1
|
Jakobsson J, Burtin C, Hedlund M, Boraxbekk CJ, Westman J, Karalija N, Stål P, Sandström T, Ruttens D, Gosker HR, De Brandt J, Nyberg A. Effects and mechanisms of supramaximal high-intensity interval training on extrapulmonary manifestations in people with and without chronic obstructive pulmonary disease (COPD-HIIT): study protocol for a multi-centre, randomized controlled trial. Trials 2024; 25:664. [PMID: 39375781 PMCID: PMC11460198 DOI: 10.1186/s13063-024-08481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Beyond being a pulmonary disease, chronic obstructive pulmonary disease (COPD) presents with extrapulmonary manifestations including reduced cognitive, cardiovascular, and muscle function. While exercise training is the cornerstone in the non-pharmacological treatment of COPD, there is a need for new exercise training methods due to suboptimal adaptations when following traditional exercise guidelines, often applying moderate-intensity continuous training (MICT). In people with COPD, short-duration high-intensity interval training (HIIT) holds the potential to induce a more optimal stimulus for training adaptations while circumventing the ventilatory burden often associated with MICT in people with COPD. We aim to determine the effects of supramaximal HIIT and MICT on extrapulmonary manifestations in people with COPD compared to matched healthy controls. METHODS COPD-HIIT is a prospective, multi-centre, randomized, controlled trial with blinded assessors and data analysts, employing a parallel-group designed trial. In phase 1, we will investigate the effects and mechanisms of a 12-week intervention of supramaximal HIIT compared to MICT in people with COPD (n = 92) and matched healthy controls (n = 70). Participants will perform watt-based cycling two to three times weekly. In phase 2, we will determine how exercise training and inflammation impact the trajectories of neurodegeneration, in people with COPD, over 24 months. In addition to the 92 participants with COPD performing HIIT or MICT, a usual care group (n = 46) is included in phase 2. In both phases, the primary outcomes are a change from baseline in cognitive function, cardiorespiratory fitness, and muscle power. Key secondary outcomes include change from baseline exercise tolerance, brain structure, and function measured by MRI, neuroinflammation measured by PET/CT, systemic inflammation, and intramuscular adaptations. Feasibility of the interventions will be comprehensively investigated. DISCUSSION The COPD-HIIT trial will determine the effects of supramaximal HIIT compared to MICT in people with COPD and healthy controls. We will provide evidence for a novel exercise modality that might overcome the barriers associated with MICT in people with COPD. We will also shed light on the impact of exercise at different intensities to reduce neurodegeneration. The goal of the COPD-HIIT trial is to improve the treatment of extrapulmonary manifestations of the disease. TRIAL REGISTRATION Clinicaltrials.gov: NCT06068322. Prospectively registered on 2023-09-28.
Collapse
Affiliation(s)
- Johan Jakobsson
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden.
| | - Chris Burtin
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, 3590, Belgium
| | - Mattias Hedlund
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, 901 87, Sweden
- Diagnostic Radiology, Department of Radiation Sciences, Umeå University, Umeå, 901 87, Sweden
- Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, 2400, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Jonas Westman
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden
| | - Nina Karalija
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, 901 87, Sweden
- Department of Medical and Translational Biology, Umeå University, Umeå, 901 87, Sweden
| | - Per Stål
- Department of Medical and Translational Biology, Umeå University, Umeå, 901 87, Sweden
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, 901 87, Sweden
| | - David Ruttens
- Department of Respiratory Medicine, Ziekenhuis Oost-Limburg, Genk, 3600, Belgium
- Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Harry R Gosker
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Jana De Brandt
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden
| | - André Nyberg
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
2
|
Eichner-Seitz N, Pate RR, Paul IM. Physical activity in infancy and early childhood: a narrative review of interventions for prevention of obesity and associated health outcomes. Front Endocrinol (Lausanne) 2023; 14:1155925. [PMID: 37293499 PMCID: PMC10244791 DOI: 10.3389/fendo.2023.1155925] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
In the context of the childhood obesity epidemic, this narrative review aims to explore opportunities to promote physical activity (PA) between birth and age 5 years as well as the health outcomes associated with PA in early childhood. Although early childhood is an ideal time to promote healthy habits, guidelines for PA have often ignored early childhood given the limited evidence for children <5 years old. Herein we discuss and highlight infant, toddler and preschool age interventions to promote PA and prevent obesity both in the short and long-term. We describe novel and modified interventions to promote improved early childhood health outcomes, encompassing cardiorespiratory, muscle, and bone strengthening components necessary for short-term motor development and long-term health. We call for new research aimed at developing and testing innovative early childhood interventions that may be performed in home or childcare settings, monitored by parents or caregivers.
Collapse
Affiliation(s)
- Natalie Eichner-Seitz
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| | - Russell R. Pate
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Ian M. Paul
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
3
|
Anwar S, Yokota T. Rapid Freezing of Skeletal and Cardiac Muscles Using Isopentane Cooled with Liquid Nitrogen and Tragacanth Gum for Histological, Genetic, and Protein Expression Studies. Methods Mol Biol 2023; 2587:45-53. [PMID: 36401023 DOI: 10.1007/978-1-0716-2772-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Histological and molecular genetic evaluation of skeletal and cardiac muscles is an indispensable part of understanding muscle biology and the pathology of muscle disorders. Proper processing of the muscle tissue is a prerequisite for optimal evaluation. However, the processing of skeletal muscle samples often comes with many challenges. One of the commonly used methods of frozen tissue preparation involves optimal cutting temperature compound (OCT compound) embedding. This method is considered optimal for the processing of most of the routinely studied tissue samples. However, the processing of skeletal muscle samples using this method is often unsuitable as it causes artifacts and low DNA, RNA, and protein yield and quality due to the slow freezing of skeletal muscle tissues that allows ice crystals to form. One of the most suitable methods for skeletal muscle tissue processing for histological, genetic, and molecular studies is rapid freezing of freshly collected tissue samples using isopentane cooled with liquid nitrogen and tragacanth gum, which provides distinct advantages in consuming less time, preserving the cell morphology, and helping higher nucleic acids and protein yields. This chapter describes a protocol for rapid freezing of freshly collected skeletal muscle tissues using isopentane pre-chilled with liquid nitrogen and tragacanth gum. Skeletal muscle tissue samples processed using this protocol can be used for histological and immunological staining investigations and studies requiring DNA, RNA, and proteins from these tissues.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada, Henry M. Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Li J, Sun Y, Chen F, Hu X, Dong L. Pressure and Temperature Combined With Microbial Supernatant Effectively Inactivate Bacillus subtilis Spores. Front Microbiol 2021; 12:642501. [PMID: 34093462 PMCID: PMC8169991 DOI: 10.3389/fmicb.2021.642501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Spores from the Bacillus species pose a challenge to the food industry because of their ubiquitous nature and extreme resistance. Accumulated evidence indicates that it is effective to induce spore germination homogenously before killing them. However, it is difficult to obtain and apply exogenous germination factors, which will affect food composition. Therefore, this study screened endogenous germinants from microorganisms by assessing the effect of Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Lactiplantibacillus plantarum, and Streptococcus thermophilus cultures (cell-free) on B. subtilis spore germination. The results showed that the supernatants from these five microorganisms induced spore germination instead of sediments. Moreover, the supernatants of E. coli, B. subtilis, and S. cerevisiae exhibited higher germination rates than L. plantarum and S. thermophilus, and the induction effects were concentration-dependent. Furthermore, plate counting confirmed that the microbial supernatants induced the lowest spore germination ratio on strains B. subtilis FB85 [germination receptors (GRs) mutant] but not strains B. subtilis PB705 (PrkC mutant). In addition, B. subtilis and S. cerevisiae supernatants, combined with pressure and temperature, were effective in spore inactivation. The findings suggested that microbial supernatants may include agents that induce spore germination and may be used for spore inactivation.
Collapse
Affiliation(s)
- Jingyu Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yaxin Sun
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Li Dong
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Bjørnsen T, Wernbom M, Paulsen G, Berntsen S, Brankovic R, Stålesen H, Sundnes J, Raastad T. Frequent blood flow restricted training not to failure and to failure induces similar gains in myonuclei and muscle mass. Scand J Med Sci Sports 2021; 31:1420-1439. [PMID: 33735465 DOI: 10.1111/sms.13952] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
The purpose of the present study was to compare the effects of short-term high-frequency failure vs non-failure blood flow-restricted resistance exercise (BFRRE) on changes in satellite cells (SCs), myonuclei, muscle size, and strength. Seventeen untrained men performed four sets of BFRRE to failure (Failure) with one leg and not to failure (Non-failure; 30-15-15-15 repetitions) with the other leg using knee-extensions at 20% of one repetition maximum (1RM). Fourteen sessions were distributed over two 5-day blocks, separated by a 10-day rest period. Muscle samples obtained before, at mid-training, and 10-day post-intervention (Post10) were analyzed for muscle fiber area (MFA), myonuclei, and SC. Muscle size and echo intensity of m.rectus femoris (RF) and m.vastus lateralis (VL) were measured by ultrasonography, and knee extension strength with 1RM and maximal isometric contraction (MVC) up until Post24. Both protocols increased myonuclear numbers in type-1 (12%-17%) and type-2 fibers (20%-23%), and SC in type-1 (92%-134%) and type-2 fibers (23%-48%) at Post10 (p < 0.05). RF and VL size increased by 5%-10% in both legs at Post10 to Post24, whereas the MFA of type-1 fibers in Failure was decreased at Post10 (-10 ± 16%; p = 0.02). Echo intensity increased by ~20% in both legs during Block1 (p < 0.001) and was ~8 to 11% below baseline at Post24 (p = 0.001-0.002). MVC and 1RM decreased by 5%-10% after Block1, but increased in both legs by 6%-11% at Post24 (p < 0.05). In conclusion, both short-term high-frequency failure and non-failure BFRRE induced increases in SCs, in myonuclei content, muscle size, and strength, concomitant with decreased echo intensity. Intriguingly, the responses were delayed and peaked 10-24 days after the training intervention. Our findings may shed light on the mechanisms involved in resistance exercise-induced overreaching and supercompensation.
Collapse
Affiliation(s)
- Thomas Bjørnsen
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway.,Norwegian Olympic Federation, Oslo, Norway
| | - Mathias Wernbom
- Center for Health and Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Göteborg, Sweden.,Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Gøran Paulsen
- Norwegian Olympic Federation, Oslo, Norway.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Sveinung Berntsen
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Robert Brankovic
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Håkon Stålesen
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Joakim Sundnes
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Truls Raastad
- Center for Health and Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
6
|
Arias-Reyes C, Soliz J, Joseph V. Mice and Rats Display Different Ventilatory, Hematological, and Metabolic Features of Acclimatization to Hypoxia. Front Physiol 2021; 12:647822. [PMID: 33776799 PMCID: PMC7994900 DOI: 10.3389/fphys.2021.647822] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Phylogeographic studies showed that house mice (Mus musculus) originated in the Himalayan region, while common rats (Rattus rattus and Rattus norvegicus) come from the lowlands of China and India. Accordingly, it has been proposed that its origins gave mice, but not rats, the ability to invade ecological niches at high altitudes (pre-adaptation). This proposal is strongly supported by the fact that house mice are distributed throughout the world, while common rats are practically absent above 2,500 m. Considering that the ability of mammals to colonize high-altitude environments (>2,500 m) is limited by their capability to tolerate reduced oxygen availability, in this work, we hypothesize that divergences in the ventilatory, hematological, and metabolic phenotypes of mice and rats establish during the process of acclimatization to hypoxia (Hx). To test this hypothesis male FVB mice and Sprague-Dawley (SD) rats were exposed to Hx (12% O2) for 0 h (normoxic controls), 6 h, 1, 7, and 21 days. We assessed changes in ventilatory [minute ventilation (VE), respiratory frequency (fR), and tidal volume (VT)], hematological (hematocrit and hemoglobin concentration), and metabolic [whole-body O2 consumption (VO2) and CO2 production (VCO2), and liver mitochondrial oxygen consumption rate (OCR) parameters]. Compared to rats, results in mice show increased ventilatory, metabolic, and mitochondrial response. In contrast, rats showed quicker and higher hematological response than mice and only minor ventilatory and metabolic adjustments. Our findings may explain, at least in part, why mice, but not rats, were able to colonize high-altitude habitats.
Collapse
Affiliation(s)
- Christian Arias-Reyes
- Centre de Recherche de l'Institute Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Jorge Soliz
- Centre de Recherche de l'Institute Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Vincent Joseph
- Centre de Recherche de l'Institute Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|
7
|
Encarnacion-Rivera L, Foltz S, Hartzell HC, Choo H. Myosoft: An automated muscle histology analysis tool using machine learning algorithm utilizing FIJI/ImageJ software. PLoS One 2020; 15:e0229041. [PMID: 32130242 PMCID: PMC7055860 DOI: 10.1371/journal.pone.0229041] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
METHODS Muscle sections were stained for cell boundary (laminin) and myofiber type (myosin heavy chain isoforms). Myosoft, running in the open access software platform FIJI (ImageJ), was used to analyze myofiber size and type in transverse sections of entire gastrocnemius/soleus muscles. RESULTS Myosoft provides an accurate analysis of hundreds to thousands of muscle fibers within 25 minutes, which is >10-times faster than manual analysis. We demonstrate that Myosoft is capable of handling high-content images even when image or staining quality is suboptimal, which is a marked improvement over currently available and comparable programs. CONCLUSIONS Myosoft is a reliable, accurate, high-throughput, and convenient tool to analyze high-content muscle histology. Myosoft is freely available to download from Github at https://github.com/Hyojung-Choo/Myosoft/tree/Myosoft-hub.
Collapse
Affiliation(s)
- Lucas Encarnacion-Rivera
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia, United States of America
- Undergraduate program in Neuroscience and Behavioral Biology, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Steven Foltz
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - H. Criss Hartzell
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Hyojung Choo
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
8
|
Renström L, Stål P, Song Y, Forsgren S. Bilateral muscle fiber and nerve influences by TNF-alpha in response to unilateral muscle overuse - studies on TNF receptor expressions. BMC Musculoskelet Disord 2017; 18:498. [PMID: 29183282 PMCID: PMC5706416 DOI: 10.1186/s12891-017-1796-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TNF-alpha is suggested to be involved in muscle damage and muscle inflammation (myositis). In order to evaluate whether TNF-alpha is involved in the myositis that occurs in response to muscle overuse, the aim was to examine the expression patterns of TNF receptors in this condition. METHODS A rabbit muscle overuse model leading to myositis in the soleus muscle was used. The expression patterns of the two TNF receptors Tumor Necrosis Factor Receptor type 1 (TNFR1) and Tumor Necrosis Factor Receptor type 2 (TNFR2) were investigated. In situ hybridization and immunofluorescence were utilized. Immunostainings for desmin, NK-1R and CD31 were made in parallel. RESULTS Immunoreactions (IR) for TNF receptors were clearly observed in white blood cells, fibroblasts and vessel walls, and most interestingly also in muscle fibers and nerve fascicles in the myositis muscles. There were very restricted reactions for these in the muscles of controls. The upregulation of TNF receptors was for all types of structures seen for both the experimental side and the contralateral nonexperimental side. TNF receptor expressing muscle fibers were present in myositis muscles. They can be related to attempts for reparation/regeneration, as evidenced from results of parallel stainings. Necrotic muscle fibers displayed TNFR1 mRNA and TNFR2 immunoreaction (IR) in the invading white blood cells. In myositis muscles, TNFR1 IR was observed in both axons and Schwann cells while TNFR2 IR was observed in Schwann cells. Such observations were very rarely made for control animals. CONCLUSIONS The findings suggest that there is a pronounced involvement of TNF-alpha in the developing myositis process. Attempts for reparation of the muscle tissue seem to occur via both TNFR1 and TNFR2. As the myositis process also occurs in the nonexperimental side and as TNF receptors are confined to nerve fascicles bilaterally it can be asked whether TNF-alpha is involved in the spreading of the myositis process to the contralateral side via the nervous system. Taken together, the study shows that TNF-alpha is not only associated with the inflammation process but that both the muscular and nervous systems are affected and that this occurs both on experimental and nonexperimental sides.
Collapse
Affiliation(s)
- Lina Renström
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden.
| | - Per Stål
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | - Yafeng Song
- Perelman School of Medicine & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Sture Forsgren
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Onigbinde AT, Ajiboye RA, Bada AI, Isaac SO. Inter-limb effects of isometric quadriceps strengthening on untrained contra-lateral homologous muscle of patients with knee osteoarthritis. Technol Health Care 2017; 25:19-27. [PMID: 27447406 DOI: 10.3233/thc-161239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE The primary objective of this study was to establish if there would be inter-limb crossing of strength from trained quadriceps muscles of unaffected limb to the untrained homologous group of muscles in subjects with knee osteoarthritis. METHODS Twenty-one patients with knee osteoarthritis were recruited for the study. The affected knee was not trained while the unaffected quadriceps group of muscles was trained for 6 weeks using isometric contraction exercises. The patients sat on a quadricep bench with knee flexed to 90° as starting position. An ankle strap was used to fasten the required weight for isometric training at the lower one-third of the unaffected limb. Each patient extended the unaffected knee until the leg was fully straightened, maintaining quadriceps isometric contraction for 3 to 5 seconds; and then slowly returned to the starting position; 12 repetitions and 3 sets were performed thrice a week for 6 weeks. The peak isometric quadricep strengths of both limbs were quantified with spring balance at baseline and after 6 weeks. During quantification, all the patients were verbally motivated to achieve maximum voluntary contraction at extension. The data were analyzed using descriptive statistics of mean, standard deviation and percentages. Parametric inferential statistics of dependent t-test (paired) was used to compare the pre and post values obtained. RESULTS The peak isometric quadriceps strength of the affected limb with knee osteoarthritis without training at baseline was 132.67 ± 42.26 N while at the 6th week it was 159.30 ± 49.33 N showing a significant increase of 20% (p = 0.001). For the trained unaffected knee, at onset and at 6th week, the peak isometric quadricep strengths were 158.83 ± 43.28 N and 192.00 ± 47.31 N respectively. There was significant increase of 21% in the quadriceps muscle strength of the unaffected knee after training (p = 0.001). However, there was no significant difference in the increments observed between the peak isometric quadriceps strengths of both limbs (p = 0.06). CONCLUSION We concluded that there was cross training effect on the contralateral quadriceps muscle when only the ipsilateral (unaffected) homologous muscle was strengthened.
Collapse
|
10
|
Hendy AM, Lamon S. The Cross-Education Phenomenon: Brain and Beyond. Front Physiol 2017; 8:297. [PMID: 28539892 PMCID: PMC5423908 DOI: 10.3389/fphys.2017.00297] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
Objectives: Unilateral resistance training produces strength gains in the untrained homologous muscle group, an effect termed “cross-education.” The observed strength transfer has traditionally been considered a phenomenon of the nervous system, with few studies examining the contribution of factors beyond the brain and spinal cord. In this hypothesis and theory article, we aim to discuss further evidence for structural and functional adaptations occurring within the nervous, muscle, and endocrine systems in response to unilateral resistance training. The limitations of existing cross-education studies will be explored, and novel potential stakeholders that may contribute to the cross-education effect will be identified. Design: Critical review of the literature. Method: Search of online databases. Results: Studies have provided evidence that functional reorganization of the motor cortex facilitates, at least in part, the effects of cross-education. Cross-activation of the “untrained” motor cortex, ipsilateral to the trained limb, plays an important role. While many studies report little or no gains in muscle mass in the untrained limb, most experimental designs have not allowed for sensitive or comprehensive investigation of structural changes in the muscle. Conclusions: Increased neural drive originating from the “untrained” motor cortex contributes to the cross-education effect. Adaptive changes within the muscle fiber, as well as systemic and hormonal factors require further investigation. An increased understanding of the physiological mechanisms contributing to cross-education will enable to more effectively explore its effects and potential applications in rehabilitation of unilateral movement disorders or injury.
Collapse
Affiliation(s)
- Ashlee M Hendy
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin UniversityGeelong, VIC, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin UniversityGeelong, VIC, Australia
| |
Collapse
|
11
|
Bergmeister KD, Gröger M, Aman M, Willensdorfer A, Manzano-Szalai K, Salminger S, Aszmann OC. A Rapid Automated Protocol for Muscle Fiber Population Analysis in Rat Muscle Cross Sections Using Myosin Heavy Chain Immunohistochemistry. J Vis Exp 2017. [PMID: 28448058 DOI: 10.3791/55441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Quantification of muscle fiber populations provides a deeper insight into the effects of disease, trauma, and various other influences on skeletal muscle composition. Various time-consuming methods have traditionally been used to study fiber populations in many fields of research. However, recently developed immunohistochemical methods based on myosin heavy chain protein expression provide a quick alternative to identify multiple fiber types in a single section. Here, we present a rapid, reliable and reproducible protocol for improved staining quality, allowing automatic acquisition of whole cross sections and automatic quantification of fiber populations with ImageJ. For this purpose, embedded skeletal muscles are cut in cross sections, stained using myosin heavy chains antibodies with secondary fluorescent antibodies and DAPI for cell nuclei staining. Whole cross sections are then scanned automatically using a slide scanner to obtain high-resolution composite pictures of the entire specimen. Fiber population analyses are subsequently performed to quantify slow, intermediate and fast fibers using an automated macro for ImageJ. We have previously shown that this method can identify fiber populations reliably to a degree of ±4%. In addition, this method reduces inter-user variability and time per analyses significantly using the open source platform ImageJ.
Collapse
Affiliation(s)
- Konstantin D Bergmeister
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna; Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic and Hand Surgery, University of Heidelberg
| | - Marion Gröger
- Core Facility Imaging, Core Facilities, Medical University Vienna
| | - Martin Aman
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna
| | - Anna Willensdorfer
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna
| | - Krisztina Manzano-Szalai
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna
| | - Stefan Salminger
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna
| | - Oskar C Aszmann
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna;
| |
Collapse
|
12
|
Bergmeister KD, Gröger M, Aman M, Willensdorfer A, Manzano-Szalai K, Salminger S, Aszmann OC. Automated muscle fiber type population analysis with ImageJ of whole rat muscles using rapid myosin heavy chain immunohistochemistry. Muscle Nerve 2016; 54:292-9. [PMID: 26788932 DOI: 10.1002/mus.25033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Skeletal muscle consists of different fiber types which adapt to exercise, aging, disease, or trauma. Here we present a protocol for fast staining, automatic acquisition, and quantification of fiber populations with ImageJ. METHODS Biceps and lumbrical muscles were harvested from Sprague-Dawley rats. Quadruple immunohistochemical staining was performed on single sections using antibodies against myosin heavy chains and secondary fluorescent antibodies. Slides were scanned automatically with a slide scanner. Manual and automatic analyses were performed and compared statistically. RESULTS The protocol provided rapid and reliable staining for automated image acquisition. Analyses between manual and automatic data indicated Pearson correlation coefficients for biceps of 0.645-0.841 and 0.564-0.673 for lumbrical muscles. Relative fiber populations were accurate to a degree of ± 4%. CONCLUSIONS This protocol provides a reliable tool for quantification of muscle fiber populations. Using freely available software, it decreases the required time to analyze whole muscle sections. Muscle Nerve 54: 292-299, 2016.
Collapse
Affiliation(s)
- Konstantin D Bergmeister
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, A-1090, Austria
| | - Marion Gröger
- Core Facility Imaging, Core Facilities, Medical University Vienna, Austria
| | - Martin Aman
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, A-1090, Austria
| | - Anna Willensdorfer
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, A-1090, Austria
| | - Krisztina Manzano-Szalai
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, A-1090, Austria
| | - Stefan Salminger
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, A-1090, Austria
| | - Oskar C Aszmann
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, A-1090, Austria
| |
Collapse
|
13
|
Spang C, Forsgren S. Choline acetyltransferase and the nicotinic acetylcholine receptor AChRα7 in experimental myositis. Int Immunopharmacol 2015; 29:189-94. [DOI: 10.1016/j.intimp.2015.05.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 12/18/2022]
|
14
|
Willoughby CL, Fleuriet J, Walton MM, Mustari MJ, McLoon LK. Adaptability of the Immature Ocular Motor Control System: Unilateral IGF-1 Medial Rectus Treatment. Invest Ophthalmol Vis Sci 2015; 56:3484-96. [PMID: 26030103 DOI: 10.1167/iovs.15-16761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Unilateral treatment with sustained release IGF-1 to one medial rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop as a result of changes in extraocular muscles during the critical period of development of binocularity. METHODS Sustained release IGF-1 pellets were implanted unilaterally on one medial rectus muscle in normal infant monkeys during the first 2 weeks of life. Eye position was monitored using standard photographic methods. After 3 months of treatment, myofiber and neuromuscular size, myosin composition, and innervation density were quantified in all rectus muscles and compared to those in age-matched controls. RESULTS Sustained unilateral IGF-1 treatments resulted in strabismus for all treated subjects; 3 of the 4 subjects had a clinically significant strabismus of more than 10°. Both the treated medial rectus and the untreated ipsilateral antagonist lateral rectus muscles had significantly larger myofibers. No adaptation in myofiber size occurred in the contralateral functionally yoked lateral rectus or in myosin composition, neuromuscular junction size, or nerve density. CONCLUSIONS Sustained unilateral IGF-1 treatment to extraocular muscles during the sensitive period of development of orthotropic eye alignment and binocularity was sufficient to disturb ocular motor development, resulting in strabismus in infant monkeys. This could be due to altering fusion of gaze during the early sensitive period. Serial measurements of eye alignment suggested the IGF-1-treated infants received insufficient coordinated binocular experience, preventing the establishment of normal eye alignment. Our results uniquely suggest that abnormal signaling by the extraocular muscles may be a cause of strabismus.
Collapse
Affiliation(s)
- Christy L Willoughby
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jérome Fleuriet
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Mark M Walton
- Washington National Primate Research Center, Seattle, Washington, United States
| | - Michael J Mustari
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Linda K McLoon
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
15
|
|