1
|
Patterson AS, Dugdale J, Koleilat A, Krauss A, Hernandez-Herrera GA, Wallace JG, Petree C, Varshney GK, Schimmenti LA. Vital Dye Uptake of YO-PRO-1 and DASPEI Depends Upon Mechanoelectrical Transduction Function in Zebrafish Hair Cells. J Assoc Res Otolaryngol 2024; 25:531-543. [PMID: 39433714 DOI: 10.1007/s10162-024-00967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
PURPOSE Vital dyes allow the visualization of cells in vivo without causing tissue damage, making them a useful tool for studying lateral line and inner ear hair cells in living zebrafish and other vertebrates. FM1-43, YO-PRO-1, and DASPEI are three vital dyes commonly used for hair cell visualization. While it has been established that FM1-43 enters hair cells of zebrafish and other organisms through the mechanoelectrical transduction (MET) channel, the mechanism of entry into hair cells for YO-PRO-1 and DASPEI has not been established despite widespread use. We hypothesize that YO-PRO-1 and DASPEI entry into zebrafish hair cells is MET channel uptake dependent similar to FM1-43. METHODS To test this hypothesis, we used both genetic and pharmacologic means to block MET channel function. Genetic based MET channel assays were conducted with two different mechanotransduction defective zebrafish lines, specifically the myo7aa-/- loss of function mutant tc320b (p.Y846X) and cdh23-/- loss of function mutant (c.570-571del). Pharmacologic assays were performed with Gadolinium(III) Chloride (Gad(III)), a compound that can temporarily block mechanotransduction activity. RESULTS Five-day post fertilization (5dpf) myo7aa-/- and cdh23-/- larvae incubated with FM1-43, YO-PRO-1, and DASPEI all showed nearly absent uptake of each vital dye. Treatment of wildtype zebrafish larvae with Gad(III) significantly reduces uptake of FM1-43, YO-PRO-1, and DASPEI vital dyes. CONCLUSION These results indicate that YO-PRO-1 and DASPEI entry into zebrafish hair cells is MET channel dependent similar to FM1-43. This knowledge expands the repertoire of vital dyes that can be used to assess mechanotransduction and MET channel function in zebrafish and other vertebrate models of hair cell function.
Collapse
Affiliation(s)
- Ashley Scott Patterson
- Initiative for Maximizing Student Development Program, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- University of Wisconsin School of Medicine & Public Health, Medical Scientist Training Program, 2207 Health Sciences Learning Center, 750 Highland Avenue, Madison, WI, 53705, USA
| | - Joseph Dugdale
- Department of Otorhinolaryngology, Head and Neck Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Alaa Koleilat
- Mayo Clinic Graduate School of Biomedical Science, 200 First Street SW, Rochester, MN, 55905, USA
- Knight Molecular Diagnostic Laboratory, Oregon Health Sciences University, 2525 SW Third Avenue, Portland, Oregon, 97201, USA
| | - Anna Krauss
- Initiative for Maximizing Student Development Program, Mayo Clinic, Rochester, MN, USA
- The Learning Center for the Deaf, 848 Central St, Framingham, MA, 01701, USA
| | - Gabriel A Hernandez-Herrera
- Mayo Clinic Graduate School of Biomedical Sciences, 200 First Street SW, Rochester, MN, 55905, USA
- University of Puerto Rico School of Medicine, José Celso Barbosa, 9WWG+H5P, P.º Dr, San Juan, PR, 00921, USA
| | - Jasmine G Wallace
- Summer Research Fellowship Program, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Current Address: Oakwood University, 7000 Adventist Blvd NW, Huntsville, AL, 35896, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, 825 NE 13Th St, Oklahoma City, OK, 73104, USA
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, 825 NE 13Th St, Oklahoma City, OK, 73104, USA
| | - Lisa A Schimmenti
- Departments of Clinical Genomics, Otorhinolaryngology, Head and Neck Surgery, Ophthalmology, and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci 2023; 24:ijms24098225. [PMID: 37175933 PMCID: PMC10179175 DOI: 10.3390/ijms24098225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Sahil Adriouch
- UniRouen, INSERM, U1234, Pathophysiology, Autoimmunity, and Immunotherapy, (PANTHER), Univ Rouen Normandie, University of Rouen, F-76000 Rouen, France
| | - Stephen J Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
3
|
Cao P, Cheng Y, Li Z, Cheng YJ, Chu X, Geng C, Yin X, Li Y. Intraocular delivery of ZIF-90-RhB-GW2580 nanoparticles prevents the progression of photoreceptor degeneration. J Nanobiotechnology 2023; 21:44. [PMID: 36747224 PMCID: PMC9901128 DOI: 10.1186/s12951-023-01794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Photoreceptor degeneration is one of the major causes of progressive blindness which lacks of curative treatment. GW2580, a highly selective inhibitor of colony-stimulating factor 1 receptor, has the protective potential on neurons; however, little was known about the application of GW2580 on photoreceptor degeneration. In this study, BV-2 and 661W cells coculture system was constructed to investigate the interaction between microglia and photoreceptors. GW2580 was loaded into zeolitic imidazolate framework-90-rhodamine B (ZIF-90-RhB) to synthesize a novel kind of nanoparticles, namely, ZIF-90-RhB-GW2580, through a one-step self-assembly approach. A photoreceptor degeneration model was generated by intense light exposure in zebrafish and ZIF-90-RhB-GW2580 nanoparticles were delivered by the intraocular injection. The results showed that in vitro GW2580 treatment promoted phenotypic transformation in microglia and led to the blockade of photoreceptor apoptosis. Following the intraocular delivery of ZIF-90-RhB-GW2580 nanoparticles, the microglial proliferation and inflammatory response were significantly inhibited; moreover, the photoreceptors underwent alleviated injury with a recovery of retinal structure and visual function. In conclusion, the intraocular injection of ZIF-90-RhB-GW2580 at the early stage enables the precise delivery and sustained release of the GW2580, thus preventing the progression of photoreceptor degeneration.
Collapse
Affiliation(s)
- Peipei Cao
- grid.216938.70000 0000 9878 7032Medical International Collaborative Innovation Center, School of Medicine, Nankai University, Tianjin, 300071 China ,grid.24696.3f0000 0004 0369 153XBeijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, National Neurological Disease Center, Capital Medical University, Beijing, 100053 China
| | - Yue Cheng
- grid.33763.320000 0004 1761 2484Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 China
| | - Zhi Li
- grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071 China
| | - Ya-Jia Cheng
- grid.216938.70000 0000 9878 7032Medical International Collaborative Innovation Center, School of Medicine, Nankai University, Tianjin, 300071 China
| | - Xiaoqi Chu
- grid.216938.70000 0000 9878 7032Medical International Collaborative Innovation Center, School of Medicine, Nankai University, Tianjin, 300071 China ,grid.24696.3f0000 0004 0369 153XBeijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, National Neurological Disease Center, Capital Medical University, Beijing, 100053 China
| | - Chao Geng
- grid.216938.70000 0000 9878 7032Medical International Collaborative Innovation Center, School of Medicine, Nankai University, Tianjin, 300071 China ,grid.24696.3f0000 0004 0369 153XBeijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, National Neurological Disease Center, Capital Medical University, Beijing, 100053 China
| | - Xuebo Yin
- grid.412542.40000 0004 1772 8196College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620 China
| | - Yuhao Li
- Medical International Collaborative Innovation Center, School of Medicine, Nankai University, Tianjin, 300071, China. .,Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, National Neurological Disease Center, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
4
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
5
|
Song L, Soomro MA, Wang L, Song Y, Hu G. Identification and functional analysis of histone 1.2-like in red sea bream (Pagrus major). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104529. [PMID: 36087785 DOI: 10.1016/j.dci.2022.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Histone H1 acts as an essential chromatin component and participates in the formation of higher chromatin structures together with core histones. In addition, H1 also has important functions in physiological processes such as gene expression regulation, DNA repair, and the immune response. In this study, the histone homologous protein Pm-H1.2-like was identified from the transcriptome database of Pagrus major we studied previously. Conservatism of evolution was investigated by sequence alignment and phylogenetic analysis. Transcripts of Pm-H1.2-like were detected in P. major tissues. The highest expression level was found in gill and skin tissues. Consistent with the data from the transcriptome database, we observed that the expression of Pm-H1.2-like was rapidly induced in nonspecific cytotoxic cells (NCCs) infected with inactivated Vibrio anguillarum. Gene silencing of Pm-H1.2-like by RNAi significantly suppressed the expression of NK-lysin and GZMB in NCCs at 12 h after pathogen stimulation, but had no significant effect on IFN-γ expression. Next, we obtained the fusion proteins rPm-H1.2-like and rPm-H1.2-like (36-80) through prokaryotic expression. ELISA showed that rPm-H1.2-like bound to oligonucleotide (ODN) in a concentration-dependent manner, while no binding activity of rPm-H1.2-like (36-80) with ODN was observed. This study confirmed that Pm-H1.2-like actively participates in the immune response of NCCs to bacterial infection, deepening the understanding of the immune features of histone H1 in fish.
Collapse
Affiliation(s)
- Lianfei Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Maqsood Ahmed Soomro
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Lingshu Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yuting Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Guobin Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
6
|
Chen Y, Liu W, Shang Y, Cao P, Cui J, Li Z, Yin X, Li Y. Folic acid-nanoscale gadolinium-porphyrin metal-organic frameworks: fluorescence and magnetic resonance dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. Int J Nanomedicine 2018; 14:57-74. [PMID: 30587985 PMCID: PMC6304077 DOI: 10.2147/ijn.s177880] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common primary liver cancer and severely threatens human health. Since the prognosis of advanced HCC remains poor, there is an urgent need to develop new therapeutic approaches. Porphyrin metal-organic frameworks are a class of porous organic-inorganic hybrid functional materials with good biocompatibility. Methods Gadolinium-porphyrin metal-organic frameworks were used as a skeleton for folic acid (FA) conjugation to synthesize a novel type of nanoparticle, denoted as folic acid-nanoscale gadolinium-porphyrin metal-organic frameworks (FA-NPMOFs). The FA-NPMOFs were characterized using transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric-differential thermal analysis. The biotoxicity and imaging capability of the FA-NPMOFs were determined using HepG2 cells and embryonic and larval zebrafish. The delivery and photodynamic therapeutic effect of FA-NPMOFs were explored in transgenic zebrafish with doxycycline-induced HCC. Results FA-NPMOFs were spherical in structure with good dispersion and water solubility. They showed low biotoxicity, emitted bright red fluorescence, and exhibited an excellent magnetic resonance imaging capability, both in vitro and in vivo. Meanwhile, the FA-NPMOFs exhibited a strong affinity for folate receptor (FR)-expressing cells and were delivered to the tumor site in a targeted manner. Moreover, HCC tumor cells were eliminated following laser irradiation. Conclusion FA-NPMOFs can be used for dual-modality imaging and photodynamic therapy in HCC and show promise for use as a carrier in new therapies for HCC and other FR-positive tumors.
Collapse
Affiliation(s)
- Yang Chen
- Nankai University School of Medicine, Tianjin, China, .,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical International Collaborative Innovation Center, Nankai University, Tianjin, China,
| | - Wei Liu
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China.,School of Science, Tianjin University, Tianjin, China
| | - Yue Shang
- Nankai University School of Medicine, Tianjin, China, .,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical International Collaborative Innovation Center, Nankai University, Tianjin, China,
| | - Peipei Cao
- Nankai University School of Medicine, Tianjin, China, .,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical International Collaborative Innovation Center, Nankai University, Tianjin, China,
| | - Jianlin Cui
- Nankai University School of Medicine, Tianjin, China, .,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical International Collaborative Innovation Center, Nankai University, Tianjin, China,
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, China,
| | - Xuebo Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
| | - Yuhao Li
- Nankai University School of Medicine, Tianjin, China, .,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical International Collaborative Innovation Center, Nankai University, Tianjin, China,
| |
Collapse
|
7
|
Fu J, Jiao J, Weng K, Yu D, Li R. Zebrafish methanol exposure causes patterning defects and suppressive cell proliferation in retina. Am J Transl Res 2017; 9:2975-2983. [PMID: 28670385 PMCID: PMC5489897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE Methanol exposure have been shown to produce retinal abnormalities and visual dysfunctions in rodents and other mammals developing in utero. In this study, we characterized how methanol affects the retinal development in an ex utero embryonic system, the zebrafish. METHODS Zebrafish embryos were raised for 24 hours in fish water supplemented with various concentrations of methanol at 6 hours after fertilisation. The effects of methanol on retinal morphology were assessed by histologic and immunohistochemical analyses. RESULTS Zebrafish embryos exposed to moderate (3%) and high (4%) levels of methanol during early embryonic development had a small eye phenotype. Embryos exposed to high (4%) level of methanol had morphological abnormalities of the retinal pigment epithelia and the photoreceptors. Methanol exposure also caused inhibition of cell differentiation and proliferation in the retina at the early developmental stage. CONCLUSIONS Low concentrations of methanol affect photoreceptor function but do not disturb retinal morphology. Higher levels of methanol exposure cause retinal patterning defects and a small eye phenotype.
Collapse
Affiliation(s)
- Jinling Fu
- Department of Ophthalmology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jingxue Jiao
- Department of Ophthalmology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Kechao Weng
- Eye Center of The Second Affiliated Hospital School of Medicine, Institute of Translational Medicine, Zhejiang UniversityHangzhou 310058, Zhejiang, China
| | - Dan Yu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Ruijun Li
- Department of Hand Surgery, The First Hospital of Jilin UniversityChangchun 130021, Jilin, China
| |
Collapse
|
8
|
Sun Y, Zhang G, He Z, Wang Y, Cui J, Li Y. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae. Int J Nanomedicine 2016; 11:905-18. [PMID: 27022258 PMCID: PMC4788362 DOI: 10.2147/ijn.s100350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Copper oxide nanoparticles (CuO NPs) are used for a variety of purposes in a wide range of commercially available products. Some CuO NPs probably end up in the aquatic systems, thus raising concerns about aqueous exposure toxicity, and the impact of CuO NPs on liver development and neuronal differentiation remains unclear. In this study, particles were characterized using Fourier transform infrared spectra, scanning electron microscopy, and transmission electron microscopy. Zebrafish embryos were continuously exposed to CuO NPs from 4 hours postfertilization at concentrations of 50, 25, 12.5, 6.25, or 1 mg/L. The expression of gstp1 and cyp1a was examined by quantitative reverse transcription polymerase chain reaction. The expression of tumor necrosis factor alpha and superoxide dismutase 1 was examined by quantitative reverse transcription polymerase chain reaction and Western blotting. Liver development and retinal neurodifferentiation were analyzed by whole-mount in situ hybridization, hematoxylin–eosin staining, and immunohistochemistry, and a behavioral test was performed to track the movement of larvae. We show that exposure of CuO NPs at low doses has little effect on embryonic development. However, exposure to CuO NPs at concentrations of 12.5 mg/L or higher leads to abnormal phenotypes and induces an inflammatory response in a dose-dependent pattern. Moreover, exposure to CuO NPs at high doses results in an underdeveloped liver and a delay in retinal neurodifferentiation accompanied by reduced locomotor ability. Our data demonstrate that short-term exposure to CuO NPs at high doses shows hepatotoxicity and neurotoxicity in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Gong Zhang
- Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Zizi He
- Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Yajie Wang
- Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Jianlin Cui
- Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Yuhao Li
- Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People's Republic of China
| |
Collapse
|