1
|
Xiong Y, Yi C, Zheng H, Ni Y, Xue Y, Li K. Protein palmitoylation is involved in regulating mouse sperm motility via the signals of calcium, protein tyrosine phosphorylation and reactive oxygen species. Biol Res 2025; 58:3. [PMID: 39810241 PMCID: PMC11734517 DOI: 10.1186/s40659-024-00580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear. This study aimed to elucidate the mechanism by which protein palmitoylation governs sperm motility. METHODS Protein palmitoylation in situ in mouse sperm was observed using innovative click chemistry. Sperm motility and motion parameters were evaluated using a computer-assisted sperm analyzer (CASA) after treatment with 2-bromopalmitic acid (2BP), a specific inhibitor of protein palmitoylation. Protein palmitoylation levels were confirmed by the acyl-biotin exchange (ABE) method. The interplay between protein palmitoylation, protein tyrosine phosphorylation, and intracellular calcium was investigated using Western blotting, ABE method, and fluorescent probes. The regulation of reactive oxygen species was also examined using fluorescent probes. RESULTS Localized patterns and dynamics of protein palmitoylation in distinct sperm regions were revealed, including the midpiece, post-acrosomal region, acrosome, and head. Alterations in protein palmitoylation in sperm were observed under in vitro physiological conditions. Treatment with 2BP significantly affected sperm motility and motion parameters. The study revealed interactions between protein palmitoylation, including heat shock protein 90, and protein kinase A/protein kinase C-associated protein tyrosine phosphorylation and intracellular calcium. Additionally, protein palmitoylation was found to be involved in reactive oxygen species regulation. CONCLUSIONS Protein palmitoylation regulates sperm motility through calcium signaling, protein tyrosine phosphorylation, and reactive oxygen species. This study revealed the characteristics of protein palmitoylation in sperm and its role in regulating sperm motility, thereby providing novel insights into the causes of asthenozoospermia associated with sperm motility in humans.
Collapse
Affiliation(s)
- Yuping Xiong
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chenchen Yi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haixia Zheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yamei Xue
- Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zhang Y, Song JY, Sun ZG. Exploring the impact of environmental factors on male reproductive health through epigenetics. Reprod Toxicol 2025; 132:108832. [PMID: 39778664 DOI: 10.1016/j.reprotox.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Male infertility has become an increasingly severe global health issue, with its incidence significantly rising over the past few decades. This paper delves into the crucial role of epigenetics in male reproductive health, focusing particularly on the effects of DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs regulation on spermatogenesis. Exposure to various environmental factors can cause sperm DNA damage, leading to epigenetic abnormalities. Among these factors, we have discussed heavy metals (including Zinc, Cadmium, Arsenic, Copper), phthalates, electromagnetic radiation, and temperature in detail. Notably, aberrations in DNA methylation are closely associated with various symptoms of male infertility, and histone modifications and chromatin remodeling are essential for sperm maturation and function. By synthesizing existing literature and experimental data, this narrative review investigates how environmental factors influence male reproductive health through epigenetic mechanisms, thus providing new theoretical foundations and practical guidelines for the early diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Yi Zhang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing-Yan Song
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Zhen-Gao Sun
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Lymbery RA, Garcia-Gonzalez F, Evans JP. Silent cells? Potential for context-dependent gene expression in mature sperm. Proc Biol Sci 2025; 292:20241516. [PMID: 39772960 PMCID: PMC11706646 DOI: 10.1098/rspb.2024.1516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Sperm are traditionally viewed as transcriptionally and translationally silent cells. However, observations that components of the cellular machinery of gene expression are maintained in ejaculated sperm are increasingly cited as challenges to this fundamental assumption. Here, we critically evaluate these arguments and present three lines of evidence from both model and non-model systems that collectively raise the question of whether ejaculated sperm may be capable of active gene expression. First, and critical for arguments surrounding the possibility of differential gene expression, we review recent evidence that spermatozoa may retain the capacity to transcribe and translate their genomes. Second, we highlight how sperm cells can exhibit differential transcript quantities across different post-ejaculation environments. Third, we ask whether the accumulating evidence of remarkable phenotypic plasticity in post-ejaculatory sperm phenotypes could be mechanistically underpinned by changes in sperm gene expression. While these lines of evidence are indirect and do not definitively show transcription of sperm genomes, we highlight how emerging technologies may enable us to test this hypothesis explicitly. Our review advocates for progress in this field and highlights several important evolutionary, ecological and practical implications that will probably transcend disciplines to the clinical and applied reproductive sectors.
Collapse
Affiliation(s)
- Rowan A. Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Australia
- Department of Biodiversity, Conservation and Attractions, Kensington, Australia
| | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Australia
- Doñana Biological Station (EBD-CSIC), Isla de la Cartuja, Sevilla, Spain
| | - Jonathan P. Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Australia
| |
Collapse
|
4
|
Pio-Lopez L, Levin M. Aging as a loss of morphostatic information: A developmental bioelectricity perspective. Ageing Res Rev 2024; 97:102310. [PMID: 38636560 DOI: 10.1016/j.arr.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Maintaining order at the tissue level is crucial throughout the lifespan, as failure can lead to cancer and an accumulation of molecular and cellular disorders. Perhaps, the most consistent and pervasive result of these failures is aging, which is characterized by the progressive loss of function and decline in the ability to maintain anatomical homeostasis and reproduce. This leads to organ malfunction, diseases, and ultimately death. The traditional understanding of aging is that it is caused by the accumulation of molecular and cellular damage. In this article, we propose a complementary view of aging from the perspective of endogenous bioelectricity which has not yet been integrated into aging research. We propose a view of aging as a morphostasis defect, a loss of biophysical prepattern information, encoding anatomical setpoints used for dynamic tissue and organ homeostasis. We hypothesize that this is specifically driven by abrogation of the endogenous bioelectric signaling that normally harnesses individual cell behaviors toward the creation and upkeep of complex multicellular structures in vivo. Herein, we first describe bioelectricity as the physiological software of life, and then identify and discuss the links between bioelectricity and life extension strategies and age-related diseases. We develop a bridge between aging and regeneration via bioelectric signaling that suggests a research program for healthful longevity via morphoceuticals. Finally, we discuss the broader implications of the homologies between development, aging, cancer and regeneration and how morphoceuticals can be developed for aging.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
5
|
McPherson NO, Nottle M, McIlfatrick S, Saini A, Hamilton H, Bowman E, Tully CA, Pacella-Ince L, Zander-Fox D, Bakos HW. Clinical use of progesterone in human sperm preparation media for increasing IVF success. Reprod Biomed Online 2024; 48:103625. [PMID: 38402675 DOI: 10.1016/j.rbmo.2023.103625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 02/27/2024]
Abstract
RESEARCH QUESTION Can the addition of progesterone and neurotensin, molecular agents found in the female reproductive tract, after sperm washing increase the fertilization potential of human spermatozoa? DESIGN (i) Cohort study of 24 men. Spermatozoa selected by swim-up were incubated in either progesterone or neurotensin (0.1-100 µM) for 1-4 h, and hyperactive motility and binding to hyaluronan (0.1-100 µM) were assessed. The effect of progesterone 10 µM on sperm function was assessed in a blinded manner, including: hyperactive motility, binding to hyaluronan, tyrosine phosphorylation, acrosome reaction and oxidative DNA damage. (i) Embryo safety testing [one-cell mouse embryo assay (MEA), endotoxin and sterility counts (n = 3)] in preclinical embryo models of IVF (murine and porcine, n = 7 each model) and a small preliminary human study (n = 4) of couples undergoing standard IVF with oocytes inseminated with spermatozoa ± 10 µM progesterone. RESULTS Progesterone 10 µM increased sperm binding to hyaluronan, hyperactive motility and tyrosine phosphorylation (all P < 0.05). Neurotensin had no effect (P > 0.05). Progesterone 10 µM in human embryo culture media passed embryo safety testing (MEA, endotoxin concentration and sterility plate count). In preclinical models of IVF, the exposure of spermatozoa to progesterone 10 µM and oocytes to progesterone 1 µM was not detrimental, and increased the fertilization rate in mice and the blastocyst cell number in mice and pigs (all P ≤ 0.03). In humans, every transferred blastocyst that had been produced from spermatozoa exposed to progesterone resulted in a live birth. CONCLUSION The addition of progesterone to sperm preparation media shows promise as an adjunct to current methods for increasing fertilization potential. Randomized controlled trials are required to determine the clinical utility of progesterone for improving IVF outcomes.
Collapse
Affiliation(s)
- Nicole O McPherson
- Discipline of Reproduction and Development, School of Biomedicine, University of Adelaide, Adelaide, Australia; Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia; Robinson Research Institute, University of Adelaide, Adelaide, Australia; Monash IVF Group, Clayton, Australia.
| | - Mark Nottle
- Discipline of Reproduction and Development, School of Biomedicine, University of Adelaide, Adelaide, Australia; Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Stephan McIlfatrick
- Discipline of Reproduction and Development, School of Biomedicine, University of Adelaide, Adelaide, Australia; Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Anmol Saini
- Discipline of Reproduction and Development, School of Biomedicine, University of Adelaide, Adelaide, Australia; Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | | | | | - Cathryn A Tully
- Discipline of Reproduction and Development, School of Biomedicine, University of Adelaide, Adelaide, Australia; Robinson Research Institute, University of Adelaide, Adelaide, Australia; Repromed, Dulwich, Australia
| | - Leanne Pacella-Ince
- Discipline of Reproduction and Development, School of Biomedicine, University of Adelaide, Adelaide, Australia; Robinson Research Institute, University of Adelaide, Adelaide, Australia; Repromed, Dulwich, Australia
| | - Deirdre Zander-Fox
- Discipline of Reproduction and Development, School of Biomedicine, University of Adelaide, Adelaide, Australia; Monash IVF Group, Clayton, Australia; Monash University, Clayton, Australia
| | - Hassan W Bakos
- Monash IVF Group, Clayton, Australia; University of Newcastle, Newcastle, Australia; Memphasys Ltd, Homebush, Australia
| |
Collapse
|
6
|
Abedin SN, Baruah A, Baruah KK, Bora A, Dutta DJ, Kadirvel G, Katiyar R, Doley S, Das S, Khargharia G, Sarkar B, Sinha S, Phookan A, Dewry RK, Kalita MK, Chakravarty H, Deori S. Zinc oxide and selenium nanoparticles can improve semen quality and heat shock protein expression in cryopreserved goat (Capra hircus) spermatozoa. J Trace Elem Med Biol 2023; 80:127296. [PMID: 37659125 DOI: 10.1016/j.jtemb.2023.127296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/23/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) are strongly linked with oxidative stress (OS) generated during the process of sperm cryopreservation. Indeed, cellular damage from ROS has been implicated during sperm cryopreservation which causes deterioration in sperm quality and antioxidant nanoparticles (NPs) have been successful in preventing such damage. The interaction of NPs with sperm cells has been less frequently explored in farm animals. OBJECTIVE The present study explored the effect of NP supplementation on sperm ultrastructure, potential interaction with sperm membrane (plasma and acrosome membrane), heat shock protein (HSP) gene expression levels and sperm quality in cryopreserved buck semen. MATERIALS AND METHODS Thirty-two (32) ejaculates were collected from four (4) adult male bucks and then diluted in Tris- citric acid- fructose- egg yolk (TCFY) extender containing the Zinc-oxide (ZnO) and Selenium (Se) NP treatments (T0: Control; TZn: 0.1 mg/mL ZnO NPs and TSe: 1 µg/mL Se NPs) after initial evaluation. Diluted semen was packed in 0.25 mL French mini straws and then stored in liquid nitrogen (LN2). Sperm parameters, lipid peroxidation (LPO) profile, sperm head morphology ultrastructural classification under transmission electron microscope (TEM), potential interaction of NPs with sperm membrane and expression of HSP genes were evaluated in the different treatment groups. RESULTS We found a significant (p < 0.05) increase in the percentage of spermatozoa with intact plasma membrane, and intact acrosome in the ZnO (0.1 mg/mL) and Se (1 µg/mL) NP supplemented groups in comparison to the frozen control group. TEM assessment revealed no internalization of both ZnO and Se NPs into the sperm structure. Few occasional contacts of ZnO NPs with the sperm membrane and a few agglomerates of Se NPs around the area of damaged membranes were visualized. HSP70 and HSP90 mRNA levels were significantly (p < 0.001) higher in the NP supplemented groups in comparison to the control. HSP70 and HSP90 mRNA levels had a strong positive association with sperm motility and a weak to moderate association with other sperm parameters. CONCLUSIONS Current findings indicated that ZnO NPs are more potent than Se NPs in ameliorating peroxidative damages during sperm cryopreservation, increases semen quality parameters possibly by increasing the expression levels of HSP genes in buck semen. Furthermore, NP supplementation may have a potential role in preserving sperm head ultrastructure by acting as an antioxidant and reducing OS during various degrees of cellular insults, which needs to be further explored.
Collapse
Affiliation(s)
- Sayed Nabil Abedin
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Anubha Baruah
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Kishore Kumar Baruah
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Arundhati Bora
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Devo Jyoti Dutta
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Govindasamy Kadirvel
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Rahul Katiyar
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Sunil Doley
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Samir Das
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Gautam Khargharia
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Biplab Sarkar
- Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Sudip Sinha
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Arundhati Phookan
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Raju Kumar Dewry
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Manoj Kumar Kalita
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Himsikha Chakravarty
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Sourabh Deori
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India.
| |
Collapse
|
7
|
Cheng X, Xie H, Xiong Y, Sun P, Xue Y, Li K. Lipidomics profiles of human spermatozoa: insights into capacitation and acrosome reaction using UPLC-MS-based approach. Front Endocrinol (Lausanne) 2023; 14:1273878. [PMID: 38027124 PMCID: PMC10660817 DOI: 10.3389/fendo.2023.1273878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Lipidomics elucidates the roles of lipids in both physiological and pathological processes, intersecting with many diseases and cellular functions. The maintenance of lipid homeostasis, essential for cell health, significantly influences the survival, maturation, and functionality of sperm during fertilization. While capacitation and the acrosome reaction, key processes before fertilization, involve substantial lipidomic alterations, a comprehensive understanding of the changes in human spermatozoa's lipidomic profiles during these processes remains unknown. This study aims to explicate global lipidomic changes during capacitation and the acrosome reaction in human sperm, employing an untargeted lipidomic strategy using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Methods Twelve semen specimens, exceeding the WHO reference values for semen parameters, were collected. After discontinuous density gradient separation, sperm concentration was adjusted to 2 x 106 cells/ml and divided into three groups: uncapacitated, capacitated, and acrosome-reacted. UPLC-MS analysis was performed after lipid extraction from these groups. Spectral peak alignment and statistical analysis, using unsupervised principal component analysis (PCA), bidirectional orthogonal partial least squares discriminant analysis (O2PLS-DA) analysis, and supervised partial least-squares-latent structure discriminate analysis (PLS-DA), were employed to identify the most discriminative lipids. Results The 1176 lipid peaks overlapped across the twelve individuals in the uncapacitated, capacitated, and acrosome-reacted groups: 1180 peaks between the uncapacitated and capacitated groups, 1184 peaks between the uncapacitated and acrosome-reacted groups, and 1178 peaks between the capacitated and acrosome-reacted groups. The count of overlapping peaks varied among individuals, ranging from 739 to 963 across sperm samples. Moreover, 137 lipids had VIP values > 1.0 and twenty-two lipids had VIP > 1.5, based on the O2PLS-DA model. Furthermore, the identified twelve lipids encompassed increases in PI 44:10, LPS 20:4, LPA 20:5, and LPE 20:4, and decreases in 16-phenyl-tetranor-PGE2, PC 40:6, PS 35:4, PA 29:1, 20-carboxy-LTB4, and 2-oxo-4-methylthio-butanoic acid. Discussion This study has been the first time to investigate the lipidomics profiles associated with acrosome reaction and capacitation in human sperm, utilizing UPLC-MS in conjunction with multivariate data analysis. These findings corroborate earlier discoveries on lipids during the acrosome reaction and unveil new metabolites. Furthermore, this research highlights the effective utility of UPLC-MS-based lipidomics for exploring diverse physiological states in sperm. This study offers novel insights into lipidomic changes associated with capacitation and the acrosome reaction in human sperm, which are closely related to male reproduction.
Collapse
Affiliation(s)
- Xiaohong Cheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haifeng Xie
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yuping Xiong
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yamei Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Dorostghoal M, Galehdari H, Hemadi M, Izadi F. Seminal prolactin is associated with HSP90 transcript content in ejaculated spermatozoa. Clin Exp Reprod Med 2023; 50:99-106. [PMID: 37258103 DOI: 10.5653/cerm.2022.05757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/06/2023] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVE Evidence indicates that an imbalance between the production of reactive oxygen species and defense ability of antioxidants has clinical significance in the pathophysiology of male infertility. To investigate the role of seminal prolactin (PRL) in the fertilizing capacity of men, the present study evaluated the associations of seminal PRL levels with semen parameters and heat shock protein 90 (HSP90) transcript abundance in ejaculated spermatozoa. METHODS We assessed seminal PRL levels and the abundance of HSP90 transcripts in ejaculated spermatozoa from normozoospermic donors (n=18) and infertile men (n=18). The transcript content of HSP90 in ejaculated spermatozoa was analyzed using real-time polymerase chain reaction. RESULTS Seminal PRL concentrations in infertile patients were significantly lower (p=0.004) than in fertile controls. Seminal PRL showed relatively good diagnostic power for discriminating infertile men (area under the curve=0.776; 95% confidence interval, 0.568 to 0.934; p=0.005). Significant positive correlations were seen between seminal PRL levels and sperm count (r=0.400, p=0.016) and progressive motility (r=0.422, p=0.010). Infertile patients showed a significantly higher abundance of sperm HSP90 than fertile controls (p=0.040). Sperm HSP90 transcript abundance was negatively correlated with sperm progressive motility (r=0.394, p=0.018). Men with higher seminal PRL levels exhibited a lower abundance of sperm HSP90 transcripts. CONCLUSION Our finding demonstrated associations among semen quality, seminal PRL levels, and the abundance of HSP90 transcripts in ejaculated spermatozoa. Seminal PRL may contribute to male fertility by maintaining the seminal antioxidant capacity and may have the potential to act as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mehran Dorostghoal
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Masoud Hemadi
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Fahimeh Izadi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
9
|
Shan L, Chai Y, Gao T, Li K, Yu J, Liang F, Ni Y, Sun P. Perfluorooctane sulfonate and perfluorooctanoic acid inhibit progesterone-responsive capacitation through cAMP/PKA signaling pathway and induce DNA damage in human sperm. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104165. [PMID: 37245612 DOI: 10.1016/j.etap.2023.104165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/15/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two persistent organic pollutants harmful to human health. They induce negative effects on male reproduction by influencing male hormones, spermatogenesis, and sperm quality. However, their effects and mechanisms on human sperm capacitation and fertilization remain unclear. Here, human sperm were incubated with different concentrations of PFOS or PFOA with progesterone during capacitation. Both PFOS and PFOA inhibited human sperm hyperactivation, sperm acrosome reaction, and protein tyrosine phosphorylation levels. PFOS and PFOA decreased intracellular Ca2+ concentration in the presence of progestrone, and subsequently decreased cAMP level, and PKA activity. PFOS and PFOA increased reactive oxygen species production and sperm DNA fragmentation duing the only 3h capacitation incubation. Conclusively, PFOA and PFOS may inhibit human sperm capacitation via the Ca2+-mediated cAMP/PKA signaling pathway in the presence of progesterone, and induce sperm DNA damage through increased oxidative stress, which is not conducive to fertilization.
Collapse
Affiliation(s)
- Lijun Shan
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhao Chai
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tian Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianmin Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fei Liang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Szebesczyk A, Słowik J. Heat shock proteins and metal ions - Reaction or interaction? Comput Struct Biotechnol J 2023; 21:3103-3108. [PMID: 37273852 PMCID: PMC10236365 DOI: 10.1016/j.csbj.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023] Open
Abstract
Heat shock proteins (HSPs) are part of the cell's molecular chaperone system responsible for the proper folding (or refolding) of proteins. They are expressed in cells of a wide variety of organisms, from bacteria and fungi to humans. While some HSPs require metal ions for proper functioning, others are expressed as a response of the organism to either essential or toxic metal ions. Their presence can influence the occurrence of cellular processes, even those as significant as programmed cell death. The development of research methods and structural modeling has enabled increasingly accurate recognition of new HSP functions, including their role in maintaining metal ion homeostasis. Current investigations on the expression of HSPs in response to heavy metal ions include not only the direct effect of these ions on the cell but also analysis of reactive oxygen species (ROS) and the increased production of HSPs with increasing ROS concentration. This minireview contains information about the direct and indirect interactions of heat shock proteins with metal ions, both those of biological importance and heavy metals.
Collapse
|
11
|
Wang Y, Gao T, Shan L, Li K, Liang F, Yu J, Ni Y, Sun P. Iberiotoxin and clofilium regulate hyperactivation, acrosome reaction, and ion homeostasis synergistically during human sperm capacitation. Mol Reprod Dev 2023; 90:129-140. [PMID: 36682071 DOI: 10.1002/mrd.23671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Potassium channels play essential roles in the regulation of male fertility. However, potassium channels mediating K+ currents in human sperm (IKSper ) remain controversial. Besides SLO3, the SLO1 potassium channel is a potential candidate for human sperm KSper. This study intends to elucidate the function of SLO1 potassium channel during human sperm capacitation. Human sperm were treated with iberiotoxin (IbTX, a SLO1 specific inhibitor) and clofilium (SLO3 inhibitor) separately or simultaneously during in vitro capacitation. A computer-assisted sperm analyzer was used to assess sperm motility. The sperm acrosome reaction (AR) was analyzed using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin staining. Sperm protein tyrosine phosphorylation was studied using western blotting. Intracellular Ca2+ , K+ , Cl- , and pH were analyzed using ion fluorescence probes. Independent inhibition with IbTX or clofilium decreased the sperm hyperactivation, AR, and protein tyrosine phosphorylation, and was accompanied by an increase in [K+ ]i , [Cl- ]i , and pHi , but a decrease in [Ca2+ ]i . Simultaneously inhibition with IbTX and clofilium lower sperm hyperactivation and AR more than independent inhibition. The increase in [K+ ]i , [Cl- ]i , and pHi , and the decrease in [Ca2+ ]i were more pronounced. This study suggested that the SLO1 potassium channel may have synergic roles with SLO3 during human sperm capacitation.
Collapse
Affiliation(s)
- Yayan Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Gynecology and Obstetrics, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Tian Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijun Shan
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fei Liang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianmin Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
The stallion sperm acrosome: Considerations from a research and clinical perspective. Theriogenology 2023; 196:121-149. [PMID: 36413868 DOI: 10.1016/j.theriogenology.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
During the fertilization process, the interaction between the sperm and the oocyte is mediated by a process known as acrosomal exocytosis (AE). Although the role of the sperm acrosome on fertilization has been studied extensively over the last 70 years, little is known about the molecular mechanisms that govern acrosomal function, particularly in species other than mice or humans. Even though subfertility due to acrosomal dysfunction is less common in large animals than in humans, the evaluation of sperm acrosomal function should be considered not only as a complementary but a routine test when individuals are selected for breeding potential. This certainly holds true for stallions, which might display lower levels of fertility in the face of "acceptable" sperm quality parameters determined by conventional sperm assays. Nowadays, the use of high throughput technologies such as flow cytometry or mass spectrometry-based proteomic analysis is commonplace in the research arena. Such techniques can also be implemented in clinical scenarios of males with "idiopathic" subfertility. The current review focuses on the sperm acrosome, with particular emphasis on the stallion. We aim to describe the physiological events that lead to the acrosome formation within the testis, the role of very specific acrosomal proteins during AE, the methods to study the occurrence of AE under in vitro conditions, and the potential use of molecular biology techniques to discover new markers of acrosomal function and subfertility associated with acrosomal dysfunction in stallions.
Collapse
|
13
|
Omics insights into spermatozoa activation induced by Fetal bovine serum in viviparous black rockfish (Sebastes schlegelii). Gene 2023; 851:147014. [DOI: 10.1016/j.gene.2022.147014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
|
14
|
Zhang R, Guo X, Liang C, Pei J, Bao P, Yin M, Wu F, Chu M, Yan P. Identification and Validation of Yak ( Bos grunniens) Frozen-Thawed Sperm Proteins Associated with Capacitation and the Acrosome Reaction. J Proteome Res 2022; 21:2754-2770. [PMID: 36251486 DOI: 10.1021/acs.jproteome.2c00528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To achieve fertilization, mammalian spermatozoa must undergo capacitation and the acrosome reaction (AR) within the female reproductive tract. However, the effects of cryopreservation on sperm maturation and fertilizing potential have yet to be established. To gain insight into changes in protein levels within sperm cells prepared for use in the context of fertilization, a comprehensive quantitative proteomic profiling approach was used to analyze frozen-thawed Ashidan yak spermatozoa under three sequential conditions: density gradient centrifugation-based purification, incubation in a capacitation medium, and treatment with the calcium ionophore A23187 to facilitate AR induction. In total, 3280 proteins were detected in these yak sperm samples, of which 3074 were quantified, with 68 and 32 being significantly altered following sperm capacitation and AR induction. Differentially abundant capacitation-related proteins were enriched in the metabolism and PPAR signaling pathways, while differentially abundant AR-related proteins were enriched in the AMPK signaling pathway. These data confirmed a role for superoxide dismutase 1 (SOD1) as a regulator of sperm capacitation while also offering indirect evidence that heat shock protein 90 alpha (HSP90AA1) regulates the AR. Together, these findings offer a means whereby sperm fertility-related marker proteins can be effectively identified. Data are available via Proteome Xchange with identifier PXD035038.
Collapse
Affiliation(s)
- Renzheng Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Mancai Yin
- Yak Breeding and Extension Service Center in Qinghai Province, Xining 810000, China
| | - Fude Wu
- Yak Breeding and Extension Service Center in Qinghai Province, Xining 810000, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
15
|
A Study of Heat Shock Protein 90 and Serum CCL21 Expression in Pregnant Women with Preeclampsia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1601431. [PMID: 35958932 PMCID: PMC9363183 DOI: 10.1155/2022/1601431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022]
Abstract
Objective The purpose of the study was to determine the significance of heat shock protein 90 (HSP 90) and serum chemokine ligand 21 (CCL-21) in pregnant women with preeclampsia (PE). Methods From June 2021 to June 2022, the study enrolled 100 women undergoing obstetric examinations and delivering in our hospital; 50 PE patients undergoing routine obstetric examinations and delivering during the same period were enrolled in the research group; according to the severity, they were divided into mild PE and severe PE groups, while 50 healthy pregnant women undergoing obstetric examinations and delivering in our hospital during the same period were enrolled in the control group. In a subsequent analysis, serum levels of CCL-21 and HSP90 were compared between the two groups, and the correlation among CCL-21, HSP 90, and PE severity was analyzed. Results An overall total of 50 patients with PE were enrolled in the study, which included 32 patients with mild PE and 18 patients with severe PE. Patients with severe PE had lower mean arterial pressure (MAP), HSP 90, and CCL21 index levels than those with mild PE; MAP, HSP 90, and CCL21 in the severe PE group were higher than those in the mild PE group, but the difference was not statistically significant; In the research group, MAP was weakly correlated with HSP90 concentration and CCL21 concentration, with correlation coefficients of 0.33 and 0.30, respectively, and the correlation analysis was significant. Conclusion Patients with PE showed significantly increased serum concentrations of HSP90 and CCL-21, but a significant difference did not exist between mild and severe PE. In addition, there was a weak relationship between HSP90 and CCL-21 concentrations in PE patients and MAP, suggesting that HSP90 and CCL-21 play an instrumental role in the pathogenesis of PE, although more studies are needed to clarify the exact mechanisms.
Collapse
|
16
|
Dou D, Ji Y, Zheng J, Li J, Zhu X, Tang S, Wang H, Li Q, Jing H. A New Role for Conivaptan in Ulcerative Colitis in Mice: Inhibiting Differentiation of CD4 +T Cells into Th1 Cells. Dig Dis Sci 2022; 67:3683-3692. [PMID: 34751838 DOI: 10.1007/s10620-021-07300-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Conivaptan, a nonselective antagonist of vasopressin receptors V1a and V2, is the first drug of this class to be used for treating euvolemic and hypervolemic hyponatremia. Recently, increasing evidence supports the involvement of vasopressin in immune responses. AIMS In this study, we investigated the effect of conivaptan on the modulation of CD4+ T cell homeostasis and the progression of experimental colitis. METHODS The expression of the V1a receptor on CD4+ T cells was detected by immunofluorescence and western blot. The subset of isolated CD4+ T cells were examined after arginine vasopressin (AVP) incubation. CD4+ T cells were injected into DNBS-induced mice through the tail vein. The severity of colitis was evaluated according to weight, disease activity index (DAI), and morphological injury. Intracellular Ca2+ ([Ca2+]i) signaling in CD4+ T cells was measured using the Fluo-3 AM loading method. T-bet and IFN-γ mRNAs in the colon were detected by real-time polymerase chain reaction (qPCR). RESULTS We found that CD4+ T cells expressed the V1a receptor. Activation of the V1a receptor significantly promoted the differentiation of CD4+ T cells into T helper 1 (Th1) cells. This process was blocked by conivaptan treatment. However, the activation of the V1a receptor did not evoke an increase in [Ca2+]i in CD4+ T cells. Notably, conivaptan markedly alleviated body weight loss, pathological damage, and expression of T-bet and IFN-γ in the colon of DNBS-treated mice. CONCLUSIONS For the first time, we report that conivaptan attenuated colitis by inhibiting the differentiation of CD4+ T cells into Th1 cells. Mechanistically, the anti-inflammatory role of conivaptan is independent of [Ca2+]i.
Collapse
Affiliation(s)
- Dandan Dou
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, China.,Department of Physiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yuge Ji
- Department of Physiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Junjie Zheng
- Department of Physiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Xiaolong Zhu
- Department of Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Shuhai Tang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hongjuan Wang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qin Li
- Department of Physiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Haiyan Jing
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
17
|
Hossen S, Sukhan ZP, Cho Y, Choi CY, Kho KH. Saccharides Influence Sperm Quality and Expressions of Motility and Fertilization-Associated Genes in Cryopreserved Sperm of Pacific Abalone, Haliotis discus hannai. Front Cell Dev Biol 2022; 10:935667. [PMID: 35927989 PMCID: PMC9343956 DOI: 10.3389/fcell.2022.935667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Pacific abalone, Haliotis discus hannai, is a highly commercial seafood in Southeast Asia. The present study aimed to determine the influence of saccharides and vitamins on post-thaw sperm quality, ATP content, fertilization capacity, hatching capacity, and mRNA content of motility and fertilization-associated genes of Pacific abalone. Sperm cryopreserved using saccharides improved the post-thaw sperm quality including motility, acrosome integrity (AI), plasma membrane integrity (PMI), and mitochondrial membrane potential (MMP). However, vitamins (l-ascorbic acid) did not result in any significant improvement in sperm quality. Sperm cryopreserved using saccharides also improved ATP content, DNA integrity, and mRNA content of motility and fertilization-associated genes of post-thaw sperm than sperm cryopreserved without saccharides. Among sperm cryopreserved using different saccharides, post-thaw sperm quality indicators (except PMI) and mRNA content of motility and fertilization-associated genes did not show significant differences between sperm cryopreserved using 3% sucrose (S) combined with 8% dimethyl sulfoxide (DMSO) and sperm cryopreserved using 1% glucose (G) combined with 8% ethylene glycol (EG). However, sperm cryopreserved using 3% S + 8% DMSO showed higher post-thaw sperm quality (motility: 58.4 ± 2.9%, AI: 57.1 ± 3.2%, PMI: 65.3 ± 3.3%, and MMP: 59.1 ± 3.2%), ATP content (48.4 ± 1.8 nmol/ml), and % DNA in tail (2.09 ± 0.20%) than sperm cryopreserved using other saccharides. When sperms were cryopreserved using 3% S + 8% DMSO, the mRNA content of motility (heat shock protein 70, HSP70; heat shock protein 90, HSP90; protein kinase A, PKA-C; axonemal protein 66.0, Axpp66.0; and tektin-4) and fertilization-associated (sperm protein 18 kDa, SP18 kDa) genes were higher than in sperm cryopreserved using other saccharides. However, changes in the mRNA contents of these genes were insignificant between sperm cryopreserved using 3% S + 8% DMSO and 1% G + 8% EG. Taken together, these results indicate that cryopreservation using 3% S + 8% DMSO can improve post-thaw sperm quality and mRNA contents better than other examined cryoprotectants. The present study suggests that 3% S + 8% DMSO is a suitable cryoprotectant for sperm cryopreservation and molecular conservation of this valuable species.
Collapse
Affiliation(s)
- Shaharior Hossen
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| | - Yusin Cho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
- *Correspondence: Kang Hee Kho,
| |
Collapse
|
18
|
Targeted Analysis of HSP70 Isoforms in Human Spermatozoa in the Context of Capacitation and Motility. Int J Mol Sci 2022; 23:ijms23126497. [PMID: 35742939 PMCID: PMC9224233 DOI: 10.3390/ijms23126497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
HSP70s constitute a family of chaperones, some isoforms of which appear to play a role in sperm function. Notably, global proteomic studies analyzing proteins deregulated in asthenozoospermia, a main cause of male infertility characterized by low sperm motility, showed the dysregulation of some HSP70 isoforms. However, to date, no clear trend has been established since the variations in the abundance of HSP70 isoforms differed between studies. The HSPA2 isoform has been reported to play a key role in fertilization, but its dysregulation and possible relocation during capacitation, a maturation process making the spermatozoon capable of fertilizing an oocyte, is debated in the literature. The aim of the present study was to investigate the fate of all sperm HSP70 isoforms during capacitation and in relation to sperm motility. Using Multiple-Reaction Monitoring (MRM) mass spectrometry, we showed that the relative abundance of all detected isoforms was stable between non-capacitated and capacitated spermatozoa. Immunofluorescence using two different antibodies also demonstrated the stability of HSP70 isoform localization during capacitation. We also investigated spermatozoa purified from 20 sperm samples displaying various levels of total and progressive sperm motility. We showed that the abundance of HSP70 isoforms is not correlated to sperm total or progressive motility.
Collapse
|
19
|
Gaonkar R, Singh J, Chauhan A, Avti PK, Hegde G. Geraniol and Citral as potential therapeutic agents targeting the HSP90 activity: An in silico and experimental approach. PHYTOCHEMISTRY 2022; 195:113058. [PMID: 34942558 DOI: 10.1016/j.phytochem.2021.113058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Lemongrass essential oil has antifungal and anti-cancerous properties. Heat-shock protein (HSP90), an ATP-dependent molecular chaperone found in eukaryotes, is involved in protein folding, stability, and disease, making it a promising research topic. Both in silico and in vitro approaches were used to provide a clear insight into the HSP90-ATPase 3D structures, activity, and their interaction with the essential oil constituents among various species such as fungi (S. cerevisiae), parasites (P. falciparum), and humans. For in silico studies, sequence alignment, docking (AutoDock), and absorption, distribution, metabolism, and excretion (ADME) properties were evaluated to obtain hit compounds specifically against each HSP90-ATPase. The hit compounds obtained were evaluated for their efficacy in the in vitro studies of S. cerevisiae. In vitro studies were carried out targeting HSP90-ATPases via lemongrass essential oil components individually and in combination as a function of concentration and various salt concentrations. Results suggest that sequence alignment exists of over 75% among these three species. The best docking score was possessed by Geraniol and its constituent (geldanamycin ≥ -4.93 kcal/mol) (a known antifungal and antitumor against HSP90) in all the above species. Lemongrass oil and the combination of Geraniol and Citral at concentrations of 80 μg/mL showed the maximum inhibition of ATPase and HSP90-ATPase activity compared to their individual treatment. Therefore, both in silico and in vitro studies provide clear evidence of specific inhibitory action of lemongrass oil, Geraniol, and Citral against the ATPase and HSP90-ATPase activities and might show potential as antifungal and antitumor drugs.
Collapse
Affiliation(s)
- Roopa Gaonkar
- Department of Biotechnology, BMS College of Engineering, Bangalore, Karnataka, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Gurumurthy Hegde
- Centre for Advanced Research and Development (CARD), CHRIST (Deemed to be University), Hosur Rd, Bangalore, 560029, India.
| |
Collapse
|
20
|
Yi C, Ni Y, Sun P, Gao T, Li K. Differential Size Distribution and Estrogen Receptor Cargo of Oviductal Extracellular Vesicles at Various Stages of Estrous Cycle in Mice. Reprod Sci 2022; 29:2847-2858. [PMID: 35137347 PMCID: PMC9537198 DOI: 10.1007/s43032-022-00862-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Oviductal extracellular vesicles (OEVs) play an important role in fertilization and embryo development. However, it remains largely unknown whether the size and protein cargo of OEVs change during the estrous cycle in mice. This study analyzed the changes in the size distribution and protein cargo of OEVs at four stages of the estrous cycle in mice. The distribution widths of OEVs according to the estrous cycle stage were as follows: proestrus, 20–690 nm in diameter, with two peaks at 50 and 250 nm; estrus, 22–420 nm in diameter, with two peaks at 40 and 200 nm; metestrus, 30–70 nm diameter, with a single peak at 40 nm; and diestrus, 10–26 nm diameter, with a single peak at 20 nm. The estrogen receptor (ER) level in OEVs at the proestrus stage differed significantly from that at estrus (P = 0.013) and diestrus (P = 0.005). The levels of CD9 and Hsc70 fluctuated across the four stages, although with no significant differences. Furthermore, OEVs were observed among the cilia and microvilli of epithelial cells at the proestrus, estrus, and diestrus stages, but not at the metestrus stage. The number of observed OEVs was the highest at the proestrus stage, followed by the estrus, and the diestrus stage. Endosomes were also observed at the estrus and diestrus stages. The change of the OEV size and ER cargo is associated with the estrous cycle in mice. Our findings increase the understanding of the physiological characteristics of OEVs, which may have clinical applications.
Collapse
Affiliation(s)
- Chenchen Yi
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China
| | - Ya Ni
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China
| | - Peibei Sun
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China
| | - Tian Gao
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China
| | - Kun Li
- Institute for Reproductive Health, Hang Medical College, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
21
|
Sperm preparedness and adaptation to osmotic and pH stressors relate to functional competence of sperm in Bos taurus. Sci Rep 2021; 11:22563. [PMID: 34799600 PMCID: PMC8604908 DOI: 10.1038/s41598-021-01928-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
The adaptive ability of sperm in the female reproductive tract micromilieu signifies the successful fertilization process. The study aimed to analyze the preparedness of sperm to the prevailing osmotic and pH stressors in the female reproductive tract. Fresh bovine sperm were incubated in 290 (isosmotic-control), 355 (hyperosmotic-uterus and oviduct), and 420 (hyperosmotic-control) mOsm/kg and each with pH of 6.8 (uterus) and 7.4 (oviduct). During incubation, the changes in sperm functional attributes were studied. Sperm kinematics and head area decreased significantly (p < 0.05) immediately upon exposure to hyperosmotic stress at both pH. Proportion of sperm capacitated (%) in 355 mOsm/kg at 1 and 2 h of incubation were significantly (p < 0.05) higher than those in 290 mOsm media. The magnitude and duration of recovery of sperm progressive motility in 355 mOsm with pH 7.4 was correlated with the ejaculate rejection rate (R2 = 0.7). Using this information, the bulls were divided into good (n = 5) and poor (n = 5) osmo-adapters. The osmo-responsive genes such as NFAT5, HSP90AB1, SLC9C1, ADAM1B and GAPDH were upregulated (p < 0.05) in the sperm of good osmo-adapters. The study suggests that sperm are prepared for the osmotic and pH challenges in the female reproductive tract and the osmoadaptive ability is associated with ejaculate quality in bulls.
Collapse
|
22
|
Marín-Briggiler CI, Luque GM, Gervasi MG, Oscoz-Susino N, Sierra JM, Mondillo C, Salicioni AM, Krapf D, Visconti PE, Buffone MG. Human Sperm Remain Motile After a Temporary Energy Restriction but do Not Undergo Capacitation-Related Events. Front Cell Dev Biol 2021; 9:777086. [PMID: 34869380 PMCID: PMC8633110 DOI: 10.3389/fcell.2021.777086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
To acquire fertilization competence, mammalian sperm must undergo several biochemical and physiological modifications known as capacitation. Despite its relevance, the metabolic pathways that regulate the capacitation-related events, including the development of hyperactivated motility, are still poorly described. Previous studies from our group have shown that temporary energy restriction in mouse sperm enhanced hyperactivation, in vitro fertilization, early embryo development and pregnancy rates after embryo transfer, and it improved intracytoplasmic sperm injection results in the bovine model. However, the effects of starvation and energy recovery protocols on human sperm function have not yet been established. In the present work, human sperm were incubated for different periods of time in medium containing glucose, pyruvate and lactate (NUTR) or devoid of nutrients for the starving condition (STRV). Sperm maintained in STRV displayed reduced percentages of motility and kinematic parameters compared to cells incubated in NUTR medium. Moreover, they did not undergo hyperactivation and showed reduced levels of ATP, cAMP and protein tyrosine phosphorylation. Similar to our results with mouse sperm, starvation induced increased intracellular Ca2+ concentrations. Starved human sperm were capable to continue moving for more than 27 h, but the incubation with a mitochondrial uncoupler or inhibitors of oxidative phosphorylation led to a complete motility loss. When exogenous nutrients were added back (sperm energy recovery (SER) treatment), hyperactivated motility was rescued and there was a rise in sperm ATP and cAMP levels in 1 min, with a decrease in intracellular Ca2+ concentration and no changes in sperm protein tyrosine phosphorylation. The finding that human sperm can remain motile for several hours under starvation due to mitochondrial use of endogenous metabolites implies that other metabolic pathways may play a role in sperm energy production. In addition, full recovery of motility and other capacitation parameters of human sperm after SER suggests that this treatment might be used to modulate human sperm fertilizing ability in vitro.
Collapse
Affiliation(s)
| | - Guillermina M. Luque
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - María G. Gervasi
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
| | - Natalia Oscoz-Susino
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Jessica M. Sierra
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carolina Mondillo
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Ana M. Salicioni
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Argentina
| | - Pablo E. Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
| | - Mariano G. Buffone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
23
|
Gao T, Li K, Liang F, Yu J, Liu A, Ni Y, Sun P. KCNQ1 Potassium Channel Expressed in Human Sperm Is Involved in Sperm Motility, Acrosome Reaction, Protein Tyrosine Phosphorylation, and Ion Homeostasis During Capacitation. Front Physiol 2021; 12:761910. [PMID: 34744797 PMCID: PMC8569670 DOI: 10.3389/fphys.2021.761910] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Potassium channels are involved in membrane hyperpolarization and ion homeostasis regulation during human sperm capacitation. However, the types of potassium channels in human sperm remain controversial. The voltage-gated ion channel KCNQ1 is ubiquitously expressed and regulates key physiological processes in the human body. In the present study, we investigated whether KCNQ1 is expressed in human sperm and what role it might have in sperm function. The expression and localization of KCNQ1 in human sperm were evaluated using Western blotting and indirect immunofluorescence. During capacitation incubation, human sperm were treated with KCNQ1- specific inhibitor chromanol 293B. Sperm motility was analyzed using a computer-assisted sperm analyzer. The acrosome reaction was studied using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin staining. Protein tyrosine phosphorylation levels and localization after capacitation were determined using Western blotting and immunofluorescence. Intracellular K+, Ca2+, Cl−, pH, and membrane potential were analyzed using fluorescent probes. The results demonstrate that KCNQ1 is expressed and localized in the head and tail regions of human sperm. KCNQ1 inhibition reduced sperm motility, acrosome reaction rates, and protein tyrosine phosphorylation but had no effect on hyperactivation. KCNQ1 inhibition also increased intracellular K+, membrane potential, and intracellular Cl−, while decreasing intracellular Ca2+ and pH. In conclusion, the KCNQ1 channel plays a crucial role during human sperm capacitation.
Collapse
Affiliation(s)
- Tian Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Fei Liang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Jianmin Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Ajuan Liu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
24
|
Characterization of novel genotyping-by-sequencing (GBS)-based simple sequence repeats (SSRs) and their application for population genomics of Capoeta aculeata (Valenciennes, 1844). Mol Biol Rep 2021; 48:6471-6480. [PMID: 34420147 DOI: 10.1007/s11033-021-06653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The species Capoeta aculeata (Valenciennes, 1844) is one of the most important freshwater species endemic to Iran. However, the investigation of the population genetic structure of this species is limited by the low number of molecular markers currently described. METHODS AND RESULTS In this study, we implemented next generation sequencing technology to identify polymorphic microsatellite markers and investigate the population genetic structure of C. aculeata sampled from three geographical sites in Iran. We characterized and developed 36 novel polymorphic microsatellite markers and these loci were examined in 120 individuals from three populations occurring in the Zagros basin. The average number of alleles per locus varied from 1.7 to 16 (average = 7.89). The results showed that, the polymorphism information content (PIC) of these simple sequence repeat (SSR) loci varied from 0.254 to 0.888. The observed heterozygosity (HO) per locus ranged from 0.170 to 0.881, while the expected heterozygosity (HE) per locus was from 0.170 to 0.881. Among these SSR loci, 20 loci deviated significantly from the Hardy-Weinberg equilibrium after Bonferroni correction (p < 0.05). CONCLUSIONS These microsatellite markers could provide a valuable tool for future population and conservation genetics studies of C. aculeate and other closely related species.
Collapse
|
25
|
Kumar P, Wang M, Isachenko E, Rahimi G, Mallmann P, Wang W, von Brandenstein M, Isachenko V. Unraveling Subcellular and Ultrastructural Changes During Vitrification of Human Spermatozoa: Effect of a Mitochondria-Targeted Antioxidant and a Permeable Cryoprotectant. Front Cell Dev Biol 2021; 9:672862. [PMID: 34277615 PMCID: PMC8284099 DOI: 10.3389/fcell.2021.672862] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondria-targeted antioxidants have great potential to counterbalance the generated reactive oxygen species (ROS) because they cross the inner membrane of the mitochondria. Still, their use was not reported in vitrified human spermatozoa. Our laboratory has successfully vitrified spermatozoa without the use of permeable cryoprotectants, but subcellular-level evidence was missing. Therefore, this study aimed to improve spermatozoa vitrification using a mitochondria-targeted antioxidant (mitoquinone, MitoQ), reveal ultrastructural changes in the spermatozoa due to the use of a permeable cryoprotectant, and report alterations of functional proteins during the spermatozoa vitrification process. For this, each of 20 swim-up-prepared ejaculates was divided into seven aliquots and diluted with a vitrification medium supplemented with varying concentrations of MitoQ (0.02 and 0.2 μM), glycerol (1, 4, and 6%), and a combination of MitoQ and glycerol. All aliquots were vitrified by the aseptic capillary method developed in our laboratory. The spermatozoa function assays revealed that the addition of either MitoQ (0.02 μM), glycerol (1%), or a combination of MitoQ (0.02 μM) and glycerol (1%) in the vitrification medium results in better or equivalent spermatozoa quality relative to the control. Transmission electron microscopy revealed that MitoQ protects the spermatozoa from undergoing ultrastructural alterations, but glycerol induced ultrastructural alterations during the vitrification process. Next, we performed label-free quantitative proteomics and identified 1,759 proteins, of which 69, 60, 90, and 81 were altered in the basal medium, 0.02 μM MitoQ, 1% glycerol, and Mito-glycerol groups, respectively. Actin, tubulins, and outer dense fiber proteins were not affected during the vitrification process. Some of the identified ubiquitinating enzymes were affected during spermatozoa vitrification. Only a few proteins responsible for phosphorylation were altered during vitrification. Similarly, several proteins involved in spermatozoa–egg fusion and fertilization (IZUMO1 and Tektin) were not affected during the vitrification process. In conclusion, MitoQ attenuates the vitrification-induced ultrastructural changes and alterations in the key proteins involved in spermatozoa functions and fertilization.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India.,Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, Cologne, Germany
| | - Mengying Wang
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, Cologne, Germany
| | - Evgenia Isachenko
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, Cologne, Germany
| | - Gohar Rahimi
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, Cologne, Germany
| | - Peter Mallmann
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, Cologne, Germany
| | - Wanxue Wang
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, Cologne, Germany
| | | | - Vladimir Isachenko
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, Cologne, Germany
| |
Collapse
|
26
|
Cafe SL, Nixon B, Ecroyd H, Martin JH, Skerrett-Byrne DA, Bromfield EG. Proteostasis in the Male and Female Germline: A New Outlook on the Maintenance of Reproductive Health. Front Cell Dev Biol 2021; 9:660626. [PMID: 33937261 PMCID: PMC8085359 DOI: 10.3389/fcell.2021.660626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 01/07/2023] Open
Abstract
For fully differentiated, long lived cells the maintenance of protein homeostasis (proteostasis) becomes a crucial determinant of cellular function and viability. Neurons are the most well-known example of this phenomenon where the majority of these cells must survive the entire course of life. However, male and female germ cells are also uniquely dependent on the maintenance of proteostasis to achieve successful fertilization. Oocytes, also long-lived cells, are subjected to prolonged periods of arrest and are largely reliant on the translation of stored mRNAs, accumulated during the growth period, to support meiotic maturation and subsequent embryogenesis. Conversely, sperm cells, while relatively ephemeral, are completely reliant on proteostasis due to the absence of both transcription and translation. Despite these remarkable, cell-specific features there has been little focus on understanding protein homeostasis in reproductive cells and how/whether proteostasis is "reset" during embryogenesis. Here, we seek to capture the momentum of this growing field by highlighting novel findings regarding germline proteostasis and how this knowledge can be used to promote reproductive health. In this review we capture proteostasis in the context of both somatic cell and germline aging and discuss the influence of oxidative stress on protein function. In particular, we highlight the contributions of proteostasis changes to oocyte aging and encourage a focus in this area that may complement the extensive analyses of DNA damage and aneuploidy that have long occupied the oocyte aging field. Moreover, we discuss the influence of common non-enzymatic protein modifications on the stability of proteins in the male germline, how these changes affect sperm function, and how they may be prevented to preserve fertility. Through this review we aim to bring to light a new trajectory for our field and highlight the potential to harness the germ cell's natural proteostasis mechanisms to improve reproductive health. This manuscript will be of interest to those in the fields of proteostasis, aging, male and female gamete reproductive biology, embryogenesis, and life course health.
Collapse
Affiliation(s)
- Shenae L. Cafe
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Heath Ecroyd
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Jacinta H. Martin
- Department of Human Genetics, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
27
|
Hossen S, Sharker MR, Cho Y, Sukhan ZP, Kho KH. Effects of Antifreeze Protein III on Sperm Cryopreservation of Pacific Abalone, Haliotis discus hannai. Int J Mol Sci 2021; 22:ijms22083917. [PMID: 33920155 PMCID: PMC8069295 DOI: 10.3390/ijms22083917] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/29/2023] Open
Abstract
Pacific abalone (Haliotis discus hannai) is a highly commercial seafood in Southeast Asia. The aim of the present study was to improve the sperm cryopreservation technique for this valuable species using an antifreeze protein III (AFPIII). Post-thaw sperm quality parameters including motility, acrosome integrity (AI), plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), DNA integrity, fertility, hatchability, and mRNA abundance level of heat shock protein 90 (HSP90) were determined to ensure improvement of the cryopreservation technique. Post-thaw motility of sperm cryopreserved with AFPIII at 10 µg/mL combined with 8% dimethyl sulfoxide (DMSO) (61.3 ± 2.7%), 8% ethylene glycol (EG) (54.3 ± 3.3%), 6% propylene glycol (PG) (36.6 ± 2.6%), or 2% glycerol (GLY) (51.7 ± 3.0%) was significantly improved than that of sperm cryopreserved without AFPIII. Post-thaw motility of sperm cryopreserved with 2% MeOH and 1 µg/mL of AFPIII was also improved than that of sperm cryopreserved without AFPIII. A combination of 10 µg/mL AFPIII with 8% DMSO resulted in the highest post-thaw motility, showing AI of 60.1 ± 3.9%, PMI of 67.2 ± 4.0%, and MMP of 59.1 ± 4.3%. DNA integrity of sperm cryopreserved using 10 µg/mL AFPIII combined with 8% DMSO was not significantly (p > 0.05) different from that of fresh sperm. Cryopreservation using a combination of AFPIII with 8% DMSO improved fertilization and hatching rates of sperm compared to that of cryopreservation without supplementation of 10 µg/mL AFPIII. Sperm cryopreserved using AFPIII showed higher mRNA abundance levels of HSP90 than those cryopreserved without AFPIII. Results of the present study suggest that 10 µg/mL AFPIII combined with 8% DMSO can be used for large scale cryopreservation of Pacific abalone sperm and for hatchery production.
Collapse
Affiliation(s)
- Shaharior Hossen
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Jeonnam, Korea; (S.H.); (M.R.S.); (Y.C.); (Z.P.S.)
| | - Md. Rajib Sharker
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Jeonnam, Korea; (S.H.); (M.R.S.); (Y.C.); (Z.P.S.)
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Yusin Cho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Jeonnam, Korea; (S.H.); (M.R.S.); (Y.C.); (Z.P.S.)
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Jeonnam, Korea; (S.H.); (M.R.S.); (Y.C.); (Z.P.S.)
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Jeonnam, Korea; (S.H.); (M.R.S.); (Y.C.); (Z.P.S.)
- Correspondence: ; Tel.: +82-616-597-168; Fax: +82-616-597-169
| |
Collapse
|
28
|
Sun P, Wang Y, Gao T, Li K, Zheng D, Liu A, Ni Y. Hsp90 modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways. Reprod Biol Endocrinol 2021; 19:39. [PMID: 33663544 PMCID: PMC7931335 DOI: 10.1186/s12958-021-00723-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Heat shock protein 90 (Hsp90) is a highly abundant eukaryotic molecular chaperone that plays important roles in client protein maturation, protein folding and degradation, and signal transduction. Previously, we found that both Hsp90 and its co-chaperone cell division cycle protein 37 (Cdc37) were expressed in human sperm. Hsp90 is known to be involved in human sperm capacitation via unknown underlying mechanism(s). As Cdc37 was a kinase-specific co-chaperone of Hsp90, Hsp90 may regulate human sperm capacitation via other kinases. It has been reported that two major mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase 1/2 (Erk1/2) and p38, are expressed in human sperm in the same locations as Hsp90 and Cdc37. Phosphorylated Erk1/2 has been shown to promote sperm hyperactivated motility and acrosome reaction, while phosphorylated p38 inhibits sperm motility. Therefore, in this study we explored whether Hsp90 modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways. METHODS Human sperm was treated with the Hsp90-specific inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) during capacitation. Computer-assisted sperm analyzer (CASA) was used to detect sperm motility and hyperactivation. The sperm acrosome reaction was analyzed by using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin (PSA-FITC) staining. The interactions between Hsp90, Cdc37, Erk1/2 and p38 were assessed using co-immunoprecipitation (Co-IP) experiments. Western blotting analysis was used to evaluate the levels of protein expression and phosphorylation. RESULTS Human sperm hyperactivation and acrosome reaction were inhibited by 17-AAG, suggesting that Hsp90 is involved in human sperm capacitation. In addition, Co-IP experiments revealed that 17-AAG reduced the interaction between Hsp90 and Cdc37, leading to the dissociation of Erk1/2 from the Hsp90-Cdc37 protein complex. Western blotting analysis revealed that levels of Erk1/2 and its phosphorylated form were subsequently decreased. Decreasing of Hsp90-Cdc37 complex also affected the interaction between Hsp90 and p38. Nevertheless, p38 dissociated from the Hsp90 protein complex and was activated by autophosphorylation. CONCLUSIONS Taken together, our findings indicate that Hsp90 is involved in human sperm hyperactivation and acrosome reaction. In particular, Hsp90 and its co-chaperone Cdc37 form a protein complex with Erk1/2 and p38 to regulate their kinase activity. These results suggest that Hsp90 regulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Peibei Sun
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences / Hangzhou Medical College, 310013, Hangzhou, Zhejiang, China
| | - Yayan Wang
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences / Hangzhou Medical College, 310013, Hangzhou, Zhejiang, China
| | - Tian Gao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences / Hangzhou Medical College, 310013, Hangzhou, Zhejiang, China
| | - Kun Li
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences / Hangzhou Medical College, 310013, Hangzhou, Zhejiang, China
| | - Dongwang Zheng
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences / Hangzhou Medical College, 310013, Hangzhou, Zhejiang, China
| | - Ajuan Liu
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences / Hangzhou Medical College, 310013, Hangzhou, Zhejiang, China
| | - Ya Ni
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences / Hangzhou Medical College, 310013, Hangzhou, Zhejiang, China.
| |
Collapse
|
29
|
Polyamines Influence Mouse Sperm Channels Activity. Int J Mol Sci 2021; 22:ijms22010441. [PMID: 33406808 PMCID: PMC7795802 DOI: 10.3390/ijms22010441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/15/2023] Open
Abstract
Polyamines are ubiquitous polycationic compounds that are highly charged at physiological pH. While passing through the epididymis, sperm lose their capacity to synthesize the polyamines and, upon ejaculation, again come into contact with the polyamines contained in the seminal fluid, unleashing physiological events that improve sperm motility and capacitation. In the present work, we hypothesize about the influence of polyamines, namely, spermine, spermidine, and putrescine, on the activity of sperm channels, evaluating the intracellular concentrations of chloride [Cl−]i, calcium [Ca2+]i, sodium [Na+]i, potassium [K+]i, the membrane Vm, and pHi. The aim of this is to identify the possible regulatory mechanisms mediated by the polyamines on sperm-specific channels under capacitation and non-capacitation conditions. The results showed that the presence of polyamines did not directly influence the activity of calcium and chloride channels. However, the results suggested an interaction of polyamines with sodium and potassium channels, which may contribute to the membrane Vm during capacitation. In addition, alkalization of the pHi revealed the possible activation of sperm-specific Na+/H+ exchangers (NHEs) by the increased levels of cyclic AMP (cAMP), which were produced by soluble adenylate cyclase (sAC) and interact with the polyamines, evidence that is supported by in silico analysis.
Collapse
|
30
|
Lymbery RA, Evans JP, Kennington WJ. Post-ejaculation thermal stress causes changes to the RNA profile of sperm in an external fertilizer. Proc Biol Sci 2020; 287:20202147. [PMID: 33171088 PMCID: PMC7735278 DOI: 10.1098/rspb.2020.2147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Sperm cells experience considerable post-ejaculation environmental variation. However, little is known about whether this affects their molecular composition, probably owing to the assumption that sperm are transcriptionally quiescent. Nevertheless, recent evidence shows sperm have distinct RNA profiles that affect fertilization and embryo viability. Moreover, RNAs are expected to be highly sensitive to extracellular changes. One such group of RNAs are heat shock protein (hsp) transcripts, which function in stress responses and are enriched in sperm. Here, we exploit the experimental tractability of the mussel Mytilus galloprovincialis by exposing paired samples of ejaculated sperm to ambient (19°C) and increased (25°C) temperatures, then measure (i) sperm motility phenotypes, and (ii) messenger RNA (mRNA) levels of two target genes (hsp70 and hsp90) and several putative reference genes. We find no phenotypic changes in motility, but reduced mRNA levels for hsp90 and the putative reference gene gapdh at 25°C. This could reflect either decay of specific RNAs, or changes in translation and degradation rates of transcripts to maintain sperm function under stress. These findings represent, to our knowledge, the first evidence for changes in sperm RNA profiles owing to post-ejaculation environments, and suggest that sperm may be more vulnerable to stress from rising temperatures than currently thought.
Collapse
Affiliation(s)
- Rowan A. Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | | | | |
Collapse
|
31
|
Xue Y, Jin J, Sun P, Li K. The association of rs11457523 in HSP90AA1 with idiopathic male infertility in the Chinese population. Andrologia 2020; 53:e13888. [PMID: 33167063 DOI: 10.1111/and.13888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 01/09/2023] Open
Abstract
The association of single nucleotide polymorphisms (SNPs) in heat shock protein 90 (HSP90) genes with idiopathic male infertility remains unclear. In this study, the five selected SNPs in HSP90AA1 namely rs10133307, rs10873531, rs11547523, rs11621560 and rs7145597 were genotyped in 116 idiopathic infertile males and 185 ethnically matched fertile males using the Sequenom MassARRAY assay. The role of these SNPs in male infertility was then studied using multiple genetic models. We observed that genotype distribution (p = .028) and allelic frequency (p = .032) of rs11547523 were significantly different between the infertile and fertile groups. In particular, A genotype of rs11547523 was associated with an increased risk of infertility in the allele (OR = 2.508, p = .048), dominant (OR = 2.733, p = .030) and additive models (OR = 0.366, p = .031). However, there were no significant differences in semen parameters including seminal volume (p = .452), sperm concentration (p = .727), total sperm number (p = .588), motility (p = .282) and morphology (p = .975) between A and A/G genotypes of rs11547523. These results indicate that rs11547523 in HSP90AA1 may be associated with idiopathic male infertility in the Chinese population. The outcome of this study contributes to the development of the diagnosis of male infertility.
Collapse
Affiliation(s)
- Yamei Xue
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianyuan Jin
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peibei Sun
- Institute of Reproductive Health, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- Institute of Reproductive Health, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
32
|
Li K, Sun P, Wang Y, Gao T, Zheng D, Liu A, Ni Y. Hsp90 interacts with Cdc37, is phosphorylated by PKA/PKC, and regulates Src phosphorylation in human sperm capacitation. Andrology 2020; 9:185-195. [PMID: 32656999 DOI: 10.1111/andr.12862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heat shock protein 90 (Hsp90) signaling pathways participate in protein phosphorylation during sperm capacitation. However, the underlying mechanism is largely unknown. OBJECTIVE The aim of this study was to explore the interaction between Hsp90 and its co-chaperone protein, cell division cycle protein Cdc37 (Cdc37), in human spermatozoa. MATERIALS AND METHODS We examined the effects of H-89 (a protein kinase A [PKA] inhibitor) and Go6983 (a protein kinase C [PKC] inhibitor) on the phosphorylation of serine, threonine, and tyrosine residues in Hsp90; the effect of 17-allylamino-17-demethoxygeldanamycin (17-AAG, Hsp90 inhibitor) on Y416-Src phosphorylation; and the effects of 17-AAG and geldanamycin on threonine phosphorylation during human sperm capacitation. RESULTS Hsp90 co-localized and interacted with Cdc37. During human sperm capacitation, Hsp90 phosphorylation at serine, threonine, and tyrosine residues was inhibited by H-89 and Go6983. In addition, phosphorylation of residue Y416 in the tyrosine kinase Src (its active site) was inhibited by 17-AAG, and the threonine phosphorylation levels of some proteins were decreased by 17-AAG and geldanamycin. DISCUSSION AND CONCLUSION Taken together, our data showed that the interaction of Hsp90 with Cdc37 regulates total protein threonine phosphorylation and Src phosphorylation via its serine, threonine, and tyrosine phosphorylation, which are controlled by PKA and PKC during human sperm capacitation. The results of this study help understand the mechanism underlying Hsp90 regulation of sperm function.
Collapse
Affiliation(s)
- Kun Li
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Peibei Sun
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Yayan Wang
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Tian Gao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Dongwang Zheng
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Ajuan Liu
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Ya Ni
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
33
|
Ebrahimi B, Keshtgar S. The Effects of EGTA on the Quality of Fresh and Cryopreserved-Thawed Human Spermatozoa. IRANIAN JOURNAL OF MEDICAL SCIENCES 2020; 45:188-198. [PMID: 32546885 PMCID: PMC7253491 DOI: 10.30476/ijms.2019.45787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Sperm cryopreservation-thawing process has damaging effects on the structure and function of sperm, namely cryoinjury.
Calcium overload has been reported as a postulated mechanism for sperm damage during the first steps after thawing.
This study was designed to assess the intracellular calcium (Ca2+i) after cryopreservation and to clarify the role
of a calcium chelator ethylene glycol-bis (2-aminoethyl ether)-N, N, N′, N′-tetraacetic acid (EGTA) on human sperm quality. Methods: Forty semen samples were obtained from fertile men (March 2017 to 2018). The samples were randomly divided into fresh (F)
and cryopreserved-thawed (CT) groups. The F and CT samples were divided into control and 1 mM EGTA-treated groups.
Sperm kinematics and membrane integrity were assessed. The reactive oxygen species (ROS) and adenosine triphosphate
(ATP) were measured by luminescent methods. Ca2+i, apoptotic rate, and mitochondrial membrane potential (MMP) were
evaluated using flow cytometric methods. Data were compared using SPSS software, version 16.0 by ANOVA and Kruskal-Wallis test. P<0.05 was considered as significant. Results: Cryopreservation decreased sperm motility, viability, membrane integrity, Ca2+i, MMP, and induced cell apoptosis
and ROS production. EGTA could not protect the cryopreserved sperm from cryoinjury. It was found to have destructive
effects on fresh sperm motility and viability (P=0.009) relative to cryopreserved sperm. ATP was reduced (P=0.02)
and ROS production (P=0.0001) was increased in the EGTA-treated F and CT sperms. Conclusion: Despite Ca2+i reduction by EGTA, it had no protective effects on fresh or cryopreserved sperm. We concluded that sperm
cryoinjury was not dependent on calcium overload, and it was suggested that cryoinjury was mainly related to cell membranes damage.
Collapse
Affiliation(s)
- Bahareh Ebrahimi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Keshtgar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Jackson JW, Rivera-Marquez GM, Beebe K, Tran AD, Trepel JB, Gestwicki JE, Blagg BS, Ohkubo S, Neckers LM. Pharmacologic dissection of the overlapping impact of heat shock protein family members on platelet function. J Thromb Haemost 2020; 18:1197-1209. [PMID: 32022992 PMCID: PMC7497839 DOI: 10.1111/jth.14758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Platelets play a pivotal role in hemostasis, wound healing, and inflammation, and are thus implicated in a variety of diseases, including cancer. Platelet function is associated with release of granule content, cellular shape change, and upregulation of receptors that promote establishment of a thrombus and maintenance of hemostasis. OBJECTIVES The role of heat shock proteins (Hsps) in modulating platelet function has been studied for a number of years, but comparative roles of individual Hsps have not been thoroughly examined. METHODS We utilized a panel of specific inhibitors of Hsp40, Hsp70, Hsp90, and Grp94 (the endoplasmic reticulum homolog of Hsp90) to assess their impact on several aspects of platelet function. RESULTS Inhibition of each of the aforementioned Hsps reduced alpha granule release. In contrast, there was some selectivity in impacts on dense granule release. Thromboxane synthesis was impaired after exposure to inhibitors of Hsp40, Hsp90, and Grp94, but not after inhibition of Hsp70. Both expression of active glycoprotein IIb/IIIa (GPIIb/IIIa) and fibrinogen-induced platelet shape change were diminished by our inhibitors. In contrast, aggregation was selectively abrogated after inhibition of Hsp40 or Hsp90. Lastly, activated platelet-cancer cell interactions were reduced by inhibition of both Hsp70 and Grp94. CONCLUSIONS These data suggest the importance of Hsp networks in regulating platelet activity.
Collapse
Affiliation(s)
- Joseph W. Jackson
- Urologic Oncology Branch, Center for Cancer Research,
National Cancer Institute, NIH, Bethesda, Maryland
| | - Genesis M. Rivera-Marquez
- Urologic Oncology Branch, Center for Cancer Research,
National Cancer Institute, NIH, Bethesda, Maryland
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research,
National Cancer Institute, NIH, Bethesda, Maryland
| | - Andy D. Tran
- Confocal Microscopy Core Facility, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jane B. Trepel
- Developmental Therapeutics Branch, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry and the
Institute for Neurodegenerative Disease, University of California at San Francisco,
San Francisco, California
| | - Brian S.J. Blagg
- Department of Chemistry and Biochemistry, The
University of Notre Dame, Notre Dame, Illinois
| | - Shuichi Ohkubo
- Tsukuba Research Center, Taiho
Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Leonard M. Neckers
- Urologic Oncology Branch, Center for Cancer Research,
National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
35
|
Castillo J, Bogle OA, Jodar M, Torabi F, Delgado-Dueñas D, Estanyol JM, Ballescà JL, Miller D, Oliva R. Proteomic Changes in Human Sperm During Sequential in vitro Capacitation and Acrosome Reaction. Front Cell Dev Biol 2019; 7:295. [PMID: 31824947 PMCID: PMC6879431 DOI: 10.3389/fcell.2019.00295] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
The male gamete is not completely mature after ejaculation and requires further events in the female genital tract to acquire fertilizing ability, including the processes of capacitation and acrosome reaction. In order to shed light on protein changes experienced by the sperm cell in preparation for fertilization, a comprehensive quantitative proteomic profiling based on isotopic peptide labeling and liquid chromatography followed by tandem mass spectrometry was performed on spermatozoa from three donors of proven fertility under three sequential conditions: purification with density gradient centrifugation, incubation with capacitation medium, and induction of acrosome reaction by exposure to the calcium ionophore A23187. After applying strict selection criteria for peptide quantification and for statistical analyses, 36 proteins with significant changes in their relative abundance within sperm protein extracts were detected. Moreover, the presence of peptide residues potentially harboring sites for post-translational modification was revealed, suggesting that protein modification may be an important mechanism in sperm maturation. In this regard, increased levels of proteins mainly involved in motility and signaling, both regulated by protein modifiers, were detected in sperm lysates following incubation with capacitation medium. In contrast, less abundant proteins in acrosome-reacted cell lysates did not contain potentially modifiable residues, suggesting the possibility that all those proteins might be relocated or released during the process. Protein-protein interaction analysis revealed a subset of proteins potentially involved in sperm maturation, including the proteins Erlin-2 (ERLIN2), Gamma-glutamyl hydrolase (GGH) and Transmembrane emp24 domain-containing protein 10 (TMED10). These results contribute to the current knowledge of the molecular basis of human fertilization. It should now be possible to further validate the potential role of the detected altered proteins as modulators of male infertility.
Collapse
Affiliation(s)
- Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Orleigh Adeleccia Bogle
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Forough Torabi
- LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - David Delgado-Dueñas
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Josep Maria Estanyol
- Proteomics Unit, Scientific and Technical Services, Universitat de Barcelona, Barcelona, Spain
| | - Josep Lluís Ballescà
- Clinic Institute of Gynaecology, Obstetrics and Neonatology, Hospital Clínic, Barcelona, Spain
| | - David Miller
- LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
36
|
Goodson SG, White S, Stevans AM, Bhat S, Kao CY, Jaworski S, Marlowe TR, Kohlmeier M, McMillan L, Zeisel SH, O'Brien DA. CASAnova: a multiclass support vector machine model for the classification of human sperm motility patterns. Biol Reprod 2018; 97:698-708. [PMID: 29036474 DOI: 10.1093/biolre/iox120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/01/2017] [Indexed: 12/11/2022] Open
Abstract
The ability to accurately monitor alterations in sperm motility is paramount to understanding multiple genetic and biochemical perturbations impacting normal fertilization. Computer-aided sperm analysis (CASA) of human sperm typically reports motile percentage and kinematic parameters at the population level, and uses kinematic gating methods to identify subpopulations such as progressive or hyperactivated sperm. The goal of this study was to develop an automated method that classifies all patterns of human sperm motility during in vitro capacitation following the removal of seminal plasma. We visually classified CASA tracks of 2817 sperm from 18 individuals and used a support vector machine-based decision tree to compute four hyperplanes that separate five classes based on their kinematic parameters. We then developed a web-based program, CASAnova, which applies these equations sequentially to assign a single classification to each motile sperm. Vigorous sperm are classified as progressive, intermediate, or hyperactivated, and nonvigorous sperm as slow or weakly motile. This program correctly classifies sperm motility into one of five classes with an overall accuracy of 89.9%. Application of CASAnova to capacitating sperm populations showed a shift from predominantly linear patterns of motility at initial time points to more vigorous patterns, including hyperactivated motility, as capacitation proceeds. Both intermediate and hyperactivated motility patterns were largely eliminated when sperm were incubated in noncapacitating medium, demonstrating the sensitivity of this method. The five CASAnova classifications are distinctive and reflect kinetic parameters of washed human sperm, providing an accurate, quantitative, and high-throughput method for monitoring alterations in motility.
Collapse
Affiliation(s)
- Summer G Goodson
- University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, North Carolina, USA
| | - Sarah White
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alicia M Stevans
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Sanjana Bhat
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Chia-Yu Kao
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott Jaworski
- University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, North Carolina, USA
| | - Tamara R Marlowe
- University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, North Carolina, USA
| | - Martin Kohlmeier
- University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, North Carolina, USA.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leonard McMillan
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven H Zeisel
- University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, North Carolina, USA.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Deborah A O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
37
|
Li K, Li R, Ni Y, Sun P, Liu Y, Zhang D, Huang H. Novel distance-progesterone-combined selection approach improves human sperm quality. J Transl Med 2018; 16:203. [PMID: 30029659 PMCID: PMC6053761 DOI: 10.1186/s12967-018-1575-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023] Open
Abstract
Background Sperm selection is essential for the health of offspring conceived via assistive reproductive technology (ART). Various methods of sperm preparation for in vitro fertilization and intracytoplasmic sperm injection have been developed to acquire sperm with better quality and to avoid potential genetic disorders. However, current sperm processing and selection techniques bypass the natural selection that occurs during fertilization in vivo. The aim of this study was to present a novel distance-progesterone-combined selection approach with an original device based on the human female reproductive tract, and to report on its effectiveness based on sperm progressive motility, as well as chemotaxis. Methods A novel device with long distance channels which mimicked the female human reproductive system was designed and fabricated. This ready-to-be-used device was developed using a progesterone gradient and human tube fluid media. Sperm swam for 150 min in the device under conditions of 37 °C air temperature with 5% CO2 after separation from seminal plasma via discontinuous Percoll gradient treatment. The selected sperm were assessed for normal morphology using Diff-Quik staining. A chromatin diffusion assay assessed sperm for DNA fragments and apoptosis was assessed using annexin V-fluorescein isothiocyanate/propidium iodide fluorescent staining. Results Our distance-progesterone-combined sperm selection method was successfully established. After sperm were selected, the percentage of sperm with normal morphology increased (before vs. after selection, 11.2 ± 1.3% vs. 40.3 ± 6.6%, P = 0.000), the percentage of sperm with DNA fragmentation decreased (before vs. after selection, 15.4 ± 4.0% vs. 6.8 ± 3.3%, P = 0.001), and the percentage of sperm with apoptosis did not change significantly. Conclusions Our newly-developed method is capable of successfully selecting sperm of high quality. The method will be benefit clinical ART practice as it can reduce sperm-related genetic risks. Electronic supplementary material The online version of this article (10.1186/s12967-018-1575-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kun Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.,Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China.,Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, 310006, China
| | - Rui Li
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Ya Ni
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Peibei Sun
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Ye Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.,Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Dan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.,Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, 310006, China
| | - Hefeng Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China. .,Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University, Hangzhou, 310006, China. .,International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China. .,Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
38
|
Sagare-Patil V, Modi D. Identification of motility-associated progesterone-responsive differentially phosphorylated proteins. Reprod Fertil Dev 2018; 29:1115-1129. [PMID: 27166179 DOI: 10.1071/rd15492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/09/2016] [Indexed: 12/19/2022] Open
Abstract
Progesterone is one of the regulators of sperm motility and hyperactivation. In human spermatozoa, the effects of progesterone are thought to be mediated by protein phosphorylation. In the present study, we identified 22 proteins that are differentially phosphorylated (12 phosphorylated and 10 dephosphorylated) by progesterone in human spermatozoa. Functionally, the differentially phosphorylated proteins are predicted to have cytoskeletal localisation and to be associated with sperm motility. 5µM of progesterone to capacitated increased the phosphorylation of tyrosine residues in the principal piece and protein tyrosine kinase activity increased by almost 3.5-fold. For the first time, we demonstrate that tyrosine phosphatases are also activated in response to progesterone and that inhibition of tyrosine phosphatases attenuates dephosphorylation of flagellar proteins. We propose that progesterone activates both kinase and phosphatase pathways, leading to changes in the phosphorylation of many proteins in sperm flagella to increase motility.
Collapse
Affiliation(s)
- V Sagare-Patil
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health, Indian Council of Medical Research, JM Street, Parel, Mumbai 400012, India
| | - D Modi
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health, Indian Council of Medical Research, JM Street, Parel, Mumbai 400012, India
| |
Collapse
|
39
|
Xi MD, Li P, Du H, Qiao XM, Liu ZG, Wei WQ. Geranylgeranylacetone induction of HSP90α exerts cryoprotective effect on Acipenser sinensis sperm. Anim Reprod Sci 2018; 193:19-25. [PMID: 29724523 DOI: 10.1016/j.anireprosci.2018.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
Heat Shock Protein 90 (HSP90) is a fertility-associated protein, the expression of which positively correlates with sperm quality in many species. Geranylgeranylacetone (GGA) is reported to induce expression of HSP90. The present study aimed to investigate whether GGA induced expression of HSP90 in Acipenser sinensis sperm to exert a cryoprotective effect. Sperm from five male A. sinensis was combined with extender containing 20 mmol/L tris pH = 8.1, 10% v/v methanol, 2-5 mmol/L KCl, 15 mmol/L lactose, and 15 mmol/L trehalose, with GGA at 0, 14, 67, 135, 673, 1346, or 6731 μmol/L. After cryopreservation and thawing, the percentage of motile spermatozoa, spermatozoon curvilinear velocity (VCL), straight-line velocity (VSL), average path velocity (VAP), acrosome integrity, and membrane integrity, as well as fertility were evaluated. Sperm quality increased with the increase of GGA to 673 μmol/L, but decreased at higher concentrations. Expression levels of HSP90α were detected by Western blot in sperm frozen with GGA at 673 μmol/L (highest obtained sperm quality), 6731 μmol/L (highest GGA concentration), and a control without GGA. The expression of HSP90α increased with the increase in GGA, with lowest expression observed in the control. GGA was found to induce increase of HSP90α, and this increase was associated with higher quality cryopreserved sperm at concentrations ≤673 μmol/L. This research suggests a viable technique to increase the quality of cryopreserved A. sinensis sperm by adding GGA to induce expression of HSP90α.
Collapse
Affiliation(s)
- Meng Dan Xi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Science, Beijing 100049, China; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ping Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xin Mei Qiao
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhi Gang Liu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Wei Qi Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
40
|
Pini T, Rickard JP, Leahy T, Crossett B, Druart X, de Graaf SP. Cryopreservation and egg yolk medium alter the proteome of ram spermatozoa. J Proteomics 2018; 181:73-82. [PMID: 29627624 DOI: 10.1016/j.jprot.2018.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/23/2018] [Accepted: 04/01/2018] [Indexed: 12/26/2022]
Abstract
Cryopreservation causes significant lethal and sub-lethal damage to spermatozoa. In order to improve freezing outcomes, a comprehensive understanding of sub-lethal damage is required. Cryopreservation induced changes to sperm proteins have been investigated in several species, but few have employed currently available state of the art, data independent acquisition mass spectrometry (MS) methods. We used the SWATH LC-MS method to quantitatively profile proteomic changes to ram spermatozoa following exposure to egg yolk and cryopreservation. Egg yolk contributed 15 proteins to spermatozoa, including vitellogenins, apolipoproteins and complement component C3. Cryopreservation significantly altered the abundance of 51 proteins. Overall, 27 proteins increased (e.g. SERPINB1, FER) and 24 proteins decreased (e.g. CCT subunits, CSNK1G2, TOM1L1) in frozen thawed ram spermatozoa, compared to fresh spermatozoa. Chaperones constituted 20% of the proteins lost from spermatozoa following cryopreservation. These alterations may interfere with both normal cellular functioning and the ability of frozen thawed spermatozoa to appropriately respond to stress. This is the first study to apply SWATH mass spectrometry techniques to characterise proteins contributed by egg yolk based freezing media and to profile cryopreservation induced proteomic changes to ram spermatozoa. SIGNIFICANCE This study profiles changes to the sperm proteome induced by exposure to egg yolk based media and the process of cryopreservation, and the biological consequences are discussed.
Collapse
Affiliation(s)
- T Pini
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| | - J P Rickard
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - T Leahy
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - B Crossett
- Sydney Mass Spectrometry, The University of Sydney, NSW 2006, Australia
| | - X Druart
- UMR6175 INRA, CNRS-Université de Tours-Haras Nationaux, Station de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | - S P de Graaf
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
41
|
Cordero-Martínez J, Reyes-Miguel T, Rodríguez-Páez L, Garduño-Siciliano L, Maldonado-García D, Roa-Espitia AL, Hernández-González EO. TMEM16A inhibition impedes capacitation and acquisition of hyperactivated motility in guinea pig sperm. J Cell Biochem 2018; 119:5944-5959. [PMID: 29600587 DOI: 10.1002/jcb.26789] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 02/12/2018] [Indexed: 11/12/2022]
Abstract
Ca2+ -activated Cl- channels (CaCCs) are anionic channels that regulate many important physiological functions associated with chloride and calcium flux in some somatic cells. The molecular identity of CaCCs was revealed to be TMEM16A and TMEM16B (also known as Anoctamin or ANO1 and ANO2, respectively) in all eukaryotes. A recent study suggests the presence of TMEM16A in human sperm and a relationship with the rhZP-induced acrosome reaction. However, to the best of our knowledge, little is known about the role of TMEM16A in other spermatic processes such as capacitation or motility. In this study, we evaluated the effects of two TMEM16A antagonists on capacitation, acrosome reaction, and motility in guinea pig sperm; these antagonists were T16Ainh-A01, belonging to a second generation of potent antagonists of TMEM16A, and niflumic acid (NFA), a well-known antagonist of TMEM16A (CaCCs). First of all, we confirmed that the absence of Cl- in the capacitation medium changes motility parameters, capacitation, and the progesterone-induced acrosome reaction. Using a specific antibody, TMEM16A was found as a protein band of ∼120 kDa, which localization was in the apical crest of the acrosome and the middle piece of the flagellum. Inhibition of TMEM16A by T16Ainh-A01 affected sperm physiology by reducing capacitation, blocking the progesterone-induced acrosome reaction under optimal capacitation conditions, inhibiting progressive motility, and the acquisition of hyperactivated motility, diminishing [Ca2+ ]i, and increasing [Cl- ]i. These changes in sperm kinematic parameters provide new evidence of the important role played by TMEM16A in the production of sperm capable of fertilizing oocytes.
Collapse
Affiliation(s)
- Joaquín Cordero-Martínez
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional, San Pedro Zacatenco, Del. Gustavo A. Madero, México City, Mexico.,Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación Manuel Carpio y Plan de Ayala s/n Col, Santo Tomás, Del. Miguel Hidalgo, México City, Mexico
| | - Tania Reyes-Miguel
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional, San Pedro Zacatenco, Del. Gustavo A. Madero, México City, Mexico
| | - Lorena Rodríguez-Páez
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación Manuel Carpio y Plan de Ayala s/n Col, Santo Tomás, Del. Miguel Hidalgo, México City, Mexico
| | - Leticia Garduño-Siciliano
- Laboratorio de Toxicología de Productos Naturales. Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prol. Av. Wilfrido Massieu s/n, esq. Manuel L. Stampa, Col. Unidad Profesional Adolfo López Mateos, Del. Gustavo A. Madero, México City, Mexico
| | - Deneb Maldonado-García
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional, San Pedro Zacatenco, Del. Gustavo A. Madero, México City, Mexico
| | - Ana L Roa-Espitia
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional, San Pedro Zacatenco, Del. Gustavo A. Madero, México City, Mexico
| | - Enrique O Hernández-González
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional, San Pedro Zacatenco, Del. Gustavo A. Madero, México City, Mexico
| |
Collapse
|
42
|
Jin SK, Yang WX. Factors and pathways involved in capacitation: how are they regulated? Oncotarget 2018; 8:3600-3627. [PMID: 27690295 PMCID: PMC5356907 DOI: 10.18632/oncotarget.12274] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023] Open
Abstract
In mammals, fertilization occurs via a comprehensive progression of events. Freshly ejaculated sperm have yet to acquire progressive motility or fertilization ability. They must first undergo a series of biochemical and physiological changes, collectively known as capacitation. Capacitation is a significant prerequisite to fertilization. During the process of capacitation, changes in membrane properties, intracellular ion concentration and the activities of enzymes, together with other protein modifications, induce multiple signaling events and pathways in defined media in vitro or in the female reproductive tract in vivo. These, in turn, stimulate the acrosome reaction and prepare spermatozoa for penetration of the egg zona pellucida prior to fertilization. In the present review, we conclude all mainstream factors and pathways regulate capacitation and highlight their crosstalk. We also summarize the relationship between capacitation and assisted reproductive technology or human disease. In the end, we sum up the open questions and future avenues in this field.
Collapse
Affiliation(s)
- Shi-Kai Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Riesco MF, Oliveira C, Soares F, Gavaia PJ, Dinis MT, Cabrita E. Solea senegalensis sperm cryopreservation: New insights on sperm quality. PLoS One 2017; 12:e0186542. [PMID: 29053706 PMCID: PMC5650144 DOI: 10.1371/journal.pone.0186542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/03/2017] [Indexed: 11/19/2022] Open
Abstract
Cryopreservation of Senegalese sole sperm can represent an alternative to overcome some reproductive problems of this species. However, it is important to guarantee the safe use of cryopreserved sperm by selecting an appropriate protocol according to a high demand quality need to be ensured. It has been demonstrated that traditional assays such as motility and viability do not provide enough information to identify specific damage caused by cryopreservation process (freezing and thawing). Specific tests, including lipid peroxidation and DNA damage, should be performed. In the present study, motility and lipid peroxidation were performed as specific tests allowing us to discard cryopreservation conditions such as methanol as internal cryoprotectant and bovine serum albumin as external cryoprotectant. In addition, a caspase 3/7 detection by flow cytometry was performed to analyze apoptosis activity in the best selected conditions. Moreover, new highly sensitive tests based on transcript number detection have recently been described in fish sperm cryopreservation. For this reason, a transcript level detection assay was performed on certain oxidative and chaperone genes related to fertilization ability and embryo development (hsp70, hsp90BB, hsp90AA, gpx) to select the best cryopreservation conditions. DMSO+ egg yolk proved to be the best cryoprotectant combination in terms of transcript level. This study describes an optimized cryopreservation protocol for Solea senegalensis sperm demonstrating for the first time that transcript degradation is the most sensitive predictor of cell status in this species after cryopreservation.
Collapse
Affiliation(s)
- Marta F. Riesco
- CCMAR, University of Algarve, Campus of Gambelas, Faro, Portugal
| | | | | | - Paulo J. Gavaia
- CCMAR, University of Algarve, Campus of Gambelas, Faro, Portugal
- DCBM, University of Algarve, Campus of Gambelas, Faro, Portugal
| | - María T. Dinis
- CCMAR, University of Algarve, Campus of Gambelas, Faro, Portugal
| | - Elsa Cabrita
- CCMAR, University of Algarve, Campus of Gambelas, Faro, Portugal
- * E-mail:
| |
Collapse
|
44
|
Calle-Guisado V, Bragado MJ, García-Marín LJ, González-Fernández L. HSP90 maintains boar spermatozoa motility and mitochondrial membrane potential during heat stress. Anim Reprod Sci 2017; 187:13-19. [PMID: 29032866 DOI: 10.1016/j.anireprosci.2017.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/06/2017] [Accepted: 09/21/2017] [Indexed: 11/26/2022]
Abstract
Heat Shock Proteins (HSP) is a family of proteins that protects cells from high temperatures. The present work aimed to elucidate the role that HSP90 exerts on boar sperm incubated under heat stress conditions on viability, total motility (TM), progressive motility (PM), acrosome status, mitochondrial membrane potential and plasma membrane lipid organization. Sperm were incubated in non-capacitating conditions (Tyrode's basal medium or TBM) for 3, 8 and 24h or in capacitating conditions (Tyrode's complete medium or TCM) for 4h at 38.5°C or 40°C (Heat stress) in the presence or absence of 5 or 20μM of 17-AAG, a specific HSP90 inhibitor. Sperm viability was not affected by the presence of 17-AAG in any condition tested compared with its own control (at the same temperature and incubation time). In non-capacitating conditions TM (22.7±4.1 vs. 1.9±1.1; % mean±SEM), PM (3.1±0.9 vs. 0) and high mitochondrial membrane potential (19.5±2.2 vs. 11.8±0.8) decreased significantly in sperm incubated at 40°C for 24h in the presence of 20μM 17-AAG (control vs. 20μM 17-AAG, respectively; p<0.05). In sperm incubated at 38.5°C only a mild decrease in TM was observed (48.7±3.1 vs. 32.1±4.8; control vs. 20μM 17-AAG, respectively; p<0.05). However, under capacitating conditions none of the sperm parameters studied were affected by 17-AAG after 4h of incubation. These results demonstrate for the first time the role of HSP90 in the maintenance of boar sperm motility and mitochondrial membrane potential during prolonged heat stress in non-capacitating conditions.
Collapse
Affiliation(s)
- V Calle-Guisado
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, Cáceres, Spain
| | - M J Bragado
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, Cáceres, Spain
| | - L J García-Marín
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, Cáceres, Spain
| | - L González-Fernández
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, Cáceres, Spain.
| |
Collapse
|
45
|
Gazo I, Dietrich MA, Prulière G, Shaliutina-Kolešová A, Shaliutina O, Cosson J, Chenevert J. Protein phosphorylation in spermatozoa motility of Acipenser ruthenus and Cyprinus carpio. Reproduction 2017; 154:653-673. [PMID: 28851826 DOI: 10.1530/rep-16-0662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 08/17/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022]
Abstract
Spermatozoa of externally fertilizing freshwater fish possess several different modes of motility activation. Spermatozoa of common carp (Cyprinus carpio L.) are activated by hypoosmolality, whereas spermatozoa of sterlet (Acipenser ruthenus) require Ca2+ and low concentration of K+ for motility activation. Intracellular signaling differs between these two species as well, particularly in terms of utilization of secondary messengers (cAMP and Ca2+), and kinase activities. The current study was performed in order to determine the importance of protein phosphorylation and protein kinases for activation of sperm motility in carp and sterlet. Treatment with kinase inhibitors indicates that protein kinases A and C (PKA and PKC) participate in spermatozoa motility of both species. Immunodetection of phospho-(Ser/Thr) PKA substrates shows that phosphorylated proteins are localized differently in spermatozoa of carp and sterlet. Strong phosphorylation of PKC substrate was observed in flagella of sterlet spermatozoa, whereas in carp sperm, PKC substrates were lightly phosphorylated in the midpiece and flagella. Motility activation induced either phosphorylation or dephosphorylation on serine, threonine and tyrosine residues of numerous proteins in carp and sterlet spermatozoa. Proteomic methods were used to identify proteins whose phosphorylation state changes upon the initiation of sperm motility. Numerous mitochondrial and glycolytic enzymes were identified in spermatozoa of both species, as well as axonemal proteins, heat shock proteins, septins and calcium-binding proteins. Our results contribute to an understanding of the roles of signaling molecules, protein kinases and protein phosphorylation in motility activation and regulation of two valuable fish species, C. carpio and A. ruthenus.
Collapse
Affiliation(s)
- Ievgeniia Gazo
- University of South Bohemia in Cˇeské Budeˇjovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnˇany, Czech Republic
| | - Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Gérard Prulière
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Villefranche sur-mer, France
| | - Anna Shaliutina-Kolešová
- University of South Bohemia in Cˇeské Budeˇjovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnˇany, Czech Republic
| | - Olena Shaliutina
- University of South Bohemia in Cˇeské Budeˇjovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnˇany, Czech Republic
| | - Jacky Cosson
- University of South Bohemia in Cˇeské Budeˇjovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnˇany, Czech Republic
| | - Janet Chenevert
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, Villefranche sur-mer, France
| |
Collapse
|
46
|
Sagare-Patil V, Bhilawadikar R, Galvankar M, Zaveri K, Hinduja I, Modi D. Progesterone requires heat shock protein 90 (HSP90) in human sperm to regulate motility and acrosome reaction. J Assist Reprod Genet 2017; 34:495-503. [PMID: 28236106 DOI: 10.1007/s10815-017-0879-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/19/2017] [Indexed: 01/07/2023] Open
Abstract
PURPOSE The aims of this paper were to study whether heat shock protein 90 (HSP90) is a regulator of sperm functions and to determine its association with oligoasthenozoospermia. METHODS The levels of HSP90 in sperm lysates were measured by ELISA. Localization of HSP90 and its isoforms was evaluated by immunofluorescence. Sperm motility and kinetics were assessed by computer-assisted sperm analysis. Acrosome reaction was determined by lectin staining. RESULTS The levels of HSP90 were lower in oligoasthenozoospermic men and correlated positively with the number of motile spermatozoa. In capacitated human spermatozoa, HSP90α was mostly found in residual nuclear envelope, and the HSP90β isoform was higher in the flagella. Inhibition of HSP90 by geldanamycin or 17-AAG did not affect basal motility, but suppressed progesterone-mediated forward progressive motility, hyperactivation and acrosome reaction. Progesterone treatment dephosphorylated both HSP90α and HSP90β at Ser/Thr-Pro residues, but not Tyr residues. CONCLUSION HSP90 levels are downregulated in oligoasthenozoospermia, and its functional inhibition attenuates progesterone-mediated sperm motility and acrosome reaction.
Collapse
Affiliation(s)
- Vrushali Sagare-Patil
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health (ICMR), J. M. Street, Parel, Mumbai, 400012, India
| | - Rashmi Bhilawadikar
- Hinduja IVF Centre, PD Hinduja Hospital and Medical Research Center, Veer Savarkar Marg, Mahim, Mumbai, 400016, India
| | - Mosami Galvankar
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health (ICMR), J. M. Street, Parel, Mumbai, 400012, India
| | - Kusum Zaveri
- Hinduja IVF Centre, PD Hinduja Hospital and Medical Research Center, Veer Savarkar Marg, Mahim, Mumbai, 400016, India
| | - Indira Hinduja
- Hinduja IVF Centre, PD Hinduja Hospital and Medical Research Center, Veer Savarkar Marg, Mahim, Mumbai, 400016, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health (ICMR), J. M. Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
47
|
Bogle OA, Kumar K, Attardo-Parrinello C, Lewis SEM, Estanyol JM, Ballescà JL, Oliva R. Identification of protein changes in human spermatozoa throughout the cryopreservation process. Andrology 2016; 5:10-22. [PMID: 27860400 DOI: 10.1111/andr.12279] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/15/2016] [Accepted: 07/30/2016] [Indexed: 01/11/2023]
Abstract
Cryoinjury is a consequence of cryopreservation and may have a negative impact on sperm quality regarding motility, morphology, and viability. This study was designed to identify potential proteomic changes in human sperm cells throughout the cryopreservation process. Comparisons made within this study included the detection of the sperm proteomic changes induced by incubation of the sperm cells with a protein-free cryoprotectant (with and without CryoSperm), and the proteomic changes induced by freezing, thawing, and subsequent after-thawing incubation at two different temperatures (0 °C vs. 23 °C). Tandem Mass Tag (TMT) peptide labeling coupled with LC-MS/MS was used for protein quantification. LC-MS/MS resulted in the identification of 769 quantifiable proteins. The abundance of 105 proteins was altered upon CryoSperm incubation. Freezing and thawing also induced substantial protein changes. However, fewer changes were observed when semen was thawed and then maintained after-thawing at approximately 0 °C than when it was maintained after-thawing at 23 °C, with 60 and 99 differential proteins detected, respectively, as compared to unfrozen semen incubated in CryoSperm. Collectively, these differences indicate that substantial changes occur in the sperm proteome at every stage of the cryopreservation process which may ultimately impair the sperm fertilizing capability. This is the first study to compare protein levels in fresh and cryopreserved semen using the TMT technology coupled to LC-MS/MS.
Collapse
Affiliation(s)
- O A Bogle
- Molecular Biology of Reproduction and Development Research Group, Department of Biomedicine, Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Biochemistry and Molecular Genetics Service, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - K Kumar
- Centre for Public Health, Reproductive Medicine, Institute of Clinical Science, Queen's University Belfast, Northern Ireland, UK
| | - C Attardo-Parrinello
- Molecular Biology of Reproduction and Development Research Group, Department of Biomedicine, Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Biochemistry and Molecular Genetics Service, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - S E M Lewis
- Centre for Public Health, Reproductive Medicine, Institute of Clinical Science, Queen's University Belfast, Northern Ireland, UK
| | - J M Estanyol
- Proteomics Unit, Scientific Technical Services, University of Barcelona, Barcelona, Spain
| | - J L Ballescà
- Clinic Institute of Gynecology, Obstetrics and Neonatology, Clinic Hospital, Barcelona, Spain
| | - R Oliva
- Molecular Biology of Reproduction and Development Research Group, Department of Biomedicine, Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Biochemistry and Molecular Genetics Service, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
48
|
Majewska AM, Kordan W, Koziorowska-Gilun M, Wysocki P. Identification and changes in the seasonal concentrations of heat shock proteins in roe deer (Capreolus capreolus
) epididymides. Reprod Domest Anim 2016; 52:107-114. [DOI: 10.1111/rda.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/01/2016] [Indexed: 11/29/2022]
Affiliation(s)
- AM Majewska
- Department of Animal Biochemistry and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - W Kordan
- Department of Animal Biochemistry and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - M Koziorowska-Gilun
- Department of Animal Biochemistry and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - P Wysocki
- Department of Animal Biochemistry and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| |
Collapse
|
49
|
Pini T, Leahy T, Soleilhavoup C, Tsikis G, Labas V, Combes-Soia L, Harichaux G, Rickard JP, Druart X, de Graaf SP. Proteomic Investigation of Ram Spermatozoa and the Proteins Conferred by Seminal Plasma. J Proteome Res 2016; 15:3700-3711. [PMID: 27636150 DOI: 10.1021/acs.jproteome.6b00530] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sperm proteomes have emerged for several species; however, the extent of species similarity is unknown. Sheep are an important agricultural species for which a comprehensive sperm proteome has not been produced. In addition, potential proteomic factors from seminal plasma that may contribute to improved fertility after cervical insemination are yet to be explored. Here we use liquid chromatography-tandem mass spectrometry to investigate the proteome of ejaculated ram spermatozoa, with quantitative comparison to epididymal spermatozoa. We also present a comparison to published proteomes of five other species. We identified 685 proteins in ejaculated ram spermatozoa, with the most abundant proteins involved in metabolic pathways. Only 5% of ram sperm proteins were not detected in other species, which suggest highly conserved structures and pathways. Of the proteins present in both epididymal and ejaculated ram spermatozoa, 7% were more abundant in ejaculated spermatozoa. Only two membrane-bound proteins were detected solely in ejaculated sperm lysates: liver enriched gene 1 (LEG1/C6orf58) and epidermal growth factor-like repeats and discoidin I-like domains 3 (EDIL3). This is the first evidence that despite its relatively complex proteomic composition, seminal plasma exposure leads to few novel proteins binding tightly to the ram sperm plasma membrane.
Collapse
Affiliation(s)
- Taylor Pini
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - Tamara Leahy
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| | | | - Guillaume Tsikis
- PRC, INRA, CNRS, IFCE, Université de Tours , 37380 Nouzilly, France
| | - Valerie Labas
- PRC, INRA, CNRS, IFCE, Université de Tours , 37380 Nouzilly, France
| | | | | | - Jessica P Rickard
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - Xavier Druart
- PRC, INRA, CNRS, IFCE, Université de Tours , 37380 Nouzilly, France
| | - Simon P de Graaf
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
50
|
Cordero-Martínez J, Aguirre-Alvarado C, Guzmán-Soriano JG, Sánchez-Arroyo CE, Flores-Alonso JC, Rodríguez-Páez L. Effects of aqueous crude extract ofEcheveria gibbifloraon mouse sperm function. Syst Biol Reprod Med 2016; 62:343-52. [DOI: 10.1080/19396368.2016.1203044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|