each motoneuronal population. In GG MNs, active membrane properties change mainly during the first postnatal week, passive membrane properties in the second week, and dendritic increasing length and size in the third week of development. In OCM MNs, changes in passive membrane properties and growth of dendritic size take place during the first postnatal week, while active membrane properties and rheobase change during the second and third weeks of development. The sequential order of changes is inverted between active and passive membrane properties, and growth in size does not temporally coincide for both motoneuron populations. These findings are discussed on the basis of environmental cues related to maturation of the respiratory and OCM systems.
Collapse
|