1
|
Yasarbas SS, Inal E, Yildirim MA, Dubrac S, Lamartine J, Mese G. Connexins in epidermal health and diseases: insights into their mutations, implications, and therapeutic solutions. Front Physiol 2024; 15:1346971. [PMID: 38827992 PMCID: PMC11140265 DOI: 10.3389/fphys.2024.1346971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
The epidermis, the outermost layer of the skin, serves as a protective barrier against external factors. Epidermal differentiation, a tightly regulated process essential for epidermal homeostasis, epidermal barrier formation and skin integrity maintenance, is orchestrated by several players, including signaling molecules, calcium gradient and junctional complexes such as gap junctions (GJs). GJ proteins, known as connexins facilitate cell-to-cell communication between adjacent keratinocytes. Connexins can function as either hemichannels or GJs, depending on their interaction with other connexons from neighboring keratinocytes. These channels enable the transport of metabolites, cAMP, microRNAs, and ions, including Ca2+, across cell membranes. At least ten distinct connexins are expressed within the epidermis and mutations in at least five of them has been linked to various skin disorders. Connexin mutations may cause aberrant channel activity by altering their synthesis, their gating properties, their intracellular trafficking, and the assembly of hemichannels and GJ channels. In addition to mutations, connexin expression is dysregulated in other skin conditions including psoriasis, chronic wound and skin cancers, indicating the crucial role of connexins in skin homeostasis. Current treatment options for conditions with mutant or altered connexins are limited and primarily focus on symptom management. Several therapeutics, including non-peptide chemicals, antibodies, mimetic peptides and allele-specific small interfering RNAs are promising in treating connexin-related skin disorders. Since connexins play crucial roles in maintaining epidermal homeostasis as shown with linkage to a range of skin disorders and cancer, further investigations are warranted to decipher the molecular and cellular alterations within cells due to mutations or altered expression, leading to abnormal proliferation and differentiation. This would also help characterize the roles of each isoform in skin homeostasis, in addition to the development of innovative therapeutic interventions. This review highlights the critical functions of connexins in the epidermis and the association between connexins and skin disorders, and discusses potential therapeutic options.
Collapse
Affiliation(s)
- S. Suheda Yasarbas
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - Ece Inal
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - M. Azra Yildirim
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jérôme Lamartine
- Skin Functional Integrity Group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Gulistan Mese
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| |
Collapse
|
2
|
Feng X, Shang J, Gu Z, Luo X, Chen Y, Liu Y. Lactic Acid Chemical Peeling in Skin Disorders. Clin Cosmet Investig Dermatol 2024; 17:901-909. [PMID: 38682041 PMCID: PMC11055559 DOI: 10.2147/ccid.s455700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
Lactic acid is the most widely occurring natural organic acid in nature. It not only exhibits mild and safe properties but also possesses multiple physiological activities, such as antibacterial effects, immune regulation, and promotion of wound healing, making it one of the most popular chemical peeling agents. Chemical peels are commonly used in the field of aesthetic dermatology as a non-invasive therapeutic approach. This research aims to provide valuable references for clinical dermatologists by summarizing the characteristics of lactic acid, elucidating its mechanism of action in peeling, and investigating the clinical applications of this compound. Furthermore, it anticipates the potential for lactic acid to be the most suitable chemical peeling agent for Chinese skin.
Collapse
Affiliation(s)
- Xiaoyue Feng
- Product Research & Development Center, Beijing Underproved Medical Technology Co., LTD, Beijing, People’s Republic of China
| | - Jianli Shang
- Product Research & Development Center, Beijing Underproved Medical Technology Co., LTD, Beijing, People’s Republic of China
| | - Zhengping Gu
- Product Research & Development Center, Beijing Underproved Medical Technology Co., LTD, Beijing, People’s Republic of China
| | - Xingyi Luo
- Product Research & Development Center, Beijing Underproved Medical Technology Co., LTD, Beijing, People’s Republic of China
| | - Yong Chen
- Product Research & Development Center, Beijing Underproved Medical Technology Co., LTD, Beijing, People’s Republic of China
| | - Youting Liu
- Product Research & Development Center, Beijing Underproved Medical Technology Co., LTD, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Colboc H, Moguelet P, Letavernier E, Frochot V, Bernaudin JF, Weil R, Rouzière S, Senet P, Bachmeyer C, Laporte N, Lucas I, Descamps V, Amode R, Brunet-Possenti F, Kluger N, Deschamps L, Dubois A, Reguer S, Somogyi A, Medjoubi K, Refregiers M, Daudon M, Bazin D. Pathologies related to abnormal deposits in dermatology: a physico-chemical approach. CR CHIM 2022. [DOI: 10.5802/crchim.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Gorzelanny C, Mess C, Schneider SW, Huck V, Brandner JM. Skin Barriers in Dermal Drug Delivery: Which Barriers Have to Be Overcome and How Can We Measure Them? Pharmaceutics 2020; 12:E684. [PMID: 32698388 PMCID: PMC7407329 DOI: 10.3390/pharmaceutics12070684] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Although, drugs are required in the various skin compartments such as viable epidermis, dermis, or hair follicles, to efficiently treat skin diseases, drug delivery into and across the skin is still challenging. An improved understanding of skin barrier physiology is mandatory to optimize drug penetration and permeation. The various barriers of the skin have to be known in detail, which means methods are needed to measure their functionality and outside-in or inside-out passage of molecules through the various barriers. In this review, we summarize our current knowledge about mechanical barriers, i.e., stratum corneum and tight junctions, in interfollicular epidermis, hair follicles and glands. Furthermore, we discuss the barrier properties of the basement membrane and dermal blood vessels. Barrier alterations found in skin of patients with atopic dermatitis are described. Finally, we critically compare the up-to-date applicability of several physical, biochemical and microscopic methods such as transepidermal water loss, impedance spectroscopy, Raman spectroscopy, immunohistochemical stainings, optical coherence microscopy and multiphoton microscopy to distinctly address the different barriers and to measure permeation through these barriers in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Johanna M. Brandner
- Department of Dermatology and Venerology, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.G.); (C.M.); (S.W.S.); (V.H.)
| |
Collapse
|
5
|
Kwon KC, Lee SW, Kim H, Jeon H, Park SW. Reduction of enlarged facial pore using ion-paired amino acid through enhancement in skin permeation and exfoliation: A placebo-controlled in vivo study. J Cosmet Dermatol 2020; 20:274-284. [PMID: 32548941 DOI: 10.1111/jocd.13479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Serine is a hypoallergenic but inefficient chemical exfoliant. Serine paired with arginine (ion-paired amino acid, IPA) shows enhanced lipophilicity, skin permeation, and exfoliation efficacy. AIM This study was conducted to determine whether exfoliation using an emulsion containing IPA could reduce enlarged facial pores and improve the dermis density. METHODS IPA formation was validated by spectroscopic analysis. Enhanced permeability and exfoliation efficacy were evaluated ex vivo using porcine skin. In a clinical trial, healthy Korean women aged 20-49 years (mean age ± SD: 35.6 ± 8.6, n = 64) were evaluated, and the right and left sides of the cheeks were randomly chosen. An emulsion containing 4.0% IPA and placebo emulsion were applied to each side for 6 weeks. To evaluate pore sizes following treatment, the number of enlarged facial pores, inner skin structures from the stratum corneum to epidermal-dermal interface, and dermal density on each cheek of the participants were assessed. RESULTS IPA showed a significantly increased partition coefficient in n-octanol-water. In porcine skin, permeation of serine after 12 hour was 70% higher for the IPA than for serine alone at the same percent weight concentrations. In the clinical trial, after 6 weeks, the number of enlarged facial pores was changed by -19.317% in the IPA emulsion group (P < .001) and -2.930% in placebo emulsion group (P = .254). CONCLUSION Exfoliation with an IPA-containing emulsion reduced enlarged facial pores and increased the dermis density. IPA, effective mild exfoliator, can be used as a major ingredient for the cosmeceutical skincare products in the future.
Collapse
Affiliation(s)
- Koo Chul Kwon
- LG Household & Health Care (LG H&H), LG Science Park R&D Center, Seoul, Korea
| | - Sung Woo Lee
- LG Household & Health Care (LG H&H), LG Science Park R&D Center, Seoul, Korea
| | - Hongmin Kim
- LG Household & Health Care (LG H&H), LG Science Park R&D Center, Seoul, Korea
| | - Hyungjoon Jeon
- LG Household & Health Care (LG H&H), LG Science Park R&D Center, Seoul, Korea
| | - Sang-Wook Park
- LG Household & Health Care (LG H&H), LG Science Park R&D Center, Seoul, Korea
| |
Collapse
|
6
|
Nakhoul NL, Tu CL, Brown KL, Islam MT, Hodges AG, Abdulnour-Nakhoul SM. Calcium-sensing receptor deletion in the mouse esophagus alters barrier function. Am J Physiol Gastrointest Liver Physiol 2020; 318:G144-G161. [PMID: 31709833 PMCID: PMC6985844 DOI: 10.1152/ajpgi.00021.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calcium-sensing receptor (CaSR) is the molecular sensor by which cells respond to small changes in extracellular Ca2+ concentrations. CaSR has been reported to play a role in glandular and fluid secretion in the gastrointestinal tract and to regulate differentiation and proliferation of skin keratinocytes. CaSR is present in the esophageal epithelium, but its role in this tissue has not been defined. We deleted CaSR in the mouse esophagus by generating keratin 5 CreER;CaSRFlox+/+compound mutants, in which loxP sites flank exon 7 of CaSR gene. Recombination was initiated with multiple tamoxifen injections, and we demonstrated exon 7 deletion by PCR analysis of genomic DNA. Quantitative real-time PCR and Western blot analyses showed a significant reduction in CaSR mRNA and protein expression in the knockout mice (EsoCaSR-/-) as compared with control mice. Microscopic examination of EsoCaSR-/- esophageal tissues showed morphological changes including elongation of the rete pegs, abnormal keratinization and stratification, and bacterial buildup on the luminal epithelial surface. Western analysis revealed a significant reduction in levels of adherens junction proteins E-cadherin and β catenin and tight junction protein claudin-1, 4, and 5. Levels of small GTPase proteins Rac/Cdc42, involved in actin remodeling, were also reduced. Ussing chamber experiments showed a significantly lower transepithelial resistance in knockout (KO) tissues. In addition, luminal-to-serosal-fluorescein dextran (4 kDa) flux was higher in KO tissues. Our data indicate that CaSR plays a role in regulating keratinization and cell-cell junctional complexes and is therefore important for the maintenance of the barrier function of the esophagus.NEW & NOTEWORTHY The esophageal stratified squamous epithelium maintains its integrity by continuous proliferation and differentiation of the basal cells. Here, we demonstrate that deletion of the calcium-sensing receptor, a G protein-coupled receptor, from the basal cells disrupts the structure and barrier properties of the epithelium.
Collapse
Affiliation(s)
- Nazih L. Nakhoul
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chia-Ling Tu
- 3Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California
| | - Karen L. Brown
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - M. Toriqul Islam
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Anna G. Hodges
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Solange M. Abdulnour-Nakhoul
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana,4Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana
| |
Collapse
|
7
|
He W, Xu H, Zhang Q, Zheng Y. Dynamic expression of α6 integrin indicates epidermal cell behaviors. Biochem Biophys Res Commun 2019; 515:119-124. [PMID: 31128921 DOI: 10.1016/j.bbrc.2019.04.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/27/2019] [Indexed: 11/30/2022]
Abstract
Skin epidermis is a stratified epithelium that composed of interfollicular epidermis (IFE) and hair follicles (HFs). Integrins are cell-cell and cell-matrix adhesive ligands that play important roles in epidermal cell proliferation, migration and differentiation behaviors. Here, we analyzed the expression of both α6 and β1 integrins. In vitro epidermal cell culture, both α6 and β1 integrins displayed downregulation upon high Ca2+ induced differentiation. During wound healing (WH), α6 integrin showed dynamic expression, first greatly upregulated in unclosed wounds and then downregulated upon re-epithelialization. Further analysis of different wound regions confirmed α6 integrin significantly increased in migratory cells and migration was coupled with differentiation. However, expression level of β1 integrin did not show significant correlation with migration. We discovered that α6 integrin directly indicates epidermal cell differentiation and wound directed migration behaviors with its expression level.
Collapse
Affiliation(s)
- Weiya He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Huiyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Kim JH, Ahn B, Choi SG, In S, Goh AR, Park SG, Lee CK, Kang NG. Amino acids disrupt calcium-dependent adhesion of stratum corneum. PLoS One 2019; 14:e0215244. [PMID: 30990830 PMCID: PMC6467405 DOI: 10.1371/journal.pone.0215244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/28/2019] [Indexed: 11/18/2022] Open
Abstract
In the stratum corneum, the intercellular junction made up of cadherin proteins provides the structural integrity of the framework. Ca2+ ions are known to play a key role in maintaining this junction. In this study, we hypothesized that Ca2+ chelation in stratum corneum will weaken the bond of the tissue and consequently promote exfoliation. Amino acids, ubiquitously existing as metabolites and building blocks of the body, have the molecular property to chelate Ca2+ ions. In the current study, we verified the Ca2+ chelating property of amino acids and demonstrated that amino acids can interfere with the interaction of cadherins, separate stratum corneum into pieces, and thereby stimulate the exfoliation process of skin. These results validate the importance of Ca2+ ion in the skin exfoliation process. Importantly, our findings indicate that amino acids may be efficiently used for improving skin conditions.
Collapse
Affiliation(s)
- Jin-Hyun Kim
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Byungjun Ahn
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Seon-Guk Choi
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Sohyun In
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - A. Reum Goh
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Sun-Gyoo Park
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Cheon-Koo Lee
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Nae-Gyu Kang
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
- * E-mail:
| |
Collapse
|
9
|
Murata T, Honda T, Egawa G, Yamamoto Y, Ichijo R, Toyoshima F, Dainichi T, Kabashima K. Transient elevation of cytoplasmic calcium ion concentration at a single cell level precedes morphological changes of epidermal keratinocytes during cornification. Sci Rep 2018; 8:6610. [PMID: 29700333 PMCID: PMC5919969 DOI: 10.1038/s41598-018-24899-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/11/2018] [Indexed: 01/29/2023] Open
Abstract
Epidermal keratinocytes achieve sequential differentiation from basal to granular layers, and undergo a specific programmed cell death, cornification, to form an indispensable barrier of the body. Although elevation of the cytoplasmic calcium ion concentration ([Ca2+]i) is one of the factors predicted to regulate cornification, the dynamics of [Ca2+]i in epidermal keratinocytes is largely unknown. Here using intravital imaging, we captured the dynamics of [Ca2+]i in mouse skin. [Ca2+]i was elevated in basal cells on the second time scale in three spatiotemporally distinct patterns. The transient elevation of [Ca2+]i also occurred at the most apical granular layer at a single cell level, and lasted for approximately 40 min. The transient elevation of [Ca2+]i at the granular layer was followed by cornification, which was completed within 10 min. This study demonstrates the tightly regulated elevation of [Ca2+]i preceding the cornification of epidermal keratinocytes, providing possible clues to the mechanisms of cornification.
Collapse
Affiliation(s)
- Teruasa Murata
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tetsuya Honda
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Gyohei Egawa
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuo Yamamoto
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Central Pharmaceutical Research Institute, Japan Tobacco, Tokyo, Japan
| | - Ryo Ichijo
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Teruki Dainichi
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan. .,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, IMMUNOS Building #3-4, Biopolis, 138648, Singapore.
| |
Collapse
|
10
|
Bäsler K, Brandner JM. Tight junctions in skin inflammation. Pflugers Arch 2016; 469:3-14. [DOI: 10.1007/s00424-016-1903-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022]
|
11
|
The role of tight junctions in skin barrier function and dermal absorption. J Control Release 2016; 242:105-118. [DOI: 10.1016/j.jconrel.2016.08.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
|
12
|
Celli A, Crumrine D, Meyer JM, Mauro TM. Endoplasmic Reticulum Calcium Regulates Epidermal Barrier Response and Desmosomal Structure. J Invest Dermatol 2016; 136:1840-1847. [PMID: 27255610 PMCID: PMC5070468 DOI: 10.1016/j.jid.2016.05.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 11/15/2022]
Abstract
Ca(2+) fluxes direct keratinocyte differentiation, cell-to-cell adhesion, migration, and epidermal barrier homeostasis. We previously showed that intracellular Ca(2+) stores constitute a major portion of the calcium gradient especially in the stratum granulosum. Loss of the calcium gradient triggers epidermal barrier homeostatic responses. In this report, using unfixed ex vivo epidermis and human epidermal equivalents we show that endoplasmic reticulum (ER) Ca(2+) is released in response to barrier perturbation, and that this release constitutes the major shift in epidermal Ca(2+) seen after barrier perturbation. We find that ER Ca(2+) release correlates with a transient increase in extracellular Ca(2+). Lastly, we show that ER calcium release resulting from barrier perturbation triggers transient desmosomal remodeling, seen as an increase in extracellular space and a loss of the desmosomal intercellular midline. Topical application of thapsigargin, which inhibits the ER Ca(2+) ATPase activity without compromising barrier integrity, also leads to desmosomal remodeling and loss of the midline structure. These experiments establish the ER Ca(2+) store as a master regulator of the Ca(2+) gradient response to epidermal barrier perturbation, and suggest that ER Ca(2+) homeostasis also modulates normal desmosomal reorganization, both at rest and after acute barrier perturbation.
Collapse
Affiliation(s)
- Anna Celli
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA.
| | - Debra Crumrine
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA
| | - Jason M Meyer
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA
| | - Theodora M Mauro
- Dermatology Service, Department of Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA
| |
Collapse
|
13
|
Correction: Towards a quantitative theory of epidermal calcium profile formation in unwounded skin. PLoS One 2015; 10:e0123823. [PMID: 25822644 PMCID: PMC4378980 DOI: 10.1371/journal.pone.0123823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|