1
|
Chandra Sekar N, Khoshmanesh K, Baratchi S. Bioengineered models of cardiovascular diseases. Atherosclerosis 2024; 393:117565. [PMID: 38714426 DOI: 10.1016/j.atherosclerosis.2024.117565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
Age-associated cardiovascular diseases (CVDs), predominantly resulting from artery-related disorders such as atherosclerosis, stand as a leading cause of morbidity and mortality among the elderly population. Consequently, there is a growing interest in the development of clinically relevant bioengineered models of CVDs. Recent developments in bioengineering and material sciences have paved the way for the creation of intricate models that closely mimic the structure and surroundings of native cardiac tissues and blood vessels. These models can be utilized for basic research purposes and for identifying pharmaceutical interventions and facilitating drug discovery. The advancement of vessel-on-a-chip technologies and the development of bioengineered and humanized in vitro models of the cardiovascular system have the potential to revolutionize CVD disease modelling. These technologies offer pathophysiologically relevant models at a fraction of the cost and time required for traditional experimentation required in vivo. This progress signifies a significant advancement in the field, transitioning from conventional 2D cell culture models to advanced 3D organoid and vessel-on-a-chip models. These innovative models are specifically designed to explore the complexities of vascular aging and stiffening, crucial factors in the development of cardiovascular diseases. This review summarizes the recent progress of various bioengineered in vitro platforms developed for investigating the pathophysiology of human cardiovascular system with more focus on advanced 3D vascular platforms.
Collapse
Affiliation(s)
- Nadia Chandra Sekar
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, 3082, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Khashayar Khoshmanesh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Sara Baratchi
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, 3082, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
2
|
Acute Effects of Inorganic Nitrate Intake on Brachial and Femoral Flow-Mediated Vasodilation, and on Carotid Artery Reactivity Responses: Results of a Randomized, Double-Blinded, Placebo-Controlled Cross-Over Study in Abdominally Obese Men. Nutrients 2022; 14:nu14173560. [PMID: 36079817 PMCID: PMC9460748 DOI: 10.3390/nu14173560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/26/2022] Open
Abstract
Most trials on the effects of inorganic nitrate intake have focused on only one specific aspect of the endothelial cell response to a stimulus, thereby possibly missing other important effects. The aim of the present randomized, double-blinded, placebo-controlled cross-over study was therefore to investigate in eighteen healthy abdominally obese men (18–60 years, waist circumference ≥ 102 cm) acute effects of potassium nitrate on brachial and femoral flow-mediated vasodilation (FMD), and on carotid artery reactivity (CAR) to a cold pressure test. Participants received in random order a drink providing 10 mmol potassium nitrate (i.e., 625 mg of nitrate) or an iso-molar placebo drink with potassium chloride. Fasted and 4 h post-drink FMD and blood pressure measurements were performed. CAR responses were assessed at 4 h. Circulating nitrate plus nitrite concentration increased following nitrate intake (p = 0.003). Compared with placebo, potassium nitrate did not affect brachial (mean [95% confidence interval]: −0.2% [−2.5, 2.1], p = 0.86) and femoral FMD responses (−0.6% [−3.0; 1.7], p = 0.54). CAR responses were also not different (−0.8% [−2.5, 0.9], p = 0.32). Finally, changes in blood pressure and heart rate did not differ. No adverse events were observed. In conclusion, this trial did not provide evidence for effects of a single dose of inorganic nitrate on 4 h vascular endothelial function in abdominally obese men.
Collapse
|
3
|
Janssen EBNJ, Hooijschuur MCE, Lopes van Balen VA, Morina-Shijaku E, Spaan JJ, Mulder EG, Hoeks AP, Reesink KD, van Kuijk SMJ, van't Hof A, van Bussel BCT, Spaanderman MEA, Ghossein-Doha C. No accelerated arterial aging in relatively young women after preeclampsia as compared to normotensive pregnancy. Front Cardiovasc Med 2022; 9:911603. [PMID: 35966519 PMCID: PMC9371444 DOI: 10.3389/fcvm.2022.911603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Preeclampsia, an endothelial disorder of pregnancy, predisposes to remote cardiovascular diseases (CVD). Whether there is an accelerated effect of aging on endothelial decline in former preeclamptic women is unknown. We investigated if the arterial aging regarding endothelial-dependent and -independent vascular function is more pronounced in women with a history of preeclampsia as compared to women with a history of solely normotensive gestation(s). Methods Data was used from the Queen of Hearts study (ClinicalTrials.gov Identifier NCT02347540); a large cross-sectional study on early detection of cardiovascular disease among young women (≥18 years) with a history of preeclampsia and a control group of low-risk healthy women with a history of uncomplicated pregnancies. Brachial artery flow-mediated dilation (FMD; absolute, relative and allometric) and sublingually administered nitroglycerine-mediated dilation (NGMD; absolute and relative) were measured using ultrasound. Cross-sectional associations of age with FMD and NGMD were investigated by linear regression. Models were adjusted for body mass index, smoking, antihypertensive drug use, mean arterial pressure, fasting glucose, menopausal state, family history of CVD and stress stimulus during measurement. Effect modification by preeclampsia was investigated by including an interaction term between preeclampsia and age in regression models. Results Of the 1,217 included women (age range 22–62 years), 66.0% had a history of preeclampsia and 34.0% of normotensive pregnancy. Advancing age was associated with a decrease in relative FMD and NGMD (unadjusted regression coefficient: FMD: −0.48%/10 years (95% CI:−0.65 to −0.30%/10 years), NGMD: −1.13%/10 years (−1.49 to −0.77%/10 years)) and increase in brachial artery diameter [regression coefficient = 0.16 mm/10 years (95% CI 0.13 to 0.19 mm/10 years)]. Similar results were found when evaluating FMD and NGMD as absolute increase or allometrically, and after confounder adjustments. These age-related change were comparable in former preeclamptic women and controls (p-values interaction ≥0.372). Preeclampsia itself was independently associated with consistently smaller brachial artery diameter, but not with FMD and NGMD. Conclusion In young- to middle-aged women, vascular aging in terms of FMD and NGMD was not accelerated in women after preeclampsia compared to normotensive pregnancies, even though former preeclamptic women consistently have smaller brachial arteries.
Collapse
Affiliation(s)
- Emma B. N. J. Janssen
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- *Correspondence: Emma B. N. J. Janssen
| | - Mieke C. E. Hooijschuur
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Veronica A. Lopes van Balen
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Erjona Morina-Shijaku
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Julia. J. Spaan
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Eva G. Mulder
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Arnold P. Hoeks
- Department of Biomedical Engineering, MUMC+, Maastricht, Netherlands
| | - Koen D. Reesink
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Department of Biomedical Engineering, MUMC+, Maastricht, Netherlands
| | - Sander M. J. van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, MUMC+, Maastricht, Netherlands
| | - Arnoud van't Hof
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Department of Cardiology, MUMC+, Maastricht, Netherlands
- Department of Cardiology, Zuyderland Medical Centre, Heerlen, Netherlands
| | - Bas C. T. van Bussel
- Department of Intensive Care Medicine, MUMC+, Maastricht, Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, Netherlands
| | - Marc E. A. Spaanderman
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Chahinda Ghossein-Doha
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Department of Cardiology, MUMC+, Maastricht, Netherlands
| |
Collapse
|
4
|
Gong L, Liu Y. Effect of Exercise Training on Arterial Stiffness in Overweight or Obese Populations. Int J Sports Med 2022; 43:996-1012. [PMID: 35468651 PMCID: PMC9622304 DOI: 10.1055/a-1795-2940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose was to analyze the effects of exercise training (ET) on arterial
stiffness in all-age overweight or obese individuals. Sixty-one trials were
included with ET improving flow-mediated dilation (FMD), pulse wave velocity
(PWV), and intima-media thickness (IMT). In the subgroup analysis: (i) ET
improved FMD in overweight or obese children and adolescents with a large effect
size (SMD=0.83, 95% CI 0.42–1.25). PWV was decreased
after ET regardless of age. IMT was decreased by ET in participants younger than
60, (ii) ET improved FMD, PWV, and IMT in participants whose BMI were smaller
than 30 kg/m
2
, but ET only improved PWV of
participants whose BMI were larger than 30 kg/m
2
.
(iii) AE improved FMD, PWV, and IMT. High-intensity interval training (HIIT)
decreased IMT. (iv) The increase of FMD only happened when training duration was
longer than eight weeks. However, ET decreased PWV when the training duration
was no longer than 12 weeks. IMT was decreased when the training duration was
longer than eight weeks. ET instigated an improvement in endothelial function
and arterial stiffness in overweight or obese populations, but depending on the
different characteristics of exercise intervention and participants’
demographics.
Collapse
Affiliation(s)
- Lijing Gong
- Key Laboratory of Exercise and Physical Fitness, Ministry of Education, Beijing Sport University, Beijing, China
| | - Yujia Liu
- Physical education, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
5
|
Vatner SF, Zhang J, Vyzas C, Mishra K, Graham RM, Vatner DE. Vascular Stiffness in Aging and Disease. Front Physiol 2021; 12:762437. [PMID: 34950048 PMCID: PMC8688960 DOI: 10.3389/fphys.2021.762437] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023] Open
Abstract
The goal of this review is to provide further understanding of increased vascular stiffness with aging, and how it contributes to the adverse effects of major human diseases. Differences in stiffness down the aortic tree are discussed, a topic requiring further research, because most prior work only examined one location in the aorta. It is also important to understand the divergent effects of increased aortic stiffness between males and females, principally due to the protective role of female sex hormones prior to menopause. Another goal is to review human and non-human primate data and contrast them with data in rodents. This is particularly important for understanding sex differences in vascular stiffness with aging as well as the changes in vascular stiffness before and after menopause in females, as this is controversial. This area of research necessitates studies in humans and non-human primates, since rodents do not go through menopause. The most important mechanism studied as a cause of age-related increases in vascular stiffness is an alteration in the vascular extracellular matrix resulting from an increase in collagen and decrease in elastin. However, there are other mechanisms mediating increased vascular stiffness, such as collagen and elastin disarray, calcium deposition, endothelial dysfunction, and the number of vascular smooth muscle cells (VSMCs). Populations with increased longevity, who live in areas called “Blue Zones,” are also discussed as they provide additional insights into mechanisms that protect against age-related increases in vascular stiffness. Such increases in vascular stiffness are important in mediating the adverse effects of major cardiovascular diseases, including atherosclerosis, hypertension and diabetes, but require further research into their mechanisms and treatment.
Collapse
Affiliation(s)
- Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Jie Zhang
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Christina Vyzas
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Kalee Mishra
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, University of New South Wales, Darlinghurst, NSW, Australia
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
6
|
Age- and sex-related profiles for macro, macro/micro and microvascular reactivity indexes: Association between indexes and normative data from 2609 healthy subjects (3-85 years). PLoS One 2021; 16:e0254869. [PMID: 34280235 PMCID: PMC8289111 DOI: 10.1371/journal.pone.0254869] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Vascular reactivity (VR), defined as blood vessels’ capability to actively modify the diameter and flow resistances can be non-invasively assessed analyzing vascular response to forearm occlusion. Several VR indexes can be quantified: (i) ´microvascular´, which consider variables that depend almost exclusively on changes in distal resistances, (ii)´ macrovascular´, that evaluate the changes in brachial artery (BA) diameter, adjusting for blood flow stimulus, and (iii) ´macro/micro´, whose values depend on the micro and macrovascular response without discriminating each one´s contribution. VR indexes could not be associated. Many VR indexes have been used without availability of adequate normative data (reference intervals, RIs). Aims: (1) to evaluate macro, macro/micro and micro VR indexes obtained in a cohort of healthy children, adolescents and adults, (2) to evaluate the association between VR indexes, (3) to determine the need for age and/or sex-specific RIs, and (4) to define RIs for VR indexes. Methods: Ultrasound (B-mode/Doppler) and automatic computerized analysis were used to assess BA diameter, blood flow velocity and distal resistances, at rest and in conditions of decreased and increased blood flow. Macro, macro/micro and micro VR indexes were quantified (n = 3619). RIs-subgroups were defined according to European Reference Values for Arterial Measurements Collaboration Group (n = 1688, 3–84 years) and HUNT3-Fitness Study Group (n = 2609, 3–85 years) criteria. Mean value and standard deviation equations were obtained for VR indexes. The need for age or sex-specific RIs was analyzed. Percentile curves were defined and data were compared with those obtained in other populations. Conclusion: Macro and macro/micro VR indexes showed no association (or it was very weak) with microvascular indexes. Age- and sex-related profiles and RIs for macro, macro/micro and micro VR indexes were defined in a large population of healthy subjects (3–85 y). Equations for mean, standard deviation and percentiles values (year-to-year) were included in text and spreadsheet formats.
Collapse
|
7
|
Jin W, Chowienczyk P, Alastruey J. An in silico simulation of flow-mediated dilation reveals that blood pressure and other factors may influence the response independent of endothelial function. Am J Physiol Heart Circ Physiol 2020; 318:H1337-H1345. [PMID: 32302493 DOI: 10.1152/ajpheart.00703.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endothelial dysfunction is thought to underpin atherosclerotic cardiovascular disease. The most widely used in vivo test of endothelial function is flow-mediated dilation (FMD). However, the results of FMD may be subject to some confounding factors that are not fully understood. We investigated potential biophysical confounding factors that could cause a disassociation between FMD and true endothelial cell shear stress response (the release of endothelium-dependent relaxing factors in response to wall shear stress). Arterial hemodynamics during FMD was simulated using a novel computational modeling approach. The model included an endothelial response function relating changes in wall shear stress to changes in local vascular stiffness in the arm arteries and accounted for vascular stiffening with increasing blood pressure. The hemodynamic effects of cuff inflation and deflation were modeled by prescribing intraluminal arterial pressure changes and peripheral vasodilation. Evolution of arterial diameter and flow velocity during FMD was assessed by comparison against in vivo data. Our model revealed that vasoconstriction occurring immediately after cuff deflation is independent of endothelial response function and entirely caused by the change in transmural pressure along conduit arteries. Moreover, for the same endothelial response function model, FMD values increased exponentially with increasing peak flow velocity, decreased linearly with increasing arterial stiffness at a rate of 0.95%/MPa, and increased linearly with increasing central blood pressure at a rate of 0.22%/mmHg. Dependence of FMD on confounding factors, such as arterial stiffness and blood pressure, suggests that the current FMD test may not reflect the true endothelial cell response.NEW & NOTEWORTHY First, a novel computational model simulating arterial hemodynamics during flow-mediated dilation (FMD) was proposed. Second, the model was used to explain why FMD may be influenced by endothelium-independent factors, showing that FMD results are 1) partly masked by the vasoconstriction due to the change in transmural pressure and 2) affected by physiological factors (i.e., arterial stiffness and arterial blood pressure) that are difficult to eliminate due to their multiple interactions.
Collapse
Affiliation(s)
- Weiwei Jin
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Philip Chowienczyk
- British Heart Foundation Centre, Department of Clinical Pharmacology, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Jordi Alastruey
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Institute of Personalized Medicine, Sechenov University, Moscow, Russia
| |
Collapse
|
8
|
Oikonomou E, Siasos G, Tsigkou V, Bletsa E, Panoilia ME, Oikonomou IN, Sinanidis I, Spinou M, Papastavrou A, Kokosias G, Zaromitidou M, Stampouloglou P, Spartalis M, Vavuranakis M, Stefanadis C, Papavassiliou AG, Tousoulis D. Coronary Artery Disease and Endothelial Dysfunction: Novel Diagnostic and Therapeutic Approaches. Curr Med Chem 2020; 27:1052-1080. [PMID: 31470773 DOI: 10.2174/0929867326666190830103219] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Abstract
Coronary artery disease is the leading cause of morbidity and mortality worldwide. The most common pathophysiologic substrate is atherosclerosis which is an inflammatory procedure that starts at childhood and develops throughout life. Endothelial dysfunction is associated with the initiation and progression of atherosclerosis and is characterized by the impaired production of nitric oxide. In general, endothelial dysfunction is linked to poor cardiovascular prognosis and different methods, both invasive and non-invasive, have been developed for its evaluation. Ultrasound evaluation of flow mediated dilatation of the branchial artery is the most commonly used method to assessed endothelial function while intracoronary administration of vasoactive agents may be also be used to test directly endothelial properties of the coronary vasculature. Endothelial dysfunction has also been the subject of therapeutic interventions. This review article summarizes the knowledge about evaluation of endothelial function in acute coronary syndromes and stable coronary artery disease and demonstrates the current therapeutic approaches against endothelial dysfunction.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Gerasimos Siasos
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School and Harvard-MIT Biomedical Engineering Center, Massachusetts Institute of Technology, Boston, MA, United States
| | - Vasiliki Tsigkou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evanthia Bletsa
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria-Evi Panoilia
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Iris Niovi Oikonomou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Ilias Sinanidis
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Marianna Spinou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Angeliki Papastavrou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Georgios Kokosias
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Marina Zaromitidou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School and Harvard-MIT Biomedical Engineering Center, Massachusetts Institute of Technology, Boston, MA, United States
| | - Panagiota Stampouloglou
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Michail Spartalis
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Manolis Vavuranakis
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | | - Athanasios G Papavassiliou
- Department of Biological Chemistry, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimitris Tousoulis
- Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
9
|
Chen Z, Sultan LR, Schultz SM, Cary TW, Sehgal CM. Brachial flow-mediated dilation by continuous monitoring of arterial cross-section with ultrasound imaging. ULTRASOUND : JOURNAL OF THE BRITISH MEDICAL ULTRASOUND SOCIETY 2019; 27:241-251. [PMID: 31762781 DOI: 10.1177/1742271x19857770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022]
Abstract
Objective Impairment of flow-mediated dilation of the brachial artery is a marker of endothelial dysfunction and often predisposes atherosclerosis and cardiovascular events. In this study, we propose a user-guided automated approach for monitoring arterial cross-section during hyperemic response to improve reproducibility and sensitivity of flow-mediated dilation. Material and methods Ultrasound imaging of the brachial artery was performed in 11 volunteers in cross-sectional and in 5 volunteers in longitudinal view. During each examination, images were recorded continuously before and after inducing ischemia. Time-dilation curves of the brachial lumen cross-section were measured by user-guided automated segmentation of brachial images with the feed-forward active contour (FFAC) algorithm. %FMD was determined by the ratio of peak dilation to the baseline value. Each measurement was repeated twice in two sessions 1 h apart on the same arm to evaluate the reproducibility of the measurements. The intra-subject variation in flow-mediated dilation between two sessions (subject-specific) and inter-group variation in flow-mediated dilation with all the subjects within a session grouped together (group-specific) were measured for FFAC. The FFAC measurements were compared with the conventional diameter measurements made using echo tracking in longitudinal views. Results Flow-mediated dilation values for cross-sectional area were greater than those measured by diameter dilation: 33.1% for cross-sectional area compared to 22.5% for diameter. Group-specific flow-mediated dilation measurements for cross-sectional area were highly reproducible: 33.2% vs. 33.0% (p > 0.05) with coefficient of variation CV of 0.4%. The group-specific flow-mediated dilations measured by echo tracking for the two sessions were 21.1 vs. 23.9% with CV of 9%. Subject-specific CV for cross-sectional area by FFAC was 10% ± 2% versus 24% ± 10% for the conventional approach. Using correlation as a metric of evaluation also showed better performance for cross-sectional imaging: correlation coefficient, R, between two sessions for cross-sectional area was 0.92 versus 0.72 for the conventional approach based on diameter measurements. Conclusion Peak dilation area measured by continuous automated monitoring of cross-sectional area of the brachial artery provides more reproducible and higher-sensitivity measurement of flow-mediated dilation compared to the conventional approach of using vascular diameter measured using longitudinal imaging.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA.,Ultrasound Center, Peking University First Hospital, Beijing, China
| | - Laith R Sultan
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Susan M Schultz
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Theodore W Cary
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Chandra M Sehgal
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| |
Collapse
|
10
|
Jaminon A, Reesink K, Kroon A, Schurgers L. The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes. Int J Mol Sci 2019; 20:E5694. [PMID: 31739395 PMCID: PMC6888164 DOI: 10.3390/ijms20225694] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Arterial remodeling refers to the structural and functional changes of the vessel wall that occur in response to disease, injury, or aging. Vascular smooth muscle cells (VSMC) play a pivotal role in regulating the remodeling processes of the vessel wall. Phenotypic switching of VSMC involves oxidative stress-induced extracellular vesicle release, driving calcification processes. The VSMC phenotype is relevant to plaque initiation, development and stability, whereas, in the media, the VSMC phenotype is important in maintaining tissue elasticity, wall stress homeostasis and vessel stiffness. Clinically, assessment of arterial remodeling is a challenge; particularly distinguishing intimal and medial involvement, and their contributions to vessel wall remodeling. The limitations pertain to imaging resolution and sensitivity, so methodological development is focused on improving those. Moreover, the integration of data across the microscopic (i.e., cell-tissue) and macroscopic (i.e., vessel-system) scale for correct interpretation is innately challenging, because of the multiple biophysical and biochemical factors involved. In the present review, we describe the arterial remodeling processes that govern arterial stiffening, atherosclerosis and calcification, with a particular focus on VSMC phenotypic switching. Additionally, we review clinically applicable methodologies to assess arterial remodeling and the latest developments in these, seeking to unravel the ubiquitous corroborator of vascular pathology that calcification appears to be.
Collapse
Affiliation(s)
- Armand Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Koen Reesink
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Abraham Kroon
- Department of Internal Medicine, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
11
|
Maranna S, Hill A, Fairlie-Jones L, Osborne B, Davison K. Reliability of sonographic measurements of endothelial function: Flow-mediated dilation, blood flow velocity, resistive and pulsatility indices. SONOGRAPHY 2018. [DOI: 10.1002/sono.12138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sandhya Maranna
- School of Health Sciences; University of South Australia; South Australia Australia
| | - Alison Hill
- School of Pharmacy and Medical Sciences; University of South Australia; South Australia Australia
| | - Lucy Fairlie-Jones
- School of Pharmacy and Medical Sciences; University of South Australia; South Australia Australia
| | - Brooke Osborne
- School of Health Sciences; University of South Australia; South Australia Australia
| | - Kade Davison
- School of Health Sciences; University of South Australia; South Australia Australia
| |
Collapse
|
12
|
Zócalo Y, Marotta M, García-Espinosa V, Curcio S, Chiesa P, Giachetto G, Bia D. Children and Adolescents Macrovascular Reactivity Level and Dynamics, But Not the Microvascular Response, is Associated with Body Mass Index and Arterial Stiffness Levels. High Blood Press Cardiovasc Prev 2017; 24:371-386. [PMID: 28508133 DOI: 10.1007/s40292-017-0207-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION The existing evidence indicates that primary prevention of atherosclerotic disease should begin in childhood. Detection of children and adolescents at risk for atherosclerosis may allow early intervention to decrease the atherosclerotic process, thereby preventing or delaying cardiovascular disease. Vascular reactivity (VR) is altered even by early atherosclerosis. Obesity is a main cardiovascular risk factor (CVRF) observed in childhood. If childhood obesity associates impaired macro and/or micro VR is controversial. AIMS To characterize macro and micro VR analyzing the stimulus and vascular response temporal profiles in children and adolescents considering their body mass index (BMI); and to assess potential associations between subjects' characteristics and the hyperemic stimulus and/or VR. METHODS Healthy subjects (n = 99, age 5-17 years, female 46%) were included. Considering the BMI, normal, overweight and obese groups were defined. CVRF exposure was assessed. Brachial flow-mediated dilation and reactive hyperemia, associated with transient ischemia (forearm cuff-inflation) were evaluated. Diameter, flow velocities, resistive indexes and shear-stress were determined before, during and after cuff-release. Complimentary VR indexes were computed. Aortic stiffness and aortic and brachial blood pressure were determined. RESULTS Obese showed the lowest and slowest macrovascular response (p < 0.05). Micro VR was not associated with obesity. Higher aortic stiffness levels were associated with slower macrovascular responses (p < 0.05). CONCLUSION Childhood obesity associates not only reduced, but also slowed macrovascular reactivity. Microvascular response to transient ischemia is preserved in obese children. Macro and microvascular responses would be non-associated phenomena in childhood. During childhood, VR dynamics would depend on the arterial stiffness.
Collapse
Affiliation(s)
- Yanina Zócalo
- Physiology Department, School of Medicine, Centro Universitario de Investigación, Innovación y Diagnóstico Arterial (CUiiDARTE), Republic University, General Flores 2125, 11800, Montevideo, Uruguay.
| | - Marco Marotta
- Physiology Department, School of Medicine, Centro Universitario de Investigación, Innovación y Diagnóstico Arterial (CUiiDARTE), Republic University, General Flores 2125, 11800, Montevideo, Uruguay
- Basic Medicine Department, School of Medicine, Clinical Hospital, Republic University, Avenida Italia w/n, 11600, Montevideo, Uruguay
| | - Victoria García-Espinosa
- Physiology Department, School of Medicine, Centro Universitario de Investigación, Innovación y Diagnóstico Arterial (CUiiDARTE), Republic University, General Flores 2125, 11800, Montevideo, Uruguay
| | - Santiago Curcio
- Physiology Department, School of Medicine, Centro Universitario de Investigación, Innovación y Diagnóstico Arterial (CUiiDARTE), Republic University, General Flores 2125, 11800, Montevideo, Uruguay
| | - Pedro Chiesa
- Servicio de Cardiología Pediátrica, Centro Hospitalario Pereira-Rossell, ASSE-Ministry of Public Health, Boulevard Artigas 1550, 11600, Montevideo, Uruguay
| | - Gustavo Giachetto
- Clínica Pediátrica "C", Centro Hospitalario Pereira-Rossell, ASSE, School of Medicine, Republic University, Boulevard Artigas 1550, 11600, Montevideo, Uruguay
| | - Daniel Bia
- Physiology Department, School of Medicine, Centro Universitario de Investigación, Innovación y Diagnóstico Arterial (CUiiDARTE), Republic University, General Flores 2125, 11800, Montevideo, Uruguay
| |
Collapse
|
13
|
Bruno RM, Reesink KD, Ghiadoni L. Advances in the non-invasive assessment of vascular dysfunction in metabolic syndrome and diabetes: Focus on endothelium, carotid mechanics and renal vessels. Nutr Metab Cardiovasc Dis 2017; 27:121-128. [PMID: 27773467 DOI: 10.1016/j.numecd.2016.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/28/2016] [Accepted: 09/04/2016] [Indexed: 12/29/2022]
Abstract
AIM The present paper is a selective review on the methodology and clinical significance of techniques to assess specifically endothelial function, carotid mechanics and renal vascular function, particularly in the light of vascular dysfunction in metabolic syndrome and type 2 diabetes. DATA SYNTHESIS Endothelial dysfunction appears to be earlier detectable in the microcirculation of patients with altered glucose metabolism, while it attains significance in the macrocirculation at more advanced disease stages. Smooth muscle cell dysfunction is now increasingly recognized to play a role both in the development of endothelial dysfunction and abnormal arterial distensibility. Furthermore, impaired glucose metabolism affects carotid mechanics through medial calcification, structural changes in extracellular matrix due to advanced glycation and modification of the collagen/elastin material stiffness. The assessment of renal vascular function by dynamic ultrasound or magnetic resonance imaging has recently emerged as an appealing target for identifying subtle vascular alterations responsible for the development of diabetic nephropathy. CONCLUSIONS Vascular dysfunction represents a major mechanism for the development of cardiovascular disease in patients with abnormal glucose metabolism. Hence, the currently available non-invasive techniques to assess early structural and vascular abnormalities merit recommendation in this population, although their predictive value and sensitivity to monitor treatment-induced changes have not yet been established and are still under investigation.
Collapse
Affiliation(s)
- R M Bruno
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - K D Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Netherlands; Department of Biomedical Engineering, Cardiovascular Center, Maastricht University Medical Center, Netherlands
| | - L Ghiadoni
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| |
Collapse
|
14
|
Abe JI, Sandhu UG, Hoang NM, Thangam M, Quintana-Quezada RA, Fujiwara K, Le NT. Coordination of Cellular Localization-Dependent Effects of Sumoylation in Regulating Cardiovascular and Neurological Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:337-358. [PMID: 28197922 PMCID: PMC5716632 DOI: 10.1007/978-3-319-50044-7_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sumoylation, a reversible post-transcriptional modification process, of proteins are involved in cellular differentiation, growth, and even motility by regulating various protein functions. Sumoylation is not limited to cytosolic proteins as recent evidence shows that nuclear proteins, those associated with membranes, and mitochondrial proteins are also sumoylated. Moreover, it is now known that sumoylation plays an important role in the process of major human ailments such as malignant, cardiovascular and neurological diseases. In this chapter, we will highlight and discuss how the localization of SUMO protease and SUMO E3 ligase in different compartments within a cell regulates biological processes that depend on sumoylation. First, we will discuss the key role of sumoylation in the nucleus, which leads to the development of endothelial dysfunction and atherosclerosis . We will then discuss how sumoylation of plasma membrane potassium channel proteins are involved in epilepsy and arrhythmia. Mitochondrial proteins are known to be also sumoylated, and the importance of dynamic-related protein 1 (DRP1) sumoylation on mitochondrial function will be discussed. As we will emphasize throughout this review, sumoylation plays crucial roles in different cellular compartments, which is coordinately regulated by the translocation of various SUMO proteases and SUMO E3 ligase. Comprehensive approach will be necessary to understand the molecular mechanism for efficiently moving around various enzymes that regulate sumoylation within cells.
Collapse
Affiliation(s)
- Jun-Ichi Abe
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA.
| | - Uday G Sandhu
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Nguyet Minh Hoang
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Manoj Thangam
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Raymundo A Quintana-Quezada
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Keigi Fujiwara
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Nhat Tu Le
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| |
Collapse
|
15
|
Heo KS, Berk BC, Abe JI. Disturbed Flow-Induced Endothelial Proatherogenic Signaling Via Regulating Post-Translational Modifications and Epigenetic Events. Antioxid Redox Signal 2016; 25:435-50. [PMID: 26714841 PMCID: PMC5076483 DOI: 10.1089/ars.2015.6556] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/02/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Hemodynamic shear stress, the frictional force exerted onto the vascular endothelial cell (EC) surface, influences vascular EC functions. Atherosclerotic plaque formation in the endothelium is known to be site specific: disturbed blood flow (d-flow) formed at the lesser curvature of the aortic arch and branch points promotes plaque formation, and steady laminar flow (s-flow) at the greater curvature is atheroprotective. RECENT ADVANCES Post-translational modifications (PTMs), including phosphorylation and SUMOylation, and epigenetic events, including DNA methylation and histone modifications, provide a new perspective on the pathogenesis of atherosclerosis, elucidating how gene expression is altered by d-flow. Activation of PKCζ and p90RSK, SUMOylation of ERK5 and p53, and DNA hypermethylation are uniquely induced by d-flow, but not by s-flow. CRITICAL ISSUES Extensive cross talk has been observed among the phosphorylation, SUMOylation, acetylation, and methylation PTMs, as well as among epigenetic events along the cascade of d-flow-induced signaling, from the top (mechanosensory systems) to the bottom (epigenetic events). In addition, PKCζ activation plays a role in regulating SUMOylation-related enzymes of PIAS4, p90RSK activation plays a role in regulating SUMOylation-related enzymes of Sentrin/SUMO-specific protease (SENP)2, and DNA methyltransferase SUMOylation may play a role in d-flow signaling. FUTURE DIRECTIONS Although possible contributions of DNA events such as histone modification and the epigenetic and cytosolic events of PTMs in d-flow signaling have become clearer, determining the interplay of each PTM and epigenetic event will provide a new paradigm to elucidate the difference between d-flow and s-flow and lead to novel therapeutic interventions to inhibit plaque formation. Antioxid. Redox Signal. 25, 435-450.
Collapse
Affiliation(s)
- Kyung-Sun Heo
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bradford C. Berk
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York
| | - Jun-ichi Abe
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
16
|
Hemodynamic and biologic determinates of arteriovenous fistula outcomes in renal failure patients. BIOMED RESEARCH INTERNATIONAL 2015; 2015:171674. [PMID: 26495286 PMCID: PMC4606083 DOI: 10.1155/2015/171674] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/24/2015] [Indexed: 11/30/2022]
Abstract
The outcome of patients with end-stage renal disease on hemodialysis depends on a functioning vascular access. Although a variety of access options are available, the arteriovenous fistula remains the best vascular access. Unfortunately the success rate of mature fistula use remains poor. The creation of an arteriovenous fistula is followed by altered hemodynamic and biological changes that may result in neointimal hyperplasia and eventual venous stenosis. This review provides an overview of these changes and the needed research to provide a long lasting vascular access and hence improve outcomes for patients with end-stage renal disease.
Collapse
|