1
|
Sato Y, Hishiki T, Masugi Y, Florence L, Yu YM. Vitamin D administration increases serum alanine concentrations in thermally injured mice. Biochem Biophys Res Commun 2024; 736:150505. [PMID: 39128265 DOI: 10.1016/j.bbrc.2024.150505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Thermal or burn injury results in profound metabolic changes in the body. This can contribute to muscle atrophy, bone loss, as well as suppression of the immune system. While the mechanisms that underlie this hypermetabolic response remain unclear, patients with burn injury often have low circulating levels of vitamin D. Vitamin D has been shown to regulate bone formation as well as regulate muscle function. We sought to clarify the effects of vitamin D administration on skeletal muscle function following thermal injury using a mouse model. We found that thermal injury resulted in decreased vitamin D levels as well as decreased bone mineral density. Branched chain amino acid (BCAA)s levels were also significantly enhanced in the serum following burn injury. Vitamin D administration reversed the decrease in bone marrow-derived mesenchymal stem cell (BM-MSC)s observed post burn injury. Interestingly, vitamin D administration also resulted in increased tricarboxylic acid cycle (TCA) cycle metabolites in muscle which was decreased after burn conditions, enhanced the supply of alanine and glutamine in the blood which could contribute to gluconeogenesis and wound healing. Therefore, vitamin D supplementation after burn injury may have effects not only in bone metabolism, but may affect substrate metabolism in other organs/tissues.
Collapse
Affiliation(s)
- Yukio Sato
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children in Boston, Boston, MA, USA.
| | - Takako Hishiki
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Lin Florence
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children in Boston, Boston, MA, USA
| | - Yong-Ming Yu
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children in Boston, Boston, MA, USA
| |
Collapse
|
2
|
Yamada K, Tanaka T, Kai K, Matsufuji S, Ito K, Kitajima Y, Manabe T, Noshiro H. Suppression of NASH-Related HCC by Farnesyltransferase Inhibitor through Inhibition of Inflammation and Hypoxia-Inducible Factor-1α Expression. Int J Mol Sci 2023; 24:11546. [PMID: 37511305 PMCID: PMC10380354 DOI: 10.3390/ijms241411546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory processes play major roles in carcinogenesis and the progression of hepatocellular carcinoma (HCC) derived from non-alcoholic steatohepatitis (NASH). But, there are no therapies for NASH-related HCC, especially focusing on these critical steps. Previous studies have reported that farnesyltransferase inhibitors (FTIs) have anti-inflammatory and anti-tumor effects. However, the influence of FTIs on NASH-related HCC has not been elucidated. In hepatoblastoma and HCC cell lines, HepG2, Hep3B, and Huh-7, we confirmed the expression of hypoxia-inducible factor (HIF)-1α, an accelerator of tumor aggressiveness and the inflammatory response. We established NASH-related HCC models under inflammation and free fatty acid burden and confirmed that HIF-1α expression was increased under both conditions. Tipifarnib, which is an FTI, strongly suppressed increased HIF-1α, inhibited cell proliferation, and induced apoptosis. Simultaneously, intracellular interleukin-6 as an inflammation marker was increased under both conditions and significantly suppressed by tipifarnib. Additionally, tipifarnib suppressed the expression of phosphorylated nuclear factor-κB and transforming growth factor-β. Finally, in a NASH-related HCC mouse model burdened with diethylnitrosamine and a high-fat diet, tipifarnib significantly reduced tumor nodule formation in association with decreased serum interleukin-6. In conclusion, tipifarnib has anti-tumor and anti-inflammatory effects in a NASH-related HCC model and may be a promising new agent to treat this disease.
Collapse
Affiliation(s)
- Kohei Yamada
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Tomokazu Tanaka
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Keita Kai
- Department of Pathology, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Shohei Matsufuji
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Kotaro Ito
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Yoshihiko Kitajima
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
- Department of Surgery, National Hospital Organization Higashisaga Hospital, Saga 849-0101, Japan
| | - Tatsuya Manabe
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Hirokazu Noshiro
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| |
Collapse
|
3
|
Farnesysltransferase Inhibitor Prevents Burn Injury-Induced Metabolome Changes in Muscle. Metabolites 2022; 12:metabo12090800. [PMID: 36144205 PMCID: PMC9506277 DOI: 10.3390/metabo12090800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 01/01/2023] Open
Abstract
Burn injury remains a significant public health issue worldwide. Metabolic derangements are a major complication of burn injury and negatively affect the clinical outcomes of severely burned patients. These metabolic aberrations include muscle wasting, hypermetabolism, hyperglycemia, hyperlactatemia, insulin resistance, and mitochondrial dysfunction. However, little is known about the impact of burn injury on the metabolome profile in skeletal muscle. We have previously shown that farnesyltransferase inhibitor (FTI) reverses burn injury-induced insulin resistance, mitochondrial dysfunction, and the Warburg effect in mouse skeletal muscle. To evaluate metabolome composition, targeted quantitative analysis was performed using capillary electrophoresis mass spectrometry in mouse skeletal muscle. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and hierarchical cluster analysis demonstrated that burn injury induced a global change in metabolome composition. FTI treatment almost completely prevented burn injury-induced alterations in metabolite levels. Pathway analysis revealed that the pathways most affected by burn injury were purine, glutathione, β-alanine, glycine, serine, and threonine metabolism. Burn injury induced a suppressed oxidized to reduced nicotinamide adenine dinucleotide (NAD+/NADH) ratio as well as oxidative stress and adenosine triphosphate (ATP) depletion, all of which were reversed by FTI. Moreover, our data raise the possibility that burn injury may lead to increased glutaminolysis and reductive carboxylation in mouse skeletal muscle.
Collapse
|
4
|
Mitochondria play a key role in oxidative stress-induced pancreatic islet dysfunction after severe burns. J Trauma Acute Care Surg 2022; 92:1012-1019. [PMID: 34882597 DOI: 10.1097/ta.0000000000003490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Severe burns are often complicated with hyperglycemia in part caused by pancreatic islet dysfunction. Previous studies have revealed that in diabetes mellitus, the pancreatic islet dysfunction is partly attributed to oxidative stress. However, the role and mechanism of oxidative stress in hyperglycemia after severe burns remain unclear. Therefore, the purpose of this study was to explore the level and mechanism of oxidative stress in pancreatic islets after severe burns and the antioxidant effect of sodium pyruvate. METHODS A 30% total body surface area full-thickness burn model was established using male C57BL/6 mice. Fasting blood glucose and glucose-stimulated insulin secretion (GSIS) 24 hours post severe burns were detected. The levels of reactive oxygen species (ROS) and mitochondrial ROS of islets were detected. The activities of complexes in the mitochondrial respiratory chain of islets were measured. The main antioxidant defense system, glutaredoxin system, and thioredoxin system-related indexes were detected, and the expression of manganese superoxide dismutase (Mn-SOD) was measured. In addition, the antioxidant activity of sodium pyruvate was evaluated post severe burns. RESULTS After severe burns, fasting blood glucose levels increased, while GSIS levels decreased, with significantly elevated ROS levels of pancreatic islets. The activity of complex III decreased and the level of mitochondrial ROS increased significantly post severe burns. For the detoxification of ROS, the expressions of thioredoxin 2, thioredoxin reductase 2, and Mn-SOD located in mitochondria decreased. Sodium pyruvate reduced the level of mitochondrial ROS in islet cells and improved the GSIS of islets after severe burns. CONCLUSION The high level of mitochondrial ROS of islets is caused by reducing the activity of complex III in mitochondrial respiratory chain, inhibiting mitochondrial thioredoxin system, and downregulating Mn-SOD post severe burns. Sodium pyruvate plays an antioxidant role post severe burns in mice islets and improves the islet function.
Collapse
|
5
|
Yu H, Nie C, Zhou Y, Wang X, Wang H, Shi X. Tolerance to Glucose and Lipid High Metabolic Reactions After Burns in an Obese Rat Model. J Burn Care Res 2022; 43:1-8. [PMID: 34520555 DOI: 10.1093/jbcr/irab163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The goal of this study was to determine what effect obese body weight and a burn injury can have on the metabolism of glucose and lipids in rats. We used a 3 * 3 factorial model design to provide basic glucose and lipid metabolic data characterizing the interaction between different weight and burn injury groups. Two hundred Sprague Dawley rats were categorized into three weight groups (normal, overweight, obese) and then further divided into control, second-degree, and third-degree burn groups. Our model compared interactions between weight and burn injury factors according to the above groups. Blood glucose and lipid metabolism indicators were monitored on the 1st, 3rd, 7th, and 14th days after burn injury occurred, and burned skin and blood samples were collected for testing. Compared with the normal weight group, the overweight group's fast blood glucose, fast insulin, and homeostasis model assessment of insulin resistance were higher (P < .05), and FBG in the obese group was higher than the normal weight group (P < .05). Burn injuries combined with obese body weight had an interactive effect on fast blood glucose, fast insulin, and homeostasis model assessment of insulin resistance after burn injury (P < .05). Burn injury combined with obese body weight had an interaction on low-density lipoprotein cholesterol on the 3rd day after burn injury (P < .05). Burn injury combined with obese weight had no interaction on triglyceride, total cholesterol, and high-density lipoprotein cholesterol (P > .05). Rats in the overweight and obese weight groups were observed to develop an adaptation and tolerance to a higher metabolic rate after burn injuries occurred.
Collapse
Affiliation(s)
- Huiting Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Guizhou, China
- Hospital Infection Control Department, Qiaokou District Maternal and Child Health Hospital, Wuhan, Hubei, China
| | - Chan Nie
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Guizhou, China
- Department of Epidemiology, Guiyang Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Yanna Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Guizhou, China
| | - Xue Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Guizhou, China
| | - Haiyan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Guizhou, China
| | - Xiuquan Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Guizhou, China
| |
Collapse
|
6
|
Chornenka NM, Raetska YB, Huet AS, Beregova TV, Savchuk OM, Ostapchenko LI. Expression Level of the Nos2 and Nfkb1 Genes in the Conditions of Esophageal Alkaline Burns and with the Administration of Melanin. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721040022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
8
|
Bittel DC, Jaiswal JK. Contribution of Extracellular Vesicles in Rebuilding Injured Muscles. Front Physiol 2019; 10:828. [PMID: 31379590 PMCID: PMC6658195 DOI: 10.3389/fphys.2019.00828] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022] Open
Abstract
Skeletal myofibers are injured due to mechanical stresses experienced during physical activity, or due to myofiber fragility caused by genetic diseases. The injured myofiber needs to be repaired or regenerated to restore the loss in muscle tissue function. Myofiber repair and regeneration requires coordinated action of various intercellular signaling factors-including proteins, inflammatory cytokines, miRNAs, and membrane lipids. It is increasingly being recognized release and transmission of these signaling factors involves extracellular vesicle (EV) released by myofibers and other cells in the injured muscle. Intercellular signaling by these EVs alters the phenotype of their target cells either by directly delivering the functional proteins and lipids or by modifying longer-term gene expression. These changes in the target cells activate downstream pathways involved in tissue homeostasis and repair. The EVs are heterogeneous with regards to their size, composition, cargo, location, as well as time-course of genesis and release. These differences impact on the subsequent repair and regeneration of injured skeletal muscles. This review focuses on how intracellular vesicle production, cargo packaging, and secretion by injured muscle, modulates specific reparative, and regenerative processes. Insights into the formation of these vesicles and their signaling properties offer new understandings of the orchestrated response necessary for optimal muscle repair and regeneration.
Collapse
Affiliation(s)
- Daniel C Bittel
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States
| | - Jyoti K Jaiswal
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
9
|
Nakazawa H, Ikeda K, Shinozaki S, Yasuhara S, Yu YM, Martyn JAJ, Tompkins RG, Yorozu T, Inoue S, Kaneki M. Coenzyme Q10 protects against burn-induced mitochondrial dysfunction and impaired insulin signaling in mouse skeletal muscle. FEBS Open Bio 2019; 9:348-363. [PMID: 30761259 PMCID: PMC6356165 DOI: 10.1002/2211-5463.12580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial dysfunction is associated with metabolic alterations in various disease states, including major trauma (e.g., burn injury). Metabolic derangements, including muscle insulin resistance and hyperlactatemia, are a clinically significant complication of major trauma. Coenzyme Q10 (CoQ10) is an essential cofactor for mitochondrial electron transport, and its reduced form acts as a lipophilic antioxidant. Here, we report that burn injury induces impaired muscle insulin signaling, hyperlactatemia, mitochondrial dysfunction (as indicated by suppressed mitochondrial oxygen consumption rates), morphological alterations of the mitochondria (e. g., enlargement, and loss of cristae structure), mitochondrial oxidative stress, and disruption of mitochondrial integrity (as reflected by increased mitochondrial DNA levels in the cytosol and circulation). All of these alterations were significantly alleviated by CoQ10 treatment compared with vehicle alone. These findings indicate that CoQ10 treatment is efficacious in protecting against mitochondrial dysfunction and insulin resistance in skeletal muscle of burned mice. Our data highlight CoQ10 as a potential new strategy to prevent mitochondrial damage and metabolic dysfunction in burn patients.
Collapse
Affiliation(s)
- Harumasa Nakazawa
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA.,Department of Anesthesiology Kyorin University School of Medicine Tokyo Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction Research Center for Genomic Medicine Saitama Medical University Japan
| | - Shohei Shinozaki
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA.,Department of Life Sciences and Bioethics Tokyo Medical and Dental University Japan
| | - Shingo Yasuhara
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| | - Yong-Ming Yu
- Shriners Hospitals for Children Boston MA USA.,Department of Surgery Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - J A Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| | - Ronald G Tompkins
- Shriners Hospitals for Children Boston MA USA.,Department of Surgery Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - Tomoko Yorozu
- Department of Anesthesiology Kyorin University School of Medicine Tokyo Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction Research Center for Genomic Medicine Saitama Medical University Japan.,Tokyo Metropolitan Institute of Gerontology Japan
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| |
Collapse
|
10
|
Zhao D, Ma L, Shen C, Li D, Cheng W, Shang Y, Liu Z, Wang X, Yin K. Long-lasting Glucagon-like Peptide 1 Analogue Exendin-4 Ameliorates the Secretory and Synthetic Function of Islets Isolated From Severely Scalded Rats. J Burn Care Res 2018; 39:545-554. [PMID: 29579298 DOI: 10.1093/jbcr/irx014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dongxu Zhao
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Li Ma
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Chuanan Shen
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Dawei Li
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Wenfeng Cheng
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Yuru Shang
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Zhaoxing Liu
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Xin Wang
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Kai Yin
- Department of Burn and Plastic Surgery, Burns Institute, the First Affiliated Hospital of General Hospital of PLA, Beijing, China
| |
Collapse
|
11
|
Prevention of Burn-Induced Inflammatory Responses and Muscle Wasting by GTS-21, a Specific Agonist for α7 Nicotinic Acetylcholine Receptors. Shock 2018; 47:61-69. [PMID: 27529131 DOI: 10.1097/shk.0000000000000729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Muscle wasting (MW) in catabolic conditions (e.g., burn injury [BI]) is a major risk factor affecting prognosis. Activation of interleukin-1β (IL-1β)/nuclear factor-kappa B (NF-κB), interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3), and/or forkhead box O transcriptional factor (FOXO)-mediated gene transcription pathways is the pivotal trigger of inflammatory response-induced protein catabolic processes in muscle. The α7 acetylcholine receptors (α7AChRs) are upregulated in macrophages and peripheral tissues including skeletal muscle during MW conditions. Stimulation of α7AChRs mitigates inflammatory responses. Hypothesis tested is that attenuation of inflammation by α7AChR stimulation with specific α7AChR agonist, GTS-21, will reverse BI-induced body mass and MW by modulating inflammatory and proteolytic signals. METHODS Body surface area (30%) BI or sham BI mice were treated with GTS-21 or saline. Tibialis anterior (TA) muscle was harvested at 6 h, day 1 or 3 to examine inflammatory and proteolytic signals. RESULTS GTS-21 significantly ameliorated the BI-induced increased expression of inflammatory cytokines IL-6, IL-1β, C-X-C motif chemokine ligand 2 (6 h), phosphorylated STAT3, and NF-κB (day 1) in TA muscle. GTS-21 also significantly inhibited BI-induced increase of MuRF1 and FOXO1 (day 1). Consistent with the cytokine and inflammatory mediator changes, BI-induced body weight and TA muscle mass loss at day 3 were mitigated by GTS-21 treatment. The beneficial effect of GTS-21 on BI changes was absent in methyllycaconitine (α7AChR antagonist)-treated wild-type and α7AChR knockout mice. CONCLUSION GTS-21 stimulation of α7AChRs, by modulating multiple molecular signals related to inflammation and proteolysis, attenuates protein wasting, evidenced by maintenance of body weight and attenuation of distant muscle mass loss after BI. GTS-21 can be a novel, potent therapeutic option for reversal of BI-induced MW.
Collapse
|
12
|
Ueki R, Liu L, Kashiwagi S, Kaneki M, Khan MAS, Hirose M, Tompkins RG, Martyn JAJ, Yasuhara S. Role of Elevated Fibrinogen in Burn-Induced Mitochondrial Dysfunction: Protective Effects of Glycyrrhizin. Shock 2018; 46:382-9. [PMID: 27172157 DOI: 10.1097/shk.0000000000000602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Skeletal muscle wasting and weakness with mitochondrial dysfunction (MD) are major pathological problems in burn injury (BI) patients. Fibrinogen levels elevated in plasma is an accepted risk factor for poor prognosis in many human diseases, and is also designated one of damage-associated molecular pattern (DAMPs) proteins. The roles of upregulated fibrinogen on muscle changes of critical illness including BI are unknown. The hypothesis tested was that BI-upregulated fibrinogen plays a pivotal role in the inflammatory responses and MD in muscles, and that DAMPs inhibitor, glycyrrhizin mitigates the muscle changes. METHODS After third degree BI to mice, fibrinogen levels in the plasma and at skeletal muscles were compared between BI and sham-burn (SB) mice. Fibrinogen effects on inflammatory responses and mitochondrial membrane potential (MMP) loss were analyzed in C2C12 myotubes. In addition to survival, the anti-inflammatory and mitochondrial protective effects of glycyrrhizin were tested using in vivo microscopy of skeletal muscles of BI and SB mice. RESULTS Fibrinogen in plasma and its extravasation to muscles significantly increased in BI versus SB mice. Fibrinogen applied to myotubes evoked inflammatory responses (increased MCP-1 and TNF-α; 32.6 and 3.9-fold, respectively) and reduced MMP; these changes were ameliorated by glycyrrhizin treatment. In vivo MMP loss and superoxide production in skeletal muscles of BI mice were significantly attenuated by glycyrrhizin treatment, together with improvement of BI survival rate. CONCLUSIONS Inflammatory responses and MMP loss in myotubes induced by fibrinogen were reversed by glycyrrhizin. Anti-inflammatory and mitochondrial protective effect of glycyrrhizin in vivo leads to amelioration of muscle MD and improvement of BI survival rate.
Collapse
Affiliation(s)
- Ryusuke Ueki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts; Shriners Hospital for Children, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Department of Anesthesiology and Pain Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Burn-induced muscle metabolic derangements and mitochondrial dysfunction are associated with activation of HIF-1α and mTORC1: Role of protein farnesylation. Sci Rep 2017; 7:6618. [PMID: 28747716 PMCID: PMC5529411 DOI: 10.1038/s41598-017-07011-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/21/2017] [Indexed: 12/28/2022] Open
Abstract
Metabolic derangements are a clinically significant complication of major trauma (e.g., burn injury) and include various aspects of metabolism, such as insulin resistance, muscle wasting, mitochondrial dysfunction and hyperlactatemia. Nonetheless, the molecular pathogenesis and the relation between these diverse metabolic alterations are poorly understood. We have previously shown that burn increases farnesyltransferase (FTase) expression and protein farnesylation and that FTase inhibitor (FTI) prevents burn-induced hyperlactatemia, insulin resistance, and increased proteolysis in mouse skeletal muscle. In this study, we found that burn injury activated mTORC1 and hypoxia-inducible factor (HIF)-1α, which paralleled dysfunction, morphological alterations (i.e., enlargement, partial loss of cristae structure) and impairment of respiratory supercomplex assembly of the mitochondria, and ER stress. FTI reversed or ameliorated all of these alterations in burned mice. These findings indicate that these burn-induced changes, which encompass various aspects of metabolism, may be linked to one another and require protein farnesylation. Our results provide evidence of involvement of the mTORC1-HIF-1α pathway in burn-induced metabolic derangements. Our study identifies protein farnesylation as a potential hub of the signaling network affecting multiple aspects of metabolic alterations after burn injury and as a novel potential molecular target to improve the clinical outcome of severely burned patients.
Collapse
|
14
|
Nakazawa H, Chang K, Shinozaki S, Yasukawa T, Ishimaru K, Yasuhara S, Yu YM, Martyn JAJ, Tompkins RG, Shimokado K, Kaneki M. iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of p65 NF-κB and p53. PLoS One 2017; 12:e0170391. [PMID: 28099528 PMCID: PMC5242494 DOI: 10.1371/journal.pone.0170391] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/04/2017] [Indexed: 01/28/2023] Open
Abstract
Inflammation and apoptosis develop in skeletal muscle after major trauma, including burn injury, and play a pivotal role in insulin resistance and muscle wasting. We and others have shown that inducible nitric oxide synthase (iNOS), a major mediator of inflammation, plays an important role in stress (e.g., burn)-induced insulin resistance. However, it remains to be determined how iNOS induces insulin resistance. Moreover, the interrelation between inflammatory response and apoptosis is poorly understood, although they often develop simultaneously. Nuclear factor (NF)-κB and p53 are key regulators of inflammation and apoptosis, respectively. Sirt1 inhibits p65 NF-κB and p53 by deacetylating these transcription factors. Recently, we have shown that iNOS induces S-nitrosylation of Sirt1, which inactivates Sirt1 and thereby increases acetylation and activity of p65 NF-κB and p53 in various cell types, including skeletal muscle cells. Here, we show that iNOS enhances burn-induced inflammatory response and apoptotic change in mouse skeletal muscle along with S-nitrosylation of Sirt1. Burn injury induced robust expression of iNOS in skeletal muscle and gene disruption of iNOS significantly inhibited burn-induced increases in inflammatory gene expression and apoptotic change. In parallel, burn increased Sirt1 S-nitrosylation and acetylation and DNA-binding capacity of p65 NF-κB and p53, all of which were reversed or ameliorated by iNOS deficiency. These results indicate that iNOS functions not only as a downstream effector but also as an upstream enhancer of burn-induced inflammatory response, at least in part, by Sirt1 S-nitrosylation-dependent activation (acetylation) of p65 NF-κB. Our data suggest that Sirt1 S-nitrosylation may play a role in iNOS-mediated enhanced inflammatory response and apoptotic change, which, in turn, contribute to muscle wasting and supposedly to insulin resistance after burn injury.
Collapse
Affiliation(s)
- Harumasa Nakazawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Kyungho Chang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Shohei Shinozaki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Department of Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Takashi Yasukawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Kazuhiro Ishimaru
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Shingo Yasuhara
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Yong-Ming Yu
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - J. A. Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Ronald. G. Tompkins
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kentaro Shimokado
- Department of Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Tanaka T, Ikegami Y, Nakazawa H, Kuriyama N, Oki M, Hanai JI, Sukhatme VP, Kaneki M. Low-Dose Farnesyltransferase Inhibitor Suppresses HIF-1α and Snail Expression in Triple-Negative Breast Cancer MDA-MB-231 Cells In Vitro. J Cell Physiol 2016; 232:192-201. [PMID: 27137755 DOI: 10.1002/jcp.25411] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022]
Abstract
The aggressiveness of triple-negative breast cancer (TNBC), which lacks estrogen receptor, progesterone receptor and epidermal growth factor receptor 2 (HER2), represents a major challenge in breast cancer. Migratory and self-renewal capabilities are integral components of invasion, metastasis and recurrence of TNBC. Elevated hypoxia-inducible factor-1α (HIF-1α) expression is associated with aggressiveness of cancer. Nonetheless, how HIF-1α expression is regulated and how HIF-1α induces aggressive phenotype are not completely understood in TNBC. The cytotoxic effects of farnesyltransferase (FTase) inhibitors (FTIs) have been studied in cancer and leukemia cells. In contrast, the effect of FTIs on HIF-1α expression has not yet been studied. Here, we show that clinically relevant low-dose FTI, tipifarnib (300 nM), decreased HIF-1α expression, migration and tumorsphere formation in human MDA-MB-231 TNBC cells under a normoxic condition. In contrast, the low-dose FTIs did not inhibit cell growth and activity of the Ras pathway in MDA-MB 231 cells. Tipifarnib-induced decrease in HIF-1α expression was associated with amelioration of the Warburg effect, hypermetabolic state, increases in Snail expression and ATP release, and suppressed E-cadherin expression, major contributors to invasion, metastasis and recurrence of TBNC. These data suggest that FTIs may be capable of ameliorating the aggressive phenotype of TNBC by suppressing the HIF-1α-Snail pathway. J. Cell. Physiol. 232: 192-201, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tomokazu Tanaka
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Yuichi Ikegami
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Harumasa Nakazawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Shriners Hospitals for Children, Boston, Massachusetts
| | - Naohide Kuriyama
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Shriners Hospitals for Children, Boston, Massachusetts
| | - Miwa Oki
- Division of Nephrology, Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jun-Ichi Hanai
- Division of Nephrology, Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Vikas P Sukhatme
- Division of Nephrology, Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts. .,Shriners Hospitals for Children, Boston, Massachusetts.
| |
Collapse
|
16
|
Akscyn RM, Franklin JL, Gavrikova TA, Messina JL. Skeletal muscle atrogene expression and insulin resistance in a rat model of polytrauma. Physiol Rep 2016; 4:4/2/e12659. [PMID: 26818585 PMCID: PMC4760393 DOI: 10.14814/phy2.12659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Polytrauma is a combination of injuries to more than one body part or organ system. Polytrauma is common in warfare, and in automobile and industrial accidents. The combination of injuries can include burn, fracture, hemorrhage, and trauma to the extremities or specific organ systems. Resistance to anabolic hormones, loss of muscle mass, and metabolic dysfunction can occur following injury. To investigate the effects of combined injuries, we have developed a highly reproducible rodent model of polytrauma. This model combines burn injury, soft tissue trauma, and penetrating injury to the gastrointestinal (GI) tract. Adult, male Sprague–Dawley rats were anesthetized with pentobarbital and subjected to a 15–20% total body surface area scald burn, or laparotomy and a single puncture of the cecum with a G30 needle, or the combination of both injuries (polytrauma). In the current studies, the inflammatory response to polytrauma was examined in skeletal muscle. Changes in skeletal muscle mRNA levels of the proinflammatory cytokines TNF‐α, IL‐1β, and IL‐6 were observed following single injuries and polytrauma. Increased expression of the E3 ubiquitin ligases Atrogin‐1/FBX032 and TRIM63/MuRF‐1 were measured following injury, as was skeletal muscle insulin resistance, as evidenced by decreased insulin‐inducible insulin receptor (IR) and AKT/PKB (Protein Kinase B) phosphorylation. Changes in the abundance of IR and insulin receptor substrate‐1 (IRS‐1) were observed at the protein and mRNA levels. Additionally, increased TRIB3 mRNA levels were observed 24 h following polytrauma, the same time when insulin resistance was observed. This may suggest a role for TRIB3 in the development of acute insulin resistance following injury.
Collapse
Affiliation(s)
- Robert M Akscyn
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - John L Franklin
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tatyana A Gavrikova
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joseph L Messina
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama Vetrans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|