1
|
Hassan S, Baselli G, Mollica L, Rossi RL, Chand H, El-Beshlawy A, Elalfy M, Ramanan V, Eshghi P, Karimi M, Palla R, Rosendaal FR, Peyvandi F. Predicting inhibitor development using a random peptide phage-display library approach in the SIPPET cohort. Blood Adv 2024; 8:2880-2889. [PMID: 38593222 PMCID: PMC11176960 DOI: 10.1182/bloodadvances.2023011388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
ABSTRACT Inhibitor development is the most severe complication of hemophilia A (HA) care and is associated with increased morbidity and mortality. This study aimed to use a novel immunoglobulin G epitope mapping method to explore the factor VIII (FVIII)-specific epitope profile in the SIPPET cohort population and to develop an epitope mapping-based inhibitor prediction model. The population consisted of 122 previously untreated patients with severe HA who were followed up for 50 days of exposure to FVIII or 3 years, whichever occurred first. Sampling was performed before FVIII treatment and at the end of the follow-up. The outcome was inhibitor development. The FVIII epitope repertoire was assessed by means of a novel random peptide phage-display assay. A least absolute shrinkage and selection operator (LASSO) regression model and a random forest model were fitted on posttreatment sample data and validated in pretreatment sample data. The predictive performance of these models was assessed by the C-statistic and a calibration plot. We identified 27 775 peptides putatively directed against FVIII, which were used as input for the statistical models. The C-statistic of the LASSO and random forest models were good at 0.78 (95% confidence interval [CI], 0.69-0.86) and 0.80 (95% CI, 0.72-0.89). Model calibration of both models was moderately good. Two statistical models, developed on data from a novel random peptide phage display assay, were used to predict inhibitor development before exposure to exogenous FVIII. These models can be used to set up diagnostic tests that predict the risk of inhibitor development before starting treatment with FVIII.
Collapse
Affiliation(s)
- Shermarke Hassan
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Guido Baselli
- Department of Transfusion Medicine and Hematology, Translational Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Mollica
- Department of Medical Biotechnologies and Translational Medicine, LITA/University of Milan, Milan, Italy
| | - Riccardo L. Rossi
- Bioinformatics, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi,” Milan, Italy
| | - Himani Chand
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Amal El-Beshlawy
- Pediatric Hematology Department, Cairo University Pediatric Hospital, Cairo, Egypt
| | - Mohsen Elalfy
- Faculty of Medicine, Ain Shams University, Department of Pediatrics, Cairo, Egypt
| | - Vijay Ramanan
- Department of Hematology, Jehangir Clinical Development Centre, Jehangir Hospital Premises, Pune, India
| | - Peyman Eshghi
- Congenital Pediatric Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Karimi
- Pediatric Hematology-Oncology Department, American Hospital Dubai, Dubai, United Arab Emirates
| | - Roberta Palla
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Frits R. Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Flora Peyvandi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| |
Collapse
|
2
|
Pratt KP, Gunasekera D, Vir P, Tan S, Pierce GF, Olsen C, Butenas S, Mann KG. Anti-FVIII antibodies in Black and White hemophilia A subjects: do F8 haplotypes play a role? Blood Adv 2023; 7:4983-4998. [PMID: 36459498 PMCID: PMC10471934 DOI: 10.1182/bloodadvances.2021004909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
The most common complication in hemophilia A (HA) treatment, affecting 25% to 30% of patients with severe HA, is the development of alloimmune inhibitors that foreclose the ability of infused factor VIII (FVIII) to participate in coagulation. Inhibitors confer significant pathology on affected individuals and present major complexities in their management. Inhibitors are more common in African American patients, and it has been hypothesized that this is a consequence of haplotype (H)-treatment product mismatch. F8 haplotypes H1 to H5 are defined by nonsynonymous single-nucleotide polymorphisms encoding sequence variations at FVIII residues 1241, 2238, and 484. Haplotypes H2 to H5 are more prevalent in individuals with Black African ancestry, whereas 80% to 90% of the White population has the H1 haplotype. This study used an established multiplex fluorescence immunoassay to determine anti-FVIII antibody titers in plasma from 394 individuals with HA (188 Black, 206 White), measuring their binding to recombinant full-length H1 and H2 and B-domain-deleted (BDD) H1/H2, H3/H5, and H4 FVIII proteins. Inhibitor titers were determined using a chromogenic assay and linear B-cell epitopes characterized using peptide microarrays. FVIII-reactive antibodies were readily detected in most individuals with HA, with higher titers in those with a current inhibitor, as expected. Neither total nor inhibitory antibody titers correlated with F8 haplotype mismatches, and peptides with D1241E and M2238V polymorphisms did not comprise linear B-cell epitopes. Interestingly, compared with the full-length FVIII products, the BDD-FVIII proteins were markedly more reactive with plasma antibodies. The stronger immunoreactivity of BDD-FVIII suggests that B-domain removal might expose novel B-cell epitopes, perhaps through conformational rearrangements of FVIII domains.
Collapse
Affiliation(s)
| | - Devi Gunasekera
- Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Pooja Vir
- Uniformed Services University of the Health Sciences, Bethesda, MD
| | | | - Glenn F. Pierce
- Independent Consultant, La Jolla, CA
- World Federation of Hemophilia, Montreal, QC, Canada
| | - Cara Olsen
- Uniformed Services University of the Health Sciences, Bethesda, MD
| | | | - Kenneth G. Mann
- College of Medicine, University of Vermont, Burlington, VT
- Haematologic Technologies, Inc, Colchester, VT
| |
Collapse
|
3
|
Gunasekera D, Vir P, Karim AF, Ragni MV, Pratt KP. Hemophilia A subjects with an intron-22 gene inversion mutation show CD4 + T-effector responses to multiple epitopes in FVIII. Front Immunol 2023; 14:1128641. [PMID: 36936969 PMCID: PMC10015889 DOI: 10.3389/fimmu.2023.1128641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background Almost half of severe hemophilia A (HA) is caused by an intron 22 inversion mutation (Int22Inv), which disrupts the 26-exon F8 gene. Inverted F8 mRNA exons 1-22 are transcribed, while F8B mRNA, containing F8 exons 23-26, is transcribed from a promoter within intron 22. Neither FVIII activity nor FVIII antigen (cross-reacting material, CRM) are detectable in plasma of patients with an intron-22 inversion. Objectives To test the hypothesis that (putative) intracellular synthesis of FVIII proteins encoded by inverted F8 and F8B mRNAs confers T-cell tolerance to almost the entire FVIII sequence, and to evaluate the immunogenicity of the region encoded by the F8 exon 22-23 junction sequence. Patients/Methods Peripheral blood mononuclear cells (PBMCs) from 30 severe or moderate HA subjects (17 with an Int22Inv mutation) were tested by ELISPOT assays to detect cytokine secretion in response to FVIII proteins and peptides and to map immunodominant T-cell epitopes. Potential immunogenicity of FVIII sequences encoded by the F8 exon 22-23 junction region was also tested using peptide-MHCII binding assays. Results Eight of the Int22Inv subjects showed robust cytokine secretion from PBMCs stimulated with FVIII proteins and/or peptides, consistent with earlier publications from the Conti-Fine group. Peptide ELISPOT assays identified immunogenic regions of FVIII. Specificity for sequences encoded within F8 mRNA exons 1-22 and F8B mRNA was confirmed by staining Int22Inv CD4+ T cells with peptide-loaded HLA-Class II tetramers. FVIII peptides spanning the F8 exon 22-23 junction (encoding M2124-V2125) showed limited binding to MHCII proteins and low immunogenicity, with cytokine secretion from only one Int22Inv subject. Conclusions PBMCs from multiple subjects with an Int22Inv mutation, with and without a current FVIII inhibitor, responded to FVIII epitopes. Furthermore, the FVIII region encoded by the exon 22-23 junction sequence was not remarkably immunoreactive and is therefore unlikely to contain an immunodominant, promiscuous CD4+ T-cell epitope. Our results indicate that putative intracellular expression of partial FVIII proteins does not confer T-cell tolerance to FVIII regions encoded by inverted F8 mRNA or F8B mRNA.
Collapse
Affiliation(s)
- Devi Gunasekera
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Pooja Vir
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Ahmad Faisal Karim
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Margaret V. Ragni
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kathleen P. Pratt
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- *Correspondence: Kathleen P. Pratt,
| |
Collapse
|
4
|
Remmel JL, Beauchemin KS, Mishra AK, Frei JC, Lai JR, Bailey-Kellogg C, Ackerman ME. Combinatorial Resurfacing of Dengue Envelope Protein Domain III Antigens Selectively Ablates Epitopes Associated with Serotype-Specific or Infection-Enhancing Antibody Responses. ACS COMBINATORIAL SCIENCE 2020; 22:446-456. [PMID: 32574486 DOI: 10.1021/acscombsci.0c00073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutagenesis of surface-exposed residues, or "resurfacing", is a protein engineering strategy that can be utilized to disrupt antibody recognition or modulate the capacity of a protein to elicit antibody responses. We apply resurfacing to engineer Dengue virus envelope protein domain III (DENV DIII) antigens with the goal of focusing humoral recognition on epitopes of interest by selective ablation of irrelevant and undesired epitopes. Cross-reactive but non-neutralizing antibodies have the potential to enhance Dengue virus (DENV) infection by a process called antibody-dependent enhancement, thought to be associated with severe secondary heterotypic infection. Thus, a focus on epitopes associated with broadly neutralizing antibodies is important both for understanding human antibody responses against DENV and for the development of a successful DENV vaccine. To engineer DENV DIII antigens focusing on the AG strand epitope associated with broadly neutralizing antibody responses, we generated yeast surface display libraries of DENV2 DIII where the AB loop (associated with cross-reactive but non-neutralizing antibody responses) and FG loop (associated with serotype-specific antibody responses) were mutagenized to allow for all possible amino acid substitutions. Loop variants that maintained the AG strand epitope and simultaneously disrupted the AB and FG loop epitopes exhibited high and diverse mutational loads that were amenable to loop exchange and transplantation into a DENV4 DIII background. Thus, several loop variants fulfill this antigenicity criteria regardless of serotype context. The resulting resurfaced DIII antigens may be utilized as AG strand epitope-focusing probes or immunogen candidates.
Collapse
Affiliation(s)
- Jennifer L. Remmel
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Kathryn S. Beauchemin
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Akaash K. Mishra
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Julia C. Frei
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
5
|
Liang S, Zhang C. Prediction of immunogenicity for humanized and full human therapeutic antibodies. PLoS One 2020; 15:e0238150. [PMID: 32866159 PMCID: PMC7458303 DOI: 10.1371/journal.pone.0238150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/10/2020] [Indexed: 01/02/2023] Open
Abstract
Immunogenicity is an important concern for therapeutic antibodies during drug development. By analyzing co-crystal structures of idiotypic antibodies and their antibodies, we found that anti-idiotypic antibodies usually bind the Complementarity Determining Regions (CDR) of idiotypic antibodies. Sequence and structural features were identified for distinguishing immunogenic antibodies from non-immunogenic antibodies. For example, non-immunogenic antibodies have a significantly larger cavity volume at the CDR region and a more hydrophobic CDR-H3 loop than immunogenic antibodies. Antibodies containing no Gly at the turn of CDR-H2 loop are often immunogenic. We integrated these features together with a machine learning platform to Predict Immunogenicity for humanized and full human THerapeutic Antibodies (PITHA). This method achieved an accuracy of 83% in leave-one-out experiment for 29 therapeutic antibodies with available crystal structures. The accuracy decreased to 65% for 23 test antibodies with modeled structures, because their crystal structures were not available, and the prediction was made with modeled structures. The server of this method is accessible at http://mabmedicine.com/PITHA.
Collapse
Affiliation(s)
- Shide Liang
- Department of Research and Development, Bio-Thera Solutions, Guangzhou, P. R. China
- * E-mail: (SL); (CZ)
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States of America
- * E-mail: (SL); (CZ)
| |
Collapse
|
6
|
Kanduc D. Hydrophobicity and the Physico-Chemical Basis of Immunotolerance. Pathobiology 2020; 87:268-276. [PMID: 32726789 DOI: 10.1159/000508903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/25/2020] [Indexed: 11/19/2022] Open
Abstract
This study analyzes the primary electrostatic interaction between the membrane-bound B-cell receptor and antigen peptide determinants, and identifies peptide frequency and hydrophobicity as the main factors that govern and shape immunotolerance versus immunoreactivity.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy,
| |
Collapse
|
7
|
Anti-Drug Antibodies: Emerging Approaches to Predict, Reduce or Reverse Biotherapeutic Immunogenicity. Antibodies (Basel) 2018; 7:antib7020019. [PMID: 31544871 PMCID: PMC6698869 DOI: 10.3390/antib7020019] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
The development of anti-drug antibodies (ADAs) following administration of biotherapeutics to patients is a vexing problem that is attracting increasing attention from pharmaceutical and biotechnology companies. This serious clinical problem is also spawning creative research into novel approaches to predict, avoid, and in some cases even reverse such deleterious immune responses. CD4+ T cells are essential players in the development of most ADAs, while memory B-cell and long-lived plasma cells amplify and maintain these responses. This review summarizes methods to predict and experimentally identify T-cell and B-cell epitopes in therapeutic proteins, with a particular focus on blood coagulation factor VIII (FVIII), whose immunogenicity is clinically significant and is the subject of intensive current research. Methods to phenotype ADA responses in humans are described, including T-cell stimulation assays, and both established and novel approaches to determine the titers, epitopes and isotypes of the ADAs themselves. Although rational protein engineering can reduce the immunogenicity of many biotherapeutics, complementary, novel approaches to induce specific tolerance, especially during initial exposures, are expected to play significant roles in future efforts to reduce or reverse these unwanted immune responses.
Collapse
|
8
|
Ettinger RA, Liberman JA, Gunasekera D, Puranik K, James EA, Thompson AR, Pratt KP. FVIII proteins with a modified immunodominant T-cell epitope exhibit reduced immunogenicity and normal FVIII activity. Blood Adv 2018; 2:309-322. [PMID: 29444872 PMCID: PMC5858479 DOI: 10.1182/bloodadvances.2017013482] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/16/2018] [Indexed: 02/08/2023] Open
Abstract
Factor VIII (FVIII)-neutralizing antibodies (inhibitors) are a serious complication in hemophilia A (HA). The peptide FVIII2194-2213 contains an immunodominant HLA-DRA*01-DRB1*01:01 (DRB1*01:01)-restricted epitope recognized by CD4+ T-effector cells from HA subjects. The aim of this study was to identify amino acid substitutions to deimmunize this epitope while retaining procoagulant function and expression levels comparable to those of wild-type (WT) FVIII proteins. The shortest DRB1*01:01-binding peptide was FVIII2194-2205, and residues important for affinity were identified as F2196, M2199, A2201, and S2204. T-cell proliferation experiments with Ala-substituted FVIII2194-2205 peptides identified F2196A as a substitution that abrogated proliferation of clones specific for the WT sequence. T-cell clones that were stimulated by recombinant WT-FVIII-C2 (rWT-FVIII-C2) protein did not proliferate when cultured with rFVIII-C2-F2196A, indicating the immunogenic peptide includes a naturally processed T-cell epitope. Additional amino acid substitutions at F2196 and M2199 were evaluated by peptide-MHC class II (MHCII)-binding assays, T-cell proliferation assays, epitope prediction algorithms, and sequence homologies. Six B-domain-deleted (BDD)-FVIII proteins with substitutions F2196A, F2196L, F2196K, M2199A, M2199W, or M2199R were produced. Proliferation of T-cell clones and polyclonal lines in response to rBDD-FVIII-F2196K and rBDD-FVIII-M2199A was reduced compared with responses to WT-BDD-FVIII. The BDD-FVIII-F2196K sequence modification appears to be the most promising sequence variant tested here, due to its effectiveness at eliminating DRB1*01:01-restricted immunogenicity, low potential immunogenicity in the context of other MHCII alleles, expression level comparable to WT-BDD-FVIII, and retained procoagulant activity. These results provide proof of principle for the design of less immunogenic FVIII proteins targeted to specific subsets of HA patients.
Collapse
Affiliation(s)
- Ruth A Ettinger
- Bloodworks Northwest Research Institute, Seattle, WA
- Benaroya Research Institute, Seattle, WA
| | | | - Devi Gunasekera
- Bloodworks Northwest Research Institute, Seattle, WA
- Uniformed Services University of the Health Sciences, Bethesda, MD; and
| | - Komal Puranik
- Bloodworks Northwest Research Institute, Seattle, WA
| | | | - Arthur R Thompson
- Bloodworks Northwest Research Institute, Seattle, WA
- Division of Hematology, Department Medicine, University of Washington, Seattle, WA
| | - Kathleen P Pratt
- Bloodworks Northwest Research Institute, Seattle, WA
- Uniformed Services University of the Health Sciences, Bethesda, MD; and
- Division of Hematology, Department Medicine, University of Washington, Seattle, WA
| |
Collapse
|
9
|
Life in the shadow of a dominant partner: the FVIII-VWF association and its clinical implications for hemophilia A. Blood 2016; 128:2007-2016. [PMID: 27587878 DOI: 10.1182/blood-2016-04-713289] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/18/2016] [Indexed: 11/20/2022] Open
Abstract
A normal hemostatic response to vascular injury requires both factor VIII (FVIII) and von Willebrand factor (VWF). In plasma, VWF and FVIII normally circulate as a noncovalent complex, and each has a critical function in the maintenance of hemostasis. Furthermore, the interaction between VWF and FVIII plays a crucial role in FVIII function, immunogenicity, and clearance, with VWF essentially serving as a chaperone for FVIII. Several novel recombinant FVIII (rFVIII) therapies for hemophilia A have been in clinical development, which aim to increase the half-life of FVIII (∼12 hours) and reduce dosing frequency by utilizing bioengineering techniques including PEGylation, Fc fusion, and single-chain design. However, these approaches have achieved only moderate increases in half-life of 1.5- to 2-fold compared with marketed FVIII products. Clearance of PEGylated rFVIII, rFVIIIFc, and rVIII-SingleChain is still regulated to a large extent by interaction with VWF. Therefore, the half-life of VWF (∼15 hours) appears to be the limiting factor that has confounded attempts to extend the half-life of rFVIII. A greater understanding of the interaction between FVIII and VWF is required to drive novel bioengineering strategies for products that either prolong the survival of VWF or limit VWF-mediated clearance of FVIII.
Collapse
|
10
|
T cells from hemophilia A subjects recognize the same HLA-restricted FVIII epitope with a narrow TCR repertoire. Blood 2016; 128:2043-2054. [PMID: 27471234 DOI: 10.1182/blood-2015-11-682468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Factor VIII (FVIII)-neutralizing antibodies ("inhibitors") are a serious problem in hemophilia A (HA). The aim of this study was to characterize HLA-restricted T-cell responses from a severe HA subject with a persistent inhibitor and from 2 previously studied mild HA inhibitor subjects. Major histocompatibility complex II tetramers corresponding to both of the severe HA subject's HLA-DRA-DRB1 alleles were loaded with peptides spanning FVIII-A2, C1, and C2 domains. Interestingly, only 1 epitope was identified, in peptide FVIII2194-2213, and it was identical to the HLA-DRA*01-DRB1*01:01-restricted epitope recognized by the mild HA subjects. Multiple T-cell clones and polyclonal lines having different avidities for the peptide-loaded tetramer were isolated from all subjects. Only high- and medium-avidity T cells proliferated and secreted cytokines when stimulated with FVIII2194-2213 T-cell receptor β (TCRB) gene sequencing of 15 T-cell clones from the severe HA subject revealed that all high-avidity clones expressed the same TCRB gene. High-throughput immunosequencing of high-, medium-, and low-avidity cells sorted from a severe HA polyclonal line revealed that 94% of the high-avidity cells expressed the same TCRB gene as the high-avidity clones. TCRB sequencing of clones and lines from the mild HA subjects also identified a limited TCRB gene repertoire. These results suggest a limited number of epitopes in FVIII drive inhibitor responses and that the T-cell repertoires of FVIII-responsive T cells can be quite narrow. The limited diversity of both epitopes and TCRB gene usage suggests that targeting of specific epitopes and/or T-cell clones may be a promising approach to achieve tolerance to FVIII.
Collapse
|
11
|
High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors. Blood 2016; 128:2055-2067. [PMID: 27381905 DOI: 10.1182/blood-2016-02-701805] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022] Open
Abstract
Inhibitor formation in hemophilia A is the most feared treatment-related complication of factor VIII (fVIII) therapy. Most inhibitor patients with hemophilia A develop antibodies against the fVIII A2 and C2 domains. Recent evidence demonstrates that the C1 domain contributes to the inhibitor response. Inhibitory anti-C1 monoclonal antibodies (mAbs) have been identified that bind to putative phospholipid and von Willebrand factor (VWF) binding epitopes and block endocytosis of fVIII by antigen presenting cells. We now demonstrate by competitive enzyme-linked immunosorbent assay and hydrogen-deuterium exchange mass spectrometry that 7 of 9 anti-human C1 mAbs tested recognize an epitope distinct from the C1 phospholipid binding site. These mAbs, designated group A, display high binding affinities for fVIII, weakly inhibit fVIII procoagulant activity, poorly inhibit fVIII binding to phospholipid, and exhibit heterogeneity with respect to blocking fVIII binding to VWF. Another mAb, designated group B, inhibits fVIII procoagulant activity, fVIII binding to VWF and phospholipid, fVIIIa incorporation into the intrinsic Xase complex, thrombin generation in plasma, and fVIII uptake by dendritic cells. Group A and B epitopes are distinct from the epitope recognized by the canonical, human-derived inhibitory anti-C1 mAb, KM33, whose epitope overlaps both groups A and B. Antibodies recognizing group A and B epitopes are present in inhibitor plasmas from patients with hemophilia A. Additionally, group A and B mAbs increase fVIII clearance and are pathogenic in a hemophilia A mouse tail snip bleeding model. Group A anti-C1 mAbs represent the first identification of pathogenic, weakly inhibitory antibodies that increase fVIII clearance.
Collapse
|
12
|
Griswold KE, Bailey-Kellogg C. Design and engineering of deimmunized biotherapeutics. Curr Opin Struct Biol 2016; 39:79-88. [PMID: 27322891 DOI: 10.1016/j.sbi.2016.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
Therapeutic proteins are powerful next-generation drugs able to effectively treat diverse and devastating diseases, but the development and use of biotherapeutics entails unique challenges and risks. In particular, protein drugs are subject to immune surveillance in the human body, and ensuing antidrug immune responses can cause a wide range of problems including altered pharmacokinetics, loss of efficacy, and even life-threating complications. Here we review recent progress in technologies for engineering deimmunized biotherapeutics, placing particular emphasis on deletion of immunogenic antibody and T cell epitopes via experimentally or computationally guided mutagenesis.
Collapse
Affiliation(s)
- Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, NH, United States; Stealth Biologics LLC, Lyme, NH, United States.
| | - Chris Bailey-Kellogg
- Stealth Biologics LLC, Lyme, NH, United States; Department of Computer Science, Dartmouth, Hanover, NH, United States.
| |
Collapse
|
13
|
Pratt KP. Engineering less immunogenic and antigenic FVIII proteins. Cell Immunol 2015; 301:12-7. [PMID: 26566286 DOI: 10.1016/j.cellimm.2015.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/22/2015] [Indexed: 01/03/2023]
Abstract
The development of neutralizing antibodies against blood coagulation factor VIII (FVIII), referred to clinically as "inhibitors", is the most challenging and deleterious adverse event to occur following intravenous infusions of FVIII to treat hemophilia A. Inhibitors occlude FVIII surfaces that must bind to activated phospholipid membranes, the serine proteinase factor IXa, and other components of the 'intrinsic tenase complex' in order to carry out its important role in accelerating blood coagulation. Inhibitors develop in up to one of every three patients, yet remarkably, a substantial majority of severe hemophilia A patients, who circulate no detectable FVIII antigen or activity, acquire immune tolerance to FVIII during initial infusions or else after intensive FVIII therapy to overcome their inhibitor. The design of less immunogenic FVIII proteins through identification and modification ("de-immunization") of immunodominant T-cell epitopes is an important goal. For patients who develop persistent inhibitors, modification of B-cell epitopes through substitution of surface-exposed amino acid side chains and/or attachment of bulky moieties to interfere with FVIII attachment to antibodies and memory B cells is a promising approach. Both experimental and computational methods are being employed to achieve these goals. Future therapies for hemophilia A, as well as other monogenic deficiency diseases, are likely to involve administration of less immunogenic proteins in conjunction with other novel immunotherapies to promote a regulatory cellular environment promoting durable immune tolerance.
Collapse
Affiliation(s)
- Kathleen P Pratt
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
14
|
Winge S, Yderland L, Kannicht C, Hermans P, Adema S, Schmidt T, Gilljam G, Linhult M, Tiemeyer M, Belyanskaya L, Walter O. Development, upscaling and validation of the purification process for human-cl rhFVIII (Nuwiq®), a new generation recombinant factor VIII produced in a human cell-line. Protein Expr Purif 2015; 115:165-75. [DOI: 10.1016/j.pep.2015.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
|
15
|
Nguyen PCT, Lewis KB, Ettinger RA, Schuman JT, Lin JC, Healey JF, Meeks SL, Lollar P, Pratt KP. High-resolution mapping of epitopes on the C2 domain of factor VIII by analysis of point mutants using surface plasmon resonance. Blood 2014; 123:2732-9. [PMID: 24591205 PMCID: PMC3999758 DOI: 10.1182/blood-2013-09-527275] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/09/2014] [Indexed: 11/20/2022] Open
Abstract
Neutralizing anti-factor VIII (FVIII) antibodies that develop in patients with hemophilia A and in murine hemophilia A models, clinically termed "inhibitors," bind to several distinct surfaces on the FVIII-C2 domain. To map these epitopes at high resolution, 60 recombinant FVIII-C2 proteins were generated, each having a single surface-exposed residue mutated to alanine or a conservative substitution. The binding kinetics of these muteins to 11 monoclonal, inhibitory anti-FVIII-C2 antibodies were evaluated by surface plasmon resonance and the results compared with those obtained for wild-type FVIII-C2. Clusters of residues with significantly altered binding kinetics identified "functional" B-cell epitopes, defined as those residues contributing appreciable antigen-antibody avidity. These antibodies were previously shown to neutralize FVIII activity by interfering with proteolytic activation of FVIII by thrombin or factor Xa, or with its binding to phospholipid surfaces, von Willebrand factor, or other components of the intrinsic tenase complex. Fine mapping of epitopes by surface plasmon resonance also indicated surfaces through which FVIII interacts with proteins and phospholipids as it participates in coagulation. Mutations that significantly altered the dissociation times/half-lives identified functionally important interactions within antigen-antibody interfaces and suggested specific sequence modifications to generate novel, less antigenic FVIII proteins with possible therapeutic potential for treatment of inhibitor patients.
Collapse
|
16
|
Gilbert GE, Novakovic VA, Kaufman RJ, Miao H, Pipe SW. Conservative mutations in the C2 domains of factor VIII and factor V alter phospholipid binding and cofactor activity. Blood 2012; 120:1923-32. [PMID: 22613792 PMCID: PMC3433094 DOI: 10.1182/blood-2012-01-408245] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/01/2012] [Indexed: 11/20/2022] Open
Abstract
Factor VIII and factor V share structural homology and bind to phospholipid membranes via tandem, lectin-like C domains. Their respective C2 domains bind via 2 pairs of hydrophobic amino acids and an amphipathic cluster. In contrast, the factor V-like, homologous subunit (Pt-FV) of a prothrombin activator from Pseudonaja textilis venom is reported to function without membrane binding. We hypothesized that the distinct membrane-interactive amino acids of these proteins contribute to the differing membrane-dependent properties. We prepared mutants in which the C2 domain hydrophobic amino acid pairs were changed to the homologous residues of the other protein and a factor V mutant with 5 amino acids changed to those from Pt-FV (FV(MTTS/Y)). Factor VIII mutants were active on additional membrane sites and had altered apparent affinities for factor X. Some factor V mutants, including FV(MTTS/Y), had increased membrane interaction and apparent membrane-independent activity that was the result of phospholipid retained during purification. Phospholipid-free FV(MTTS/Y) showed increased activity, particularly a 10-fold increase in activity on membranes lacking phosphatidylserine. The reduced phosphatidylserine requirement correlated to increased activity on resting and stimulated platelets. We hypothesize that altered membrane binding contributes to toxicity of Pt-FV.
Collapse
Affiliation(s)
- Gary E Gilbert
- Department of Medicine, Veterans Administration Boston Healthcare System, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | |
Collapse
|