1
|
Liu X, Wang B, Tang S, Yue Y, Xi W, Tan X, Li G, Bai J, Huang L. Modification, biological activity, applications, and future trends of citrus fiber as a functional component: A comprehensive review. Int J Biol Macromol 2024; 269:131798. [PMID: 38677689 DOI: 10.1016/j.ijbiomac.2024.131798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Citrus fiber, a by-product of citrus processing that has significant nutritional and bioactive properties, has gained attention as a promising raw material with extensive developmental potential in the food, pharmaceutical, and feed industries. However, the lack of in-depth understanding regarding citrus fiber, including its structure, modification, mechanism of action, and potential applications is holding back its development and utilization in functional foods and drugs. This review explores the status of extraction methods and modifications applied to citrus fiber to augment its health benefits. With the aim of introducing readers to the potential health benefits of citrus fibers, we have placed special emphasis on their regulatory mechanisms in the context of various conditions, including type 2 diabetes mellitus, cardiovascular disease, obesity, and cancer. Furthermore, this review highlights the applications and prospects of citrus fiber, aiming to provide a theoretical basis for the utilization and exploration of this valuable resource.
Collapse
Affiliation(s)
- Xin Liu
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD., Jinan 250000, China
| | - Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Yuanyuan Yue
- Citrus Research Institute, Southwest University, Chongqing 400700, China; School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Wenxia Xi
- Citrus Research Institute, Southwest University, Chongqing 400700, China; School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Guijie Li
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China.
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China.
| |
Collapse
|
2
|
Riyamol, Gada Chengaiyan J, Rana SS, Ahmad F, Haque S, Capanoglu E. Recent Advances in the Extraction of Pectin from Various Sources and Industrial Applications. ACS OMEGA 2023; 8:46309-46324. [PMID: 38107881 PMCID: PMC10723649 DOI: 10.1021/acsomega.3c04010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 12/19/2023]
Abstract
Pectin is a structural polysaccharide present in plants that primarily consists of galacturonic acid units. This Review discusses the chemistry of pectin, including its composition and molecular weight. Pectin is conventionally extracted from agricultural waste (fruit and vegetable peels) using an acidic or basic aqueous medium at high temperatures. These processes are time- and energy-consuming and also result in severe environmental problems due to the production of acidic effluents and equipment corrosion. As pectin usage is increasing in food industries for developing different products and it is also used as an excipient in pharmaceutical products, better extraction procedures are required to maximize the yield and purity. The Review encompasses various alternate green approaches for the extraction of pectin, including traditional acid extraction and various emerging technologies such as deep eutectic solvent-based extraction, enzyme-assisted extraction, subcritical fluid extraction, ultrasound-assisted extraction, and microwave-based extraction, and evaluates the yield and physicochemical characteristics of the extracted pectin. This work aims to provide a platform for attracting more thorough research focused on the engineering of novel and more efficient green methods for the extraction of pectin and its utilization for various biotechnological purposes.
Collapse
Affiliation(s)
- Riyamol
- Department
of Biosciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Jeevitha Gada Chengaiyan
- Department
of Biosciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sandeep Singh Rana
- Department
of Biosciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Faraz Ahmad
- Department
of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014India
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jizan 45142, Saudi Arabia
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Gilbert
and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
3
|
Sultana N. Biological Properties and Biomedical Applications of Pectin and Pectin-Based Composites: A Review. Molecules 2023; 28:7974. [PMID: 38138464 PMCID: PMC10745545 DOI: 10.3390/molecules28247974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Pectin has recently drawn much attention in biomedical applications due to its distinctive chemical and biological properties. Polymers like pectin with cell-instructive properties are attractive natural biomaterials for tissue repair and regeneration. In addition, bioactive pectin and pectin-based composites exhibit improved characteristics to deliver active molecules. Pectin and pectin-based composites serve as interactive matrices or scaffolds by stimulating cell adhesion and cell proliferation and enhancing tissue remodeling by forming an extracellular matrix in vivo. Several bioactive properties, such as immunoregulatory, antibacterial, anti-inflammatory, anti-tumor, and antioxidant activities, contribute to the pectin's and pectin-based composite's enhanced applications in tissue engineering and drug delivery systems. Tissue engineering scaffolds containing pectin and pectin-based conjugates or composites demonstrate essential features such as nontoxicity, tunable mechanical properties, biodegradability, and suitable surface properties. The design and fabrication of pectic composites are versatile for tissue engineering and drug delivery applications. This article reviews the promising characteristics of pectin or pectic polysaccharides and pectin-based composites and highlights their potential biomedical applications, focusing on drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Naznin Sultana
- Texas Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
4
|
Picot-Allain MCN, Neergheen VS. Pectin a multifaceted biopolymer in the management of cancer: A review. Heliyon 2023; 9:e22236. [PMID: 38058641 PMCID: PMC10696011 DOI: 10.1016/j.heliyon.2023.e22236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
This review article focuses on the multifaceted roles of pectin in cancer management, namely as an oncotherapeutic delivery vehicle and a pharmacological agent. Over the past decades, the potential of pectin as a novel therapeutical agent for the prevention and/or management of cancer has gained increasing interest. Pectin has been found to modulate different mechanisms involved in the onset and progression of carcinogenesis, such as galectin-3 inhibition, caspase-3-induced apoptosis, and autophagy. Elucidating the structure-activity relationship provides insight into the relationship between the structure of pectin and different mechanism/s. The bioactivity of pectin, with respect to its structure, was critically discussed to give a better insight of the relationship between the structure of the extracted pectin and the observed bioactive effects. The rhamnogalacturonan I part of the pectin chain was found to bind to galectin-3, associated with several cancer hallmarks. The anti-inflammatory and antioxidant potential of pectin were also described. The roles of pectin as a treatment enhancer and a drug delivery vehicle for oncotherapeutics were critically defined. The scientific findings presented in this paper are expected to highlight the potential and role of pectin recovered from various plant sources in preventing and managing cancer.
Collapse
Affiliation(s)
- Marie Carene Nancy Picot-Allain
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius
- Future Africa, University of Pretoria, South Africa
| | - Vidushi Shradha Neergheen
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
5
|
Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 2023; 22:295-316. [PMID: 36759557 DOI: 10.1038/s41573-023-00636-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
Galectins are a family of endogenous glycan-binding proteins that have crucial roles in a broad range of physiological and pathological processes. As a group, these proteins use both extracellular and intracellular mechanisms as well as glycan-dependent and independent pathways to reprogramme the fate and function of numerous cell types. Given their multifunctional roles in both tissue fibrosis and cancer, galectins have been identified as potential therapeutic targets for these disorders. Here, we focus on the therapeutic relevance of galectins, particularly galectin 1 (GAL1), GAL3 and GAL9 to tumour progression and fibrotic diseases. We consider an array of galectin-targeted strategies, including small-molecule carbohydrate inhibitors, natural polysaccharides and their derivatives, peptides, peptidomimetics and biological agents (notably, neutralizing monoclonal antibodies and truncated galectins) and discuss their mechanisms of action, selectivity and therapeutic potential in preclinical models of fibrosis and cancer. We also review the results of clinical trials that aim to evaluate the efficacy of galectin inhibitors in patients with idiopathic pulmonary fibrosis, nonalcoholic steatohepatitis and cancer. The rapid pace of glycobiology research, combined with the acute need for drugs to alleviate fibrotic inflammation and overcome resistance to anticancer therapies, will accelerate the translation of anti-galectin therapeutics into clinical practice.
Collapse
|
6
|
Emran TB, Islam F, Mitra S, Paul S, Nath N, Khan Z, Das R, Chandran D, Sharma R, Lima CMG, Awadh AAA, Almazni IA, Alhasaniah AH, Guiné RPF. Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential. Molecules 2022; 27:7405. [PMID: 36364232 PMCID: PMC9657392 DOI: 10.3390/molecules27217405] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Pectin is an acidic heteropolysaccharide found in the cell walls and the primary and middle lamella of land plants. To be authorized as a food additive, industrial pectins must meet strict guidelines set forth by the Food and Agricultural Organization and must contain at least 65% polygalacturonic acid to achieve the E440 level. Fruit pectin derived from oranges or apples is commonly used in the food industry to gel or thicken foods and to stabilize acid-based milk beverages. It is a naturally occurring component and can be ingested by dietary consumption of fruit and vegetables. Preventing long-term chronic diseases like diabetes and heart disease is an important role of dietary carbohydrates. Colon and breast cancer are among the diseases for which data suggest that modified pectin (MP), specifically modified citrus pectin (MCP), has beneficial effects on the development and spread of malignancies, in addition to its benefits as a soluble dietary fiber. Cellular and animal studies and human clinical trials have provided corroborating data. Although pectin has many diverse functional qualities, this review focuses on various modifications used to develop MP and its benefits for cancer prevention, bioavailability, clinical trials, and toxicity studies. This review concludes that pectin has anti-cancer characteristics that have been found to inhibit tumor development and proliferation in a wide variety of cancer cells. Nevertheless, further clinical and basic research is required to confirm the chemopreventive or therapeutic role of specific dietary carbohydrate molecules.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, Tamil Nadu, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | | | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ibrahim Abdullah Almazni
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Department of Food Industry, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
7
|
Pedrosa LDF, Raz A, Fabi JP. The Complex Biological Effects of Pectin: Galectin-3 Targeting as Potential Human Health Improvement? Biomolecules 2022; 12:289. [PMID: 35204790 PMCID: PMC8961642 DOI: 10.3390/biom12020289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 is the only chimeric representative of the galectin family. Although galectin-3 has ubiquitous regulatory and physiological effects, there is a great number of pathological environments where galectin-3 cooperatively participates. Pectin is composed of different chemical structures, such as homogalacturonans, rhamnogalacturonans, and side chains. The study of pectin's major structural aspects is fundamental to predicting the impact of pectin on human health, especially regarding distinct molecular modulation. One of the explored pectin's biological activities is the possible galectin-3 protein regulation. The present review focuses on revealing the structure/function relationship of pectins, their fragments, and their biological effects. The discussion highlighted by this review shows different effects described within in vitro and in vivo experimental models, with interesting and sometimes contradictory results, especially regarding galectin-3 interaction. The review demonstrates that pectins are promissory food-derived molecules for different bioactive functions. However, galectin-3 inhibition by pectin had been stated in literature before, although it is not a fully understood, experimentally convincing, and commonly agreed issue. It is demonstrated that more studies focusing on structural analysis and its relation to the observed beneficial effects, as well as substantial propositions of cause and effect alongside robust data, are needed for different pectin molecules' interactions with galectin-3.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
| | - Avraham Raz
- Department of Oncology and Pathology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508080, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508080, SP, Brazil
| |
Collapse
|
8
|
Ornelas AC, Ferguson S, DePlaza M, Adekunle T, Basha R. Anti-Cancer Pectins and Their Role in Colorectal Cancer Treatment. ONCO THERAPEUTICS 2022; 9:43-55. [PMID: 37309487 PMCID: PMC10259824 DOI: 10.1615/oncotherap.v9.i2.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A class of plant polysaccharides, pectin is known to display several medicinal properties including in cancer. There is some evidence that pectin from some fruits can reduce the severity of colorectal cancer (CRC) due to its antiproliferative, anti-inflammatory, antimetastatic and pro-apoptotic properties. Pectin fermentation in the colon induces antiproliferative activity via butyrate. Research also showed that pectin acts as a potent inducer of programmed cell death and cell-cycle arrest, thereby selectively targeting cancer cells. Pectin can limit oxidative stress to maintain cellular homeostasis while increasing reactive oxygen species damage to activate cancer cell death. Pectin regulates various signaling cascades, e.g., signal transduction and transcriptional activator and mitogen-activated protein kinase signaling, that contribute to its anticancer activity. By curbing inflammation-activated signaling and bolstering immune-protective mechanisms pectin can eradicate CRC. Due to its chemical structure, pectin can also inhibit galectin-3 and suppress tumor growth and metastasis. Prior reports also suggested that pectin is beneficial to use alongside the CRC standard care. Pectin can increase sensitivity to conventional CRC drugs, alleviate unwanted side effects and reduce drug resistance. Although some preclinical studies are promising, early clinical trials are showing some evidence for pectin's efficacy in tumor growth inhibition and preventing metastasis in some cancers; however, the clinical use of pectin in CRC therapy is not yet well established. Further studies are needed to confirm the efficacy of pectin treatment as a valid clinical therapy for CRC in humans.
Collapse
Affiliation(s)
| | - Sam Ferguson
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Maya DePlaza
- Texas College of Osteopathic Medicine, The University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | - Tkai Adekunle
- Department of Biology, Savannah State University, Savannah, GA 31404, USA
| | - Riyaz Basha
- Department of Pediatrics and Women’s Health, Texas College of Osteopathic Medicine, The University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| |
Collapse
|
9
|
Zheng B, Zhou X, Hu X, Chen Y, Xie J, Yu Q. Advances in the regulation of natural polysaccharides on human health: The role of apoptosis/autophagy pathway. Crit Rev Food Sci Nutr 2021:1-12. [PMID: 34711083 DOI: 10.1080/10408398.2021.1995844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Due to the multiple biological activities of polysaccharides, their great potential as "natural drugs" for many diseases has been the subject of continuous exploration in the field of food and nutrition. Apoptosis and autophagy play a key role in mammalian growth, development and maintenance of cellular homeostasis. Recent studies suggest that apoptosis/autophagy may be the key regulatory target for the beneficial effects of polysaccharides. However, the regulation of apoptosis and autophagy by polysaccharides is not consistent in different disease models. Therefore, this review outlined the relationship between apoptosis/autophagy and some common human diseases, then discussed the role of apoptosis/autophagy pathway in the regulation of human health by polysaccharides, Furthermore, the application of visualization, imaging and multi-omics techniques was proposed in the future trend. The present review may be beneficial to accelerate our understanding of the anti-disease mechanisms of polysaccharides, and promote the development and utilization of polysaccharides.
Collapse
Affiliation(s)
- Bing Zheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Zhang S, Waterhouse GIN, Xu F, He Z, Du Y, Lian Y, Wu P, Sun-Waterhouse D. Recent advances in utilization of pectins in biomedical applications: a review focusing on molecular structure-directing health-promoting properties. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34637646 DOI: 10.1080/10408398.2021.1988897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The numerous health benefits of pectins justify their inclusion in human diets and biomedical products. This review provides an overview of pectin extraction and modification methods, their physico-chemical characteristics, health-promoting properties, and pharmaceutical/biomedical applications. Pectins, as readily available and versatile biomolecules, can be tailored to possess specific functionalities for food, pharmaceutical and biomedical applications, through judicious selection of appropriate extraction and modification technologies/processes based on green chemistry principles. Pectin's structural and physicochemical characteristics dictate their effects on digestion and bioavailability of nutrients, as well as health-promoting properties including anticancer, immunomodulatory, anti-inflammatory, intestinal microflora-regulating, immune barrier-strengthening, hypercholesterolemia-/arteriosclerosis-preventing, anti-diabetic, anti-obesity, antitussive, analgesic, anticoagulant, and wound healing effects. HG, RG-I, RG-II, molecular weight, side chain pattern, and degrees of methylation, acetylation, amidation and branching are critical structural elements responsible for optimizing these health benefits. The physicochemical characteristics, health functionalities, biocompatibility and biodegradability of pectins enable the construction of pectin-based composites with distinct properties for targeted applications in bioactive/drug delivery, edible films/coatings, nano-/micro-encapsulation, wound dressings and biological tissue engineering. Achieving beneficial synergies among the green extraction and modification processes during pectin production, and between pectin and other composite components in biomedical products, should be key foci for future research.
Collapse
Affiliation(s)
- Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | | | - Fangzhou Xu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Ziyang He
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yuyi Du
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yujing Lian
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Chen L, Hao M, Yan J, Sun L, Tai G, Cheng H, Zhou Y. Citrus-derived DHCP inhibits mitochondrial complex II to enhance TRAIL sensitivity via ROS-induced DR5 upregulation. J Biol Chem 2021; 296:100515. [PMID: 33676890 PMCID: PMC8050394 DOI: 10.1016/j.jbc.2021.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 10/29/2022] Open
Abstract
Heat-modified citrus pectin, a water-soluble indigestible polysaccharide fiber derived from citrus fruits and modified by temperature treatment, has been reported to exhibit anticancer effects. However, the bioactive fractions and their mechanisms remain unclear. In this current study, we isolated an active compound, trans-4,5-dihydroxy-2-cyclopentene-l-one (DHCP), from heat-treated citrus pectin, and found that is induces cell death in colon cancer cells via induction of mitochondrial ROS. On the molecular level, DHCP triggers ROS production by inhibiting the activity of succinate ubiquinone reductase (SQR) in mitochondrial complex II. Furthermore, cytotoxicity, apoptotic activity, and activation of caspase cascades were determined in HCT116 and HT-29 cell-based systems, the results indicated that DHCP enhances the sensitivity of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), with DHCP-induced ROS accounting for the synergistic effect between DHCP and TRAIL. Furthermore, the combination of DHCP and TRAIL inhibits the growth of HCT116 and HT-29 xenografts synergistically. ROS significantly increases the expression of TRAIL death receptor 5 (DR5) via the p53 and C/EBP homologous protein pathways. Collectively, our findings indicate that DHCP has a favorable toxicity profile and is a new TRAIL sensitizer that shows promise in the development of pectin-based pharmaceuticals, nutraceuticals, and dietary agents aimed at combating human colon cancer.
Collapse
Affiliation(s)
- Lei Chen
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Miao Hao
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Jingmin Yan
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Lin Sun
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Hairong Cheng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| |
Collapse
|
12
|
Structural features and anti-inflammatory properties of pectic polysaccharides: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Kaur M, Wadhwa A, Kumar V. Pectin-Based Nanomaterials: Synthesis, Toxicity and Applications. ASIAN JOURNAL OF CHEMISTRY 2021; 33:2579-2588. [DOI: 10.14233/ajchem.2021.23382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Nanomaterials of biological origin are very useful for drug delivery applications. The stability,
biodegradability and biocompatibility of pectin nanomaterials in the human body make them an effective
drug carrier. This review focus on different aspect of synthesis, drug encapsulation, drug release and
safety of pectin-based nanomaterials. The nanomaterials can be used for the delivery of different
hydrophilic and hydrophobic drugs to various organs. The release kinetics of drug loaded pectin-based
nanoparticles can be studied in vitro as well as in vivo. The pectin-based nanomaterials have good
pharmaco-kinetics and can ensure controlled drug delivery. However, the toxicity of pectin-based
nanomaterials to human body needs to be evaluated carefully before industrial scale application.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144111, India
| | - Aditya Wadhwa
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144111, India
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144111, India
| |
Collapse
|
14
|
Characterization, biological evaluation and molecular docking of mulberry fruit pectin. Sci Rep 2020; 10:21789. [PMID: 33311512 PMCID: PMC7732840 DOI: 10.1038/s41598-020-78086-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022] Open
Abstract
Contemplating the exemplary benefits of pectin on human health, we precisely characterized and evaluated the antibacterial and anticancer activities from purified Mulberry Fruit Pectins (MFP). Here, we tested BR-2 and S-13 varieties of mulberry fruit pectins against six bacterial strains and two human cancer cell lines (HT-29 and Hep G-2), using MIC and an in vitro cell-based assay respectively. The BR-2 mulberry fruit pectin performs superior to S-13 by inhibiting strong bacterial growth (MIC = 500–1000 μg/mL) against tested bacterial strains and cytotoxic activities at the lowest concentration (10 µg/ml) against the Hep G-2 cell line. However, both tested drugs failed to exhibit cytotoxicity on the human colon cancer cell line (HT-29). Based on molecular interaction through docking, pectin binds effectively with the receptors (1e3g, 3t0c, 5czz, 6j7l, 6v40, 5ibs, 5zsy, and 6ggb) and proven to be a promising antimicrobial and anti-cancer agents. The pursuit of unexploited drugs from mulberry fruit pectin will potentially combat against bacterial and cancer diseases. Finally, future perspectives of MFP for the treatment of many chronic diseases will help immensely due to their therapeutic properties.
Collapse
|
15
|
Tan S, Dai L, Tan P, Liu W, Mu Y, Wang J, Huang X, Hou A. Hesperidin administration suppresses the proliferation of lung cancer cells by promoting apoptosis via targeting the miR‑132/ZEB2 signalling pathway. Int J Mol Med 2020; 46:2069-2077. [PMID: 33125117 PMCID: PMC7595658 DOI: 10.3892/ijmm.2020.4756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/10/2020] [Indexed: 01/10/2023] Open
Abstract
This aim of the present study was to identify the relationship between hesperidin and microRNA (miR)-132, and to study the role of hesperidin and miR-132 in the pathogenesis of non-small cell lung cancer (NSCLC). Computational analysis and luciferase assays were performed to identify the target of miR-132. Subsequently, reverse transcription-quantitative PCR and western blot assays were used to detect the effect of miR-132 and hesperidin on the expression of haematological and neurological expressed 1 (HN1) and zinc finger E-box binding homeobox 2 (ZEB2). Finally, MTT assays and flow cytometry analysis were used to investigate the effect of hesperidin on cell proliferation and apoptosis. ZEB2 was identified as a target gene of miR-132, and transfection with miR-132 mimic reduced the luciferase activity of the wild-type ZEB2 3′-untranslated region (3′-UTR) but not that of the mutant ZEB2 3′-UTR. By contrast, neither transfection with miR-132 mimic nor hesperidin treatment affected HN1 expression. Furthermore, hesperidin evidently inhibited cell proliferation and promoted apoptosis in a dose-dependent manner. Furthermore, the tumour volume in rats transplanted with NSCLC cells and treated with hesperidin was notably smaller compared with that in rats transplanted with NSCLC cells alone, while treatment with hesperidin significantly reduced the colony formation efficiency of NSCLC cells by increasing miR-132 expression and decreasing ZEB2 expression. To the best of our knowledge, the present study demonstrated for the first time that the administration of hesperidin decreased the expression of ZEB2 by upregulating the expression of miR-132, which in turn promoted apoptosis and inhibited the proliferation of NSCLC cells.
Collapse
Affiliation(s)
- Song Tan
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Lingling Dai
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Pengcheng Tan
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Wei Liu
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Yuejun Mu
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Jinguo Wang
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Xiaoming Huang
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Aihua Hou
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
16
|
Wang C, Chang CC, Wang L, Yuan F. Inhibition of Caspases Improves Non-Viral T Cell Receptor Editing. Cancers (Basel) 2020; 12:E2603. [PMID: 32933048 PMCID: PMC7565551 DOI: 10.3390/cancers12092603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
T cell receptor (TCR) knockout is a critical step in producing universal chimeric antigen receptor T cells for cancer immunotherapy. A promising approach to achieving the knockout is to deliver the CRISPR/Cas9 system into cells using electrotransfer technology. However, clinical applications of the technology are currently limited by the low cell viability. In this study, we attempt to solve the problem by screening small molecule drugs with an immortalized human T cell line, Jurkat clone E6-1, for inhibition of apoptosis. The study identifies a few caspase inhibitors that could be used to simultaneously enhance the cell viability and the efficiency of plasmid DNA electrotransfer. Additionally, we show that the enhancement could be achieved through knockdown of caspase 3 expression in siRNA treated cells, suggesting that the cell death in electrotransfer experiments was caused mainly by caspase 3-dependent apoptosis. Finally, we investigated if the caspase inhibitors could improve TCR gene-editing with electrotransferred ribonucleoprotein, a complex of Cas9 protein and a T cell receptor-α constant (TRAC)-targeting single guide RNA (sgRNA). Our data showed that inhibition of caspases post electrotransfer could significantly increase cell viability without compromising the TCR disruption efficiency. These new findings can be used to improve non-viral T cell engineering.
Collapse
Affiliation(s)
| | | | | | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (C.W.); (C.-C.C.); or (L.W.)
| |
Collapse
|
17
|
Chauhan SS, Shetty AB, Hatami E, Chowdhury P, Yallapu MM. Pectin-Tannic Acid Nano-Complexes Promote the Delivery and Bioactivity of Drugs in Pancreatic Cancer Cells. Pharmaceutics 2020; 12:E285. [PMID: 32235765 PMCID: PMC7151099 DOI: 10.3390/pharmaceutics12030285] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer (PanCa) is a lethal disease. Conventional chemotherapies for PanCa offer severe systemic toxicities. Thus, the development of a successful nanomedicine-based therapeutic regimen with augmented therapeutic efficacy is highly sought. Naturally occurring pectin and modified pectin-based drug delivery systems exhibit remarkable self-targeting ability via galactose residues to various cancer cells. Herein, we developed and used an innovative approach of highly stable nanocomplexes based on modified pectin and tannic acid (MPT-NCs). The nanocomplex formation was enabled by strong intermolecular interactions between pectin and tannic acid under very mild conditions. These nanocomplexes were characterized by particle size and morphology (DLS, TEM, and SEM), FT-IR spectroscopy, and zeta potential measurements. Additionally, MPT-NCs were capable of encapsulating anticancer drugs (5-fluorouracil, gemcitabine, and irinotecan) through tannic acid binding. The in vitro bioactivity of these drug MPT-NCs were evaluated in pancreatic cancer adenocarcinoma (PDAC) cell lines (HPAF-II and PANC-1). A dose-dependent internalization of nanocomplexes was evident from microscopy and flow cytometry analysis. Both proliferation and colony formation assays indicated the anticancer potential of pectin drug nanocomplexes against PDAC cells compared to that of free drug treatments. Together, the pectin-based nanocomplexes could be a reliable and efficient drug delivery strategy for cancer therapy.
Collapse
Affiliation(s)
- Sumeet S Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Advait B Shetty
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
18
|
Eliaz I, Raz A. Pleiotropic Effects of Modified Citrus Pectin. Nutrients 2019; 11:nu11112619. [PMID: 31683865 PMCID: PMC6893732 DOI: 10.3390/nu11112619] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Modified citrus pectin (MCP) has a low-molecular-weight degree of esterification to allow absorption from the small intestinal epithelium into the circulation. MCP produces pleiotropic effects, including but not limited to its antagonism of galectin-3, which have shown benefit in preclinical and clinical models. Regarding cancer, MCP modulates several rate-limiting steps of the metastatic cascade. MCP can also affect cancer cell resistance to chemotherapy. Regarding fibrotic diseases, MCP modulates many of the steps involved in the pathogenesis of aortic stenosis. MCP also reduces fibrosis to the kidney, liver, and adipose tissue. Other benefits of MCP include detoxification and improved immune function. This review summarizes the pleiotropic effects of MCP.
Collapse
Affiliation(s)
- Isaac Eliaz
- Amitabha Medical Clinic and Healing Center, 398 Tesconi Ct, Santa Rosa, CA 95401, USA.
| | - Avraham Raz
- Departments of Oncology and Pathology, School of Medicine, Wayne State University and Barbara Ann Karmanos Cancer Institute, 4100 John R St, Detroit, MI 48201, USA.
| |
Collapse
|
19
|
The Cell Culture Medium Affects Growth, Phenotype Expression and the Response to Selenium Cytotoxicity in A549 and HepG2 Cells. Antioxidants (Basel) 2019; 8:antiox8050130. [PMID: 31091728 PMCID: PMC6563005 DOI: 10.3390/antiox8050130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Selenium compounds influence cell growth and are highly interesting candidate compounds for cancer chemotherapy. Over decades an extensive number of publications have reported highly efficient growth inhibitory effects with a number of suggested mechanisms f especially for redox-active selenium compounds. However, the studies are difficult to compare due to a high degree of variations in half-maximal inhibitor concentration (IC50) dependent on cultivation conditions and methods to assess cell viability. Among other factors, the variability in culture conditions may affect the experimental outcome. To address this, we have compared the maintenance effects of four commonly used cell culture media on two cell lines, A549 and HepG2, evaluated by the toxic response to selenite and seleno-methylselenocysteine, cell growth and redox homeostasis. We found that the composition of the cell culture media greatly affected cell growth and sensitivity to selenium cytotoxicity. We also provided evidence for change of phenotype in A549 cells when maintained under different culture conditions, demonstrated by changes in cytokeratin 18 (CK18) and vimentin expression. In conclusion, our results have shown the importance of defining the cell culture medium used when comparing results from different studies.
Collapse
|
20
|
The Role of Nonerythroid Spectrin αII in Cancer. JOURNAL OF ONCOLOGY 2019; 2019:7079604. [PMID: 31186638 PMCID: PMC6521328 DOI: 10.1155/2019/7079604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Nonerythroid spectrin αII (SPTAN1) is an important cytoskeletal protein that ensures vital cellular properties including polarity and cell stabilization. In addition, it is involved in cell adhesion, cell-cell contact, and apoptosis. The detection of altered expression of SPTAN1 in tumors indicates that SPTAN1 might be involved in the development and progression of cancer. SPTAN1 has been described in cancer and therapy response and proposed as a potential marker protein for neoplasia, tumor aggressiveness, and therapeutic efficiency. On one hand, the existing data suggest that overexpression of SPTAN1 in tumor cells reflects neoplastic and tumor promoting activity. On the other hand, nuclear SPTAN1 can have tumor suppressing effects by enabling DNA repair through interaction with DNA repair proteins. Moreover, SPTAN1 cleavage products occur during apoptosis and could serve as markers for the efficacy of cancer therapy. Due to SPTAN1's multifaceted functions and its role in adhesion and migration, SPTAN1 can influence tumor growth and progression in both positive and negative directions depending on its specific regulation. This review summarizes the current knowledge on SPTAN1 in cancer and depicts several mechanisms by which SPTAN1 could impact tumor development and aggressiveness.
Collapse
|
21
|
do Prado SBR, Shiga TM, Harazono Y, Hogan VA, Raz A, Carpita NC, Fabi JP. Migration and proliferation of cancer cells in culture are differentially affected by molecular size of modified citrus pectin. Carbohydr Polym 2019; 211:141-151. [PMID: 30824074 PMCID: PMC6886127 DOI: 10.1016/j.carbpol.2019.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/17/2019] [Accepted: 02/02/2019] [Indexed: 12/21/2022]
Abstract
While chemically and thermally modified citrus pectin (MCP) has already been studied for health benefits, it is unknown how size-fractionated oligo- and polysaccharides differentially affect cancer cell behavior. We produced thermally MCP and fractionated it by molecular size to evaluate the effect these polymers have on cancer cells. MCP30/10 (between 30 and 10 kDa) had more esterified homogalacturonans (HG) and fewer rhamnogalacturonans (RG-I) than MCP and MCP30 (higher than 30 kDa), while MCP10/3 (between 10 and 3 kDa) showed higher amounts of type I arabinogalactans (AGI) and lower amounts of RG-I. MCP3 (smaller than 3 kDa) presented less esterified HG and the lowest amount of AGI and RG-I. Our data indicate that the enrichment of de-esterified HG oligomers and the AGI and RG-I depletions in MCP3, or the increase of AGI and loss of RGI in MCP30/10, enhance the anticancer behaviors by inhibiting migration, aggregation, and proliferation of cancer cells.
Collapse
Affiliation(s)
- Samira Bernardino Ramos do Prado
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - Tânia Misuzu Shiga
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - Yosuke Harazono
- Departments of Oncology and Pathology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI, USA; Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.
| | - Victor A Hogan
- Departments of Oncology and Pathology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI, USA.
| | - Avraham Raz
- Departments of Oncology and Pathology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI, USA.
| | - Nicholas C Carpita
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN, USA.
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Chelate-soluble pectin fraction from papaya pulp interacts with galectin-3 and inhibits colon cancer cell proliferation. Int J Biol Macromol 2019; 126:170-178. [DOI: 10.1016/j.ijbiomac.2018.12.191] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022]
|
23
|
Bermúdez-Oria A, Rodríguez-Gutiérrez G, Alaiz M, Vioque J, Girón-Calle J, Fernández-Bolaños J. Pectin-rich extracts from olives inhibit proliferation of Caco-2 and THP-1 cells. Food Funct 2019; 10:4844-4853. [DOI: 10.1039/c9fo00917e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pectin-rich olive extracts from a by-product of olive oil production inhibits proliferation of Caco-2 and THP-1 cells, and hemagglutination by galectin-3. Activation of caspase-3 indicates induction of apoptosis.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry
- Instituto de la Grasa (Spanish National Research Council
- CSIC)
- Spain
| | | | - Manuel Alaiz
- Department of Food Phytochemistry
- Instituto de la Grasa (Spanish National Research Council
- CSIC)
- Spain
| | - Javier Vioque
- Department of Food Phytochemistry
- Instituto de la Grasa (Spanish National Research Council
- CSIC)
- Spain
| | - Julio Girón-Calle
- Department of Food Phytochemistry
- Instituto de la Grasa (Spanish National Research Council
- CSIC)
- Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry
- Instituto de la Grasa (Spanish National Research Council
- CSIC)
- Spain
| |
Collapse
|
24
|
Minzanova ST, Mironov VF, Arkhipova DM, Khabibullina AV, Mironova LG, Zakirova YM, Milyukov VA. Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. Polymers (Basel) 2018; 10:E1407. [PMID: 30961332 PMCID: PMC6401843 DOI: 10.3390/polym10121407] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 01/07/2023] Open
Abstract
Pectin is a polymer with a core of alternating α-1,4-linked d-galacturonic acid and α-1,2-l-rhamnose units, as well as a variety of neutral sugars such as arabinose, galactose, and lesser amounts of other sugars. Currently, native pectins have been compared to modified ones due to the development of natural medicines and health products. In this review, the results of a study of the bioactivity of pectic polysaccharides, including its various pharmacological applications, such as its immunoregulatory, anti-inflammatory, hypoglycemic, antibacterial, antioxidant and antitumor activities, have been summarized. The potential of pectins to contribute to the enhancement of drug delivery systems has been observed.
Collapse
Affiliation(s)
- Salima T Minzanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Daria M Arkhipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Anna V Khabibullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Lubov G Mironova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Yulia M Zakirova
- Kazan (Volga region) Federal University, Kazan University, KFU, Kazan 420008, Russia.
| | - Vasili A Milyukov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| |
Collapse
|
25
|
Components of heat-treated Helianthus annuus L. pectin inhibit tumor growth and promote immunity in a mouse CT26 tumor model. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
26
|
Synergistic Antitumor Effect of Oligogalacturonides and Cisplatin on Human Lung Cancer A549 Cells. Int J Mol Sci 2018; 19:ijms19061769. [PMID: 29903991 PMCID: PMC6032352 DOI: 10.3390/ijms19061769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 11/21/2022] Open
Abstract
Cisplatin (DPP), a clinically potent antineoplastic agent, is limited by its severe adverse effects. The aim of this study was to investigate the effect of oligogalacturonides (OGA) and DDP on human lung cancer A549 cells. The combined use of OGA and DDP had a synergistic effect on the growth inhibition of A549 cells, changed the cell cycle distribution, and enhanced apoptotic response, especially in sequential combination treatment group of DDP 12 h + OGA 12 h. Western blot analyses showed that the combination treatment of OGA and DDP upregulated Bax, p53, and Caspase-3 and downregulated Bcl-2 proteins. More importantly, DDP-induced toxicity was attenuated by OGA and DDP combination treatment in normal HEK293 cells. Our data suggests that the combined use of OGA from natural sources and DDP could be an important new adjuvant therapy for lung cancer as well as offer important insights for reducing kidney toxicity of DDP and delaying the development of DDP resistance.
Collapse
|
27
|
Lee J, Mun S, Park A, Kim D, Heun Cha B, Kang HG. Bicalutamide enhances fodrin-mediated apoptosis through calpain in LNCaP. Exp Biol Med (Maywood) 2018; 243:843-851. [PMID: 29860890 DOI: 10.1177/1535370218779780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer is the most common cancer in men, and before it progresses and metastasizes, the anticancer drug bicalutamide is often administered to patients. Many cases of androgen-dependent prostate cancer develop resistance during treatment with bicalutamide. Therefore, the effect of bicalutamide on androgen-dependent LNCaP prostate cancer cells is of clinical interest. The aim of this study was to demonstrate the effects of the anticancer drug bicalutamide on LNCaP prostate cancer cells by using a proteomics approach. Based on the results, 314 proteins were differentially expressed between the LNCaP and LNCaP treated with bicalutamide. The apoptosis pathway associated with differentially expressed proteins was shown in the Kyoto Encyclopedia of Gene and Genome pathway mapper. The Kyoto Encyclopedia of Gene and Genome pathway mapper results revealed that the fodrin-mediated apoptosis pathway is associated with the actions of bicalutamide and Western blotting was performed to validate these results. Impact statement We studied bicalutamide's anticancer action by using proteomics. The effect of bicalutamide on androgen-exposed LNCaP cells was also studied. KEGG identified >1.8-fold differentially expressed proteins between test group cells. KEGG mapper showed fodrin-mediated apoptosis involvement in bicalutamide's action. The anticancer effects of bicalutamide, which was further confirmed using Western blotting. Therefore, this drug is a potential candidate for understanding bicalutamide's effect on LNCaP and fodrin can be used as a biomarker monitoring status in metastatic carcinoma.
Collapse
Affiliation(s)
- Jiyeong Lee
- 1 Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam 13135, Korea
| | - Sora Mun
- 2 Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Seongnam 13135, Korea
| | - Arum Park
- 2 Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Seongnam 13135, Korea
| | - Doojin Kim
- 1 Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam 13135, Korea
| | - Byung Heun Cha
- 1 Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam 13135, Korea
| | - Hee-Gyoo Kang
- 1 Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam 13135, Korea.,2 Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Seongnam 13135, Korea
| |
Collapse
|
28
|
Design of low molecular weight pectin and its nanoparticles through combination treatment of pectin by microwave and inorganic salts. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2017.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Wei C, He P, He L, Ye X, Cheng J, Wang Y, Li W, Liu Y. Structure characterization and biological activities of a pectic polysaccharide from cupule of Castanea henryi. Int J Biol Macromol 2017; 109:65-75. [PMID: 29248551 DOI: 10.1016/j.ijbiomac.2017.12.081] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
A pectic polysaccharide (CHIP3) was fractionated from the natural cupule of Castanea henryi. It contained mannose (10.70%), rhamnose (8.70%), galacturonic acid (38.21%), galactose (13.75%) and arabinose (28.63%) with a molecular weight of 2.44 × 104 g/mol by multi-laser light scattering. The structure was elucidated by using FT-IR spectroscopy, methylation analysis and NMR analysis. Results showed that the backbone of CHIP3 consisted of 1, 4-α-linked d-GalpA residues containing the non-methyl-esterified carboxyl groups, interspersed with a few 1,2-α-l-Rhap units. Its side chains were attached by two branches to O-4 of Rhap with 1,4-β-linked d-Galp units and 1,5-α-l-linked Araf units bearing 3,5-substituted α-l-linked Araf residues as branching points. AFM data revealed it existed as a flexible chain in 0.1 M NaNO3 aqueous solution. Furthermore, CHIP3 was demonstrated to have notable antioxidant activity of FRAP, ABTS+ radical scavenging and reducing power. Cytotoxicity assay showed it displayed inhibitory activity against HepG2 cells with IC50 values of 242.6 μg/mL.
Collapse
Affiliation(s)
- Chaoyang Wei
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Pengfei He
- Department of Processing, Marine Fisheries Research Institute of Zhejiang, Zhoushan 316021, China
| | - Liang He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Xingqian Ye
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Junwen Cheng
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Yanbin Wang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Weiqi Li
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Ogutu FO, Mu TH, Sun H, Zhang M. Ultrasonic Modified Sweet Potato Pectin Induces Apoptosis like Cell Death in Colon Cancer (HT-29) Cell Line. Nutr Cancer 2017; 70:136-145. [PMID: 29227691 DOI: 10.1080/01635581.2018.1406123] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pectin and especially modified citrus pectin possesses anticancer activity. Hence, the current study investigated anticancer activity of ultrasonic-modified sweet potato pectin (SPP) on HT-29 cells to assess its potential as a cancer therapeutic agent. METHOD The effect of ultrasonic treatment on SPP molecular weight, galacturonic acid content, degree of methoxylation, and neutral sugar was investigated. Moreover, the effect of sonicated variant on human HT-29 cell proliferation was assessed by MTT assay, cell cytotoxicity, and apoptosis by Annexin V/PI flow cytometer and caspase-3 activity was studied. RESULTS AND DISCUSSION Sonication led up to seven-fold decrease in molecular weight. The degree of methoxylation (DM) decreased more than two-fold. Moreover, the galacturonic acid (GalA) content increased up to 92%, arabinose and galactose content increased. The SSPP inhibited cell proliferation with the IC50 values 0.5 mg/ml and 0.75 mg/ml for 400 W and 200 W SSPP, respectively. Moreover, 14.41 ± 1.64% cell cytotoxicity was elicited by 400 W SSPP and 6.83 ± 0.80% by 200 W SSPP. Both SSPPs induced apoptosis with 400 W SSPP eliciting 19.42% and 42.21% apoptosis at 0.1 and 0.5 mg/ml, while 200 W SSPP induced 13.79% and 39.50% apoptosis at 0.1 and 0.5 mg/ml, respectively. SSPP activity increased with both increased concentration and sonication intensity.
Collapse
Affiliation(s)
- Fredrick Onyango Ogutu
- a Laboratory of Fruit and Vegetable Processing , Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture , Beijing , P.R. China.,b Food Technology Division , Kenya Industrial Research and Development Institute , Nairobi , Kenya
| | - Tai-Hua Mu
- a Laboratory of Fruit and Vegetable Processing , Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture , Beijing , P.R. China
| | - Hongnan Sun
- a Laboratory of Fruit and Vegetable Processing , Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture , Beijing , P.R. China
| | - Miao Zhang
- a Laboratory of Fruit and Vegetable Processing , Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture , Beijing , P.R. China
| |
Collapse
|
31
|
Concepts and advances in cancer therapeutic vulnerabilities in RAS membrane targeting. Semin Cancer Biol 2017; 54:121-130. [PMID: 29203271 DOI: 10.1016/j.semcancer.2017.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/30/2017] [Indexed: 01/05/2023]
Abstract
For decades oncogenic RAS proteins were considered undruggable due to a lack of accessible binding pockets on the protein surfaces. Seminal early research in RAS biology uncovered the basic paradigm of post-translational isoprenylation of RAS polypeptides, typically with covalent attachment of a farnesyl group, leading to isoprenyl-mediated RAS anchorage at the plasma membrane and signal initiation at those sites. However, the failure of farnesyltransferase inhibitors to translate to the clinic stymied anti-RAS therapy development. Over the past ten years, a more complete picture has emerged of RAS protein maturation, intracellular trafficking, and location, positioning and retention in subdomains at the plasma membrane, with a corresponding expansion in our understanding of how these properties of RAS contribute to signal outputs. Each of these aspects of RAS regulation presents a potential vulnerability in RAS function that may be exploited for therapeutic targeting, and inhibitors have been identified or developed that interfere with RAS for nearly all of them. This review will summarize current understanding of RAS membrane targeting with a focus on highlighting development and outcomes of inhibitors at each step.
Collapse
|
32
|
Prado SBRD, Ferreira GF, Harazono Y, Shiga TM, Raz A, Carpita NC, Fabi JP. Ripening-induced chemical modifications of papaya pectin inhibit cancer cell proliferation. Sci Rep 2017; 7:16564. [PMID: 29185464 PMCID: PMC5707353 DOI: 10.1038/s41598-017-16709-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022] Open
Abstract
Papaya (Carica papaya L.) is a fleshy fruit with a rapid pulp softening during ripening. Ripening events are accompanied by gradual depolymerization of pectic polysaccharides, including homogalacturonans, rhamnogalacturonans, arabinogalactans, and their modified forms. During intermediate phases of papaya ripening, partial depolymerization of pectin to small size with decreased branching had enhanced pectin anti-cancer properties. These properties were lost with continued decomposition at later phases of ripening. Pectin extracted from intermediate phases of papaya ripening markedly decreased cell viability, induced necroptosis, and delayed culture wound closing in three types of immortalized cancer cell lines. The possible explanation for these observations is that papaya pectins extracted from the third day after harvesting have disrupted interaction between cancer cells and the extracellular matrix proteins, enhancing cell detachment and promoting apoptosis/necroptosis. The anticancer activity of papaya pectin is dependent on the presence and the branch of arabinogalactan type II (AGII) structure. These are first reports of AGII in papaya pulp and the first reports of an in vitro biological activity of papaya pectins that were modified by natural action of ripening-induced pectinolytic enzymes. Identification of the specific pectin branching structures presents a biological route to enhancing anti-cancer properties in papaya and other climacteric fruits.
Collapse
Affiliation(s)
- Samira Bernardino Ramos do Prado
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabrielle Fernandez Ferreira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yosuke Harazono
- Departments of Oncology and Pathology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI, USA
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tânia Misuzu Shiga
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Avraham Raz
- Departments of Oncology and Pathology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI, USA
| | - Nicholas C Carpita
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil.
| |
Collapse
|
33
|
Chan YY, Hwang TL, Kuo PC, Hung HY, Wu TS. Constituents of the Fruits of Citrus medica L. var. sarcodactylis and the Effect of 6,7-Dimethoxy-coumarin on Superoxide Anion Formation and Elastase Release. Molecules 2017; 22:molecules22091454. [PMID: 28862688 PMCID: PMC6151612 DOI: 10.3390/molecules22091454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/19/2023] Open
Abstract
Investigation of the chemical constituents from the fruits of Citrus medica L. var. sarcodactylis Swingle has led to the characterization of a new sesquiterpene 1 along with thirty-two known compounds. The structure of 1 was established on the basis of 2D NMR spectroscopic and mass spectrometric analyses, and the known compounds were identified by comparison of their physical and spectroscopic data with those reported in the literature. In addition, most of the isolated compounds were evaluated for the activity assayed by the in vitro inhibition of superoxide anion generation and elastase release by human neutrophils. The results showed that only 6,7-dimethoxycoumarin (5) exhibited significant inhibition of superoxide anion generation, with IC50 value of 3.8 ± 1.4 μM.
Collapse
Affiliation(s)
- Yu-Yi Chan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan.
| |
Collapse
|
34
|
Kuo PC, Liao YR, Hung HY, Chuang CW, Hwang TL, Huang SC, Shiao YJ, Kuo DH, Wu TS. Anti-Inflammatory and Neuroprotective Constituents from the Peels of Citrus grandis. Molecules 2017; 22:molecules22060967. [PMID: 28598384 PMCID: PMC6152662 DOI: 10.3390/molecules22060967] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022] Open
Abstract
A series of chromatographic separations performed on the ethanol extracts of the peels of Citrus grandis has led to the characterization of forty compounds, including seventeen coumarins, eight flavonoids, two triterpenoids, four benzenoids, two steroids, one lignan, one amide, and five other compounds, respectively. The chemical structures of the purified constituents were identified on the basis of spectroscopic elucidation, including 1D- and 2D-NMR, UV, IR, and mass spectrometric analysis. Most of the isolated compounds were examined for their inhibition of superoxide anion generation and elastase release by human neutrophils. Among the isolates, isomeranzin (3), 17,18-dihydroxybergamottin (12), epoxybergamottin (13), rhoifolin (19), vitexicarpin (22) and 4-hydroxybenzaldehyde (29) displayed the most significant inhibition of superoxide anion generation and elastase release with IC50 values ranged from 0.54 to 7.57 μM, and 0.43 to 4.33 μM, respectively. In addition, 7-hydroxy-8-(2′-hydroxy-3′-methylbut-3′-enyl)coumarin (8) and 17,18-dihydroxybergamottin (12) also exhibited the protection of neurons against Aβ-mediated neurotoxicity at 50 μM.
Collapse
Affiliation(s)
- Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yu-Ren Liao
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chia-Wei Chuang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Shiow-Chyn Huang
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Young-Ji Shiao
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan.
| | - Daih-Huang Kuo
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan.
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan.
| |
Collapse
|
35
|
Stegmayr J, Lepur A, Kahl-Knutson B, Aguilar-Moncayo M, Klyosov AA, Field RA, Oredsson S, Nilsson UJ, Leffler H. Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-binding Site by Pectins and Galactomannans. J Biol Chem 2016; 291:13318-34. [PMID: 27129206 PMCID: PMC4933242 DOI: 10.1074/jbc.m116.721464] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 12/17/2022] Open
Abstract
Some complex plant-derived polysaccharides, such as modified citrus pectins and galactomannans, have been shown to have promising anti-inflammatory and anti-cancer effects. Most reports propose or claim that these effects are due to interaction of the polysaccharides with galectins because the polysaccharides contain galactose-containing side chains that might bind this class of lectin. However, their direct binding to and/or inhibition of the evolutionarily conserved galactoside-binding site of galectins has not been demonstrated. Using a well established fluorescence anisotropy assay, we tested the direct interaction of several such polysaccharides with physiological concentrations of a panel of galectins. The bioactive pectic samples tested were very poor inhibitors of the canonical galactoside-binding site for the tested galectins, with IC50 values >10 mg/ml for a few or in most cases no inhibitory activity at all. The galactomannan Davanat® was more active, albeit not a strong inhibitor (IC50 values ranging from 3 to 20 mg/ml depending on the galectin). Pure synthetic oligosaccharide fragments found in the side chains and backbone of pectins and galactomannans were additionally tested. The most commonly found galactan configuration in pectins had no inhibition of the galectins tested. Galactosylated tri- and pentamannosides, representing the structure of Davanat®, had an inhibitory effect of galectins comparable with that of free galactose. Further evaluation using cell-based assays, indirectly linked to galectin-3 inhibition, showed no inhibition of galectin-3 by the polysaccharides. These data suggest that the physiological effects of these plant polysaccharides are not due to inhibition of the canonical galectin carbohydrate-binding site.
Collapse
Affiliation(s)
- John Stegmayr
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden, the Department of Biology and
| | - Adriana Lepur
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Barbro Kahl-Knutson
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Matilde Aguilar-Moncayo
- the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom, and
| | | | - Robert A Field
- the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom, and
| | | | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Hakon Leffler
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden,
| |
Collapse
|
36
|
Melatonin Suppresses Autophagy Induced by Clinostat in Preosteoblast MC3T3-E1 Cells. Int J Mol Sci 2016; 17:526. [PMID: 27070587 PMCID: PMC4848982 DOI: 10.3390/ijms17040526] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
Microgravity exposure can cause cardiovascular and immune disorders, muscle atrophy, osteoporosis, and loss of blood and plasma volume. A clinostat device is an effective ground-based tool for simulating microgravity. This study investigated how melatonin suppresses autophagy caused by simulated microgravity in preosteoblast MC3T3-E1 cells. In preosteoblast MC3T3-E1 cells, clinostat rotation induced a significant time-dependent increase in the levels of the autophagosomal marker microtubule-associated protein light chain (LC3), suggesting that autophagy is induced by clinostat rotation in these cells. Melatonin treatment (100, 200 nM) significantly attenuated the clinostat-induced increases in LC3 II protein, and immunofluorescence staining revealed decreased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2), indicating a decrease in autophagosomes. The levels of phosphorylation of mammalian target of rapamycin (p-mTOR) (Ser2448), phosphorylation of extracellular signal-regulated kinase (p-ERK), and phosphorylation of serine-threonine protein kinase (p-Akt) (Ser473) were significantly reduced by clinostat rotation. However, their expression levels were significantly recovered by melatonin treatment. Also, expression of the Bcl-2, truncated Bid, Cu/Zn- superoxide dismutase (SOD), and Mn-SOD proteins were significantly increased by melatonin treatment, whereas levels of Bax and catalase were decreased. The endoplasmic reticulum (ER) stress marker GRP78/BiP, IRE1α, and p-PERK proteins were significantly reduced by melatonin treatment. Treatment with the competitive melatonin receptor antagonist luzindole blocked melatonin-induced decreases in LC3 II levels. These results demonstrate that melatonin suppresses clinostat-induced autophagy through increasing the phosphorylation of the ERK/Akt/mTOR proteins. Consequently, melatonin appears to be a potential therapeutic agent for regulating microgravity-related bone loss or osteoporosis.
Collapse
|
37
|
Zhong J, Dong X, Xiu P, Wang F, Liu J, Wei H, Xu Z, Liu F, Li T, Li J. Blocking autophagy enhances meloxicam lethality to hepatocellular carcinoma by promotion of endoplasmic reticulum stress. Cell Prolif 2015; 48:691-704. [PMID: 26481188 DOI: 10.1111/cpr.12221] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/01/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Meloxicam, a selective cyclooxygenase-2 (COX-2) inhibitor, has been demonstrated to exert anti-tumour effects against various malignancies. However, up to now, mechanisms involved in meloxicam anti-hepatocellular carcinoma effects have remained unclear. MATERIALS AND METHODS Cell viability and apoptosis were assessed by CCK-8 and flow cytometry. Endoplasmic reticulum (ER) stress and autophagy-associated molecules were analysed by western blotting and immunofluorescence assay. GRP78 and Atg5 knock-down by siRNA or chemical inhibition was used to investigate cytotoxic effects of meloxicam treatment on HCC cells. RESULTS We found that meloxicam led to apoptosis and autophagy in HepG2 and Bel-7402 cells via a mechanism that involved ER stress. Up-regulation of GRP78 signalling pathway from meloxicam-induced ER stress was critical for activation of autophagy. Furthermore, autophagy activation attenuated ER stress-related cell death. Blocking autophagy by 3-methyladenine (3-MA) or Atg5 siRNA knock-down enhanced meloxicam lethality for HCC by activation of ER stress-related apoptosis. In addition, GRP78 seemed to lead to autophagic activation via the AMPK-mTOR signalling pathway. Blocking AMPK with a chemical inhibitor inhibited autophagy suggesting that meloxicam-regulated autophagy requires activation of AMPK. CONCLUSIONS Our results revealed that both ER stress and autophagy were involved in cell death evoked by meloxicam in HCC cells. This inhibition of autophagy to enhance meloxicam lethality, suggests a novel therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Jingtao Zhong
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Xiaofeng Dong
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Peng Xiu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Fuhai Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Ju Liu
- Laboratory of Medicrovascular Medicine and Medical Research Center, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Honglong Wei
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Zongzhen Xu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Feng Liu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Tao Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| | - Jie Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, China
| |
Collapse
|
38
|
Leclere L, Fransolet M, Cambier P, El Bkassiny S, Tikad A, Dieu M, Vincent SP, Van Cutsem P, Michiels C. Identification of a cytotoxic molecule in heat-modified citrus pectin. Carbohydr Polym 2015; 137:39-51. [PMID: 26686103 DOI: 10.1016/j.carbpol.2015.10.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/07/2023]
Abstract
Modified forms of citrus pectin possess anticancer properties. However, their mechanism of action and the structural features involved remain unclear. Here, we showed that citrus pectin modified by heat treatment displayed cytotoxic effects in cancer cells. A fractionation approach was used aiming to identify active molecules. Dialysis and ethanol precipitation followed by HPLC analysis evidenced that most of the activity was related to molecules with molecular weight corresponding to low degree of polymerization oligogalacturonic acid. Heat-treatment of galacturonic acid also generated cytotoxic molecules. Furthermore, heat-modified galacturonic acid and heat-fragmented pectin contained the same molecule that induced cell death when isolated by HPLC separation. Mass spectrometry analyses revealed that 4,5-dihydroxy-2-cyclopenten-1-one was one cytotoxic molecule present in heat-treated pectin. Finally, we synthesized the enantiopure (4R,5R)-4,5-dihydroxy-2-cyclopenten-1-one and demonstrated that this molecule was cytotoxic and induced a similar pattern of apoptotic-like features than heat-modified pectin.
Collapse
Affiliation(s)
- Lionel Leclere
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Maude Fransolet
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Pierre Cambier
- Laboratory of Plant Cellular Biology-URBV, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Sandy El Bkassiny
- Organic Chemistry Research Unit (UCO), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Abdellatif Tikad
- Organic Chemistry Research Unit (UCO), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Marc Dieu
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Stéphane P Vincent
- Organic Chemistry Research Unit (UCO), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Pierre Van Cutsem
- Laboratory of Plant Cellular Biology-URBV, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Carine Michiels
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
39
|
Abnormal Glucose Metabolism in Alzheimer's Disease: Relation to Autophagy/Mitophagy and Therapeutic Approaches. Neurochem Res 2015; 40:2557-69. [PMID: 26077923 DOI: 10.1007/s11064-015-1631-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/09/2015] [Accepted: 05/29/2015] [Indexed: 12/19/2022]
Abstract
Diminished glucose metabolism accompanies many neurodegenerative diseases including Alzheimer's disease. An understanding of the relation of these metabolic changes to the disease will enable development of novel therapeutic strategies. Following a metabolic challenge, cells generally conserve energy to preserve viability. This requires activation of many cellular repair/regenerative processes such as mitophagy/autophagy and fusion/fission. These responses may diminish cell function in the long term. Prolonged fission induces mitophagy/autophagy which promotes repair but if prolonged progresses to mitochondrial degradation. Abnormal glucose metabolism alters protein signaling including the release of proteins from the mitochondria or migration of proteins from the cytosol to the mitochondria or nucleus. This overview provides an insight into the different mechanisms of autophagy/mitophagy and mitochondrial dynamics in response to the diminished metabolism that occurs with diseases, especially neurodegenerative diseases such as Alzheimer's disease. The review discusses multiple aspects of mitochondrial responses including different signaling proteins and pathways of mitophagy and mitochondrial biogenesis. Improving cellular bioenergetics and mitochondrial dynamics will alter protein signaling and improve cellular/mitochondrial repair and regeneration. An understanding of these changes will suggest new therapeutic strategies.
Collapse
|