1
|
Alginate Oligosaccharides Ameliorate DSS-Induced Colitis through Modulation of AMPK/NF-κB Pathway and Intestinal Microbiota. Nutrients 2022; 14:nu14142864. [PMID: 35889822 PMCID: PMC9321948 DOI: 10.3390/nu14142864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alginate oligosaccharides (AOS) are shown to have various biological activities of great value to medicine, food, and agriculture. However, little information is available about their beneficial effects and mechanisms on ulcerative colitis. In this study, AOS with a polymerization degree between 2 and 4 were found to possess anti-inflammatory effects in vitro and in vivo. AOS could decrease the levels of nitric oxide (NO), IL-1β, IL-6, and TNFα, and upregulate the levels of IL-10 in both RAW 264.7 and bone-marrow-derived macrophage (BMDM) cells under lipopolysaccharide (LPS) stimulation. Additionally, oral AOS administration could significantly prevent bodyweight loss, colonic shortening, and rectal bleeding in dextran sodium sulfate (DSS)-induced colitis mice. AOS pretreatment could also reduce disease activity index scores and histopathologic scores and downregulate proinflammatory cytokine levels. Importantly, AOS administration could reverse DSS-induced AMPK deactivation and NF-κB activation in colonic tissues, as evidenced by enhanced AMPK phosphorylation and p65 phosphorylation inhibition. AOS could also upregulate AMPK phosphorylation and inhibit NF-κB activation in vitro. Moreover, 16S rRNA gene sequencing of gut microbiota indicated that supplemental doses of AOS could affect overall gut microbiota structure to a varying extent and specifically change the abundance of some bacteria. Medium-dose AOS could be superior to low- or high-dose AOS in maintaining remission in DSS-induced colitis mice. In conclusion, AOS can play a protective role in colitis through modulation of gut microbiota and the AMPK/NF-kB pathway.
Collapse
|
2
|
Oridonin Attenuates Lipopolysaccharide-Induced ROS Accumulation and Inflammation in HK-2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9724520. [PMID: 32184902 PMCID: PMC7063205 DOI: 10.1155/2020/9724520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Renal tubulointerstitial inflammation plays an important role in chronic kidney disease (CKD). Inflammation reduction is a good strategy to combat CKD. Oridonin, an ent-kaurane diterpenoid isolated from Rabdosia rubescens (Donglingcao), is considered as an effective natural candidate for the treatment of anti-inflammatory, antiviral, and antibacterial activities, including liver fibrosis and many tumors; however, no study has demonstrated its effect on lipopolysaccharide- (LPS-) induced renal inflammation. To investigate the anti-inflammatory effects of oridonin on human renal proximal tubular epithelial cells (HK-2 cells), the expression levels of c-Jun N-terminal kinase (JNK) and reactive oxygen species (ROS) were evaluated by Western blot analysis and 2',7'-dichlorofluorescein diacetate (DCF-DA) staining, respectively. The level of intracellular ROS increased in a dose-dependent manner following LPS treatment, whereas oridonin inhibited this effect, suggestive of its ability to prevent ROS accumulation. As the mitogen-activated protein kinase (MAPK) family of enzymes plays an important role in physiological responses, we examined the activation of JNK by Western blotting and found that oridonin attenuated LPS-induced JNK phosphorylation. Oridonin also attenuated RAW 264.7 cell chemotaxis towards LPS-treated HK-2 cells. Taken together, oridonin protected against LPS-induced inflammation including ROS accumulation, JNK activation, NF-κB nuclear translocation in HK-2 cells, and functionally blocked macrophage chemotaxis towards LPS-treated HK-2 cells. Oridonin may exhibit therapeutic potential by the anti-inflammation effect in LPS-treated HK-2 cells.
Collapse
|
3
|
Lee SH, Fei X, Lee C, Do HTT, Rhee I, Seo SY. Synthesis of Either C2- or C4'-Alkylated Derivatives of Honokiol and Their Biological Evaluation for Anti-inflammatory Activity. Chem Pharm Bull (Tokyo) 2019; 67:966-976. [PMID: 31257308 DOI: 10.1248/cpb.c19-00207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Honokiol, a biphenolic neolignan isolated from Magnolia officinalis, was reported to have a promising anti-inflammatory activity for the treatment of various diseases. There are many efforts on the synthesis and structure-activity relationship of honokiol derivatives. However, regioselective O-alkylation of honokiol remains a challenge and serves as a tool to provide not only some derivatives but also chemical probes for target identification and mode of action. In this study, we examined the reaction condition for regioselective O-alkylation, in which C2 and C4'-alkylated analogs of honokiol were synthesized and evaluated for inhibitory activity on nitric oxide production and cyclooxygenase-2 expression. Furthermore, we successfully synthesized a potential photoaffinity probe consisting of biotin and benzophenone based on a C4'-alkylated derivative.
Collapse
Affiliation(s)
| | - Xiang Fei
- College of Pharmacy, Gachon University
| | - Chaelin Lee
- Department of Bioscience and Biotechnology, Sejong University
| | - Hien Thi Thu Do
- Department of Bioscience and Biotechnology, Sejong University
| | - Inmoo Rhee
- Department of Bioscience and Biotechnology, Sejong University
| | | |
Collapse
|
4
|
Zheng Z, Ma T, Guo H, Kim KS, Kim KT, Bi L, Zhang Z, Cai L. 4-O-methylhonokiol protects against diabetic cardiomyopathy in type 2 diabetic mice by activation of AMPK-mediated cardiac lipid metabolism improvement. J Cell Mol Med 2019; 23:5771-5781. [PMID: 31199069 PMCID: PMC6653553 DOI: 10.1111/jcmm.14493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 01/07/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by increased left ventricular mass and wall thickness, decreased systolic function, reduced ejection fraction (EF) and ultimately heart failure. The 4-O-methylhonokiol (MH) has been isolated mainly from the bark of the root and stem of Magnolia species. In this study, we aimed to elucidate whether MH can effectively prevent DCM in type 2 diabetic (T2D) mice and, if so, whether the protective response of MH is associated with its activation of AMPK-mediated inhibition of lipid accumulation and inflammation. A total number of 40 mice were divided into four groups: Ctrl, Ctrl + MH, T2D, T2D + MH. Five mice from each group were sacrificed after 3-month MH treatment. The remaining animals in each group were kept for additional 3 months without further MH treatment. In T2D mice, the typical DCM symptoms were induced as expected, reflected by decreased ejection fraction and lipotoxic effects inducing lipid accumulation, oxidative stress, inflammatory reactions, and final fibrosis. However, these typical DCM changes were significantly prevented by the MH treatment immediately or 3 months after the 3-month MH treatment, suggesting MH-induced cardiac protection from T2D had a memory effect. Mechanistically, MH cardiac protection from DCM may be associated with its lipid metabolism improvement by the activation of AMPK/CPT1-mediated fatty acid oxidation. In addition, the MH treatment of DCM mice significantly improved their insulin resistance levels by activation of GSK-3β. These results indicate that the treatment of T2D with MH effectively prevents DCM probably via AMPK-dependent improvement of the lipid metabolism.
Collapse
Affiliation(s)
- Zongyu Zheng
- Departments of Urology and Cardiology, The First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, Kentucky
| | - Tianjiao Ma
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, Kentucky.,Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hua Guo
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, Kentucky.,Department of Immunology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Ki Soo Kim
- SK Bioland Haimen Co. LTD, Haimen, China
| | | | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhiguo Zhang
- Departments of Urology and Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, Kentucky.,Department of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
5
|
Ma T, Zheng Z, Guo H, Lian X, Rane MJ, Cai L, Kim KS, Kim KT, Zhang Z, Bi L. 4-O-methylhonokiol ameliorates type 2 diabetes-induced nephropathy in mice likely by activation of AMPK-mediated fatty acid oxidation and Nrf2-mediated anti-oxidative stress. Toxicol Appl Pharmacol 2019; 370:93-105. [PMID: 30876865 DOI: 10.1016/j.taap.2019.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 12/17/2022]
Abstract
Diabetic nephropathy (DN) is one of the most serious long-term complications of type 2 diabetes (T2D). 4-O-methylhonokiol (MH) is one of the biologically active ingredients extracted from the Magnolia stem bark. In this study, we aim to elucidate whether treatment with MH can ameliorate or slow-down progression of DN in a T2D murine model and, if so, whether the protective response of MH correlates with AMPK-associated anti-oxidant and anti-inflammatory effects. To induce T2D, mice were fed normal diet (ND) or high fat diet (HFD) for 3 months to induce insulin resistance, followed by an intraperitoneal injection of STZ to induce hyperglycemia. Both T2D and control mice received gavage containing vehicle or MH once diabetes onset for 3 months. Once completing 3-month MH treatment, five mice from each group were sacrificed as 3 month time-point. The rest mice in each group were sacrificed 3 months later as 6 month time-point. In T2D mice, the typical DN symptoms were induced as expected, reflected by increased proteinuria, renal lipid accumulation and lipotoxic effects inducing oxidative stress, and inflammatory reactions, and final fibrosis. However, these typical DN changes were significantly prevented by MH treatment for 3 months and even at 3 months post-MH withdrawal. Mechanistically, MH renal-protection from DN may be related to lipid metabolic improvement and oxidative stress attenuation along with increases in AMPK/PGC-1α/CPT1B-mediated fatty acid oxidation and Nrf2/SOD2-mediated anti-oxidative stress. Results showed the preventive effect of MH on the renal oxidative stress and inflammation in DN.
Collapse
Affiliation(s)
- Tianjiao Ma
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Zongyu Zheng
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; Department of Urology, the First Hospital of Jilin University, Changchun 130021, China
| | - Hua Guo
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Xin Lian
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; Department of Urology, the First Hospital of Jilin University, Changchun 130021, China
| | - Madhavi J Rane
- Division of Nephropathy, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Ki Soo Kim
- SK Bioland Haimen Co. LTD, Haimen, 226133, Jiangsu, China
| | - Kyoung Tae Kim
- SK Bioland Haimen Co. LTD, Haimen, 226133, Jiangsu, China
| | - Zhiguo Zhang
- Department of Cardiology at the First Hospital of Jilin University, Changchun 130021, China.
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
6
|
Sun W, Kim TS, Choi NS, Seo SY. Synthesis of 1,2,3-Triazole and Pyrazole Analogues as Bioisosteres of Biphenyl-Neolignans. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wei Sun
- College of Pharmacy; Gachon University; Incheon 21936 Republic of Korea
| | - Taek-Soo Kim
- College of Pharmacy; Gachon University; Incheon 21936 Republic of Korea
| | - Nam Song Choi
- College of Interdisciplinary & Creative Studies; Konyang University; Nonsan 32992 Republic of Korea
| | - Seung-Yong Seo
- College of Pharmacy; Gachon University; Incheon 21936 Republic of Korea
| |
Collapse
|
7
|
Wang Z, Ka SO, Han YT, Bae EJ. Dihydropyranoaurone compound damaurone D inhibits LPS-induced inflammation and liver injury by inhibiting NF-κB and MAPK signaling independent of AMPK. Arch Pharm Res 2017; 41:314-323. [DOI: 10.1007/s12272-017-1001-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022]
|
8
|
Wang Z, Ka SO, Lee Y, Park BH, Bae EJ. Butein induction of HO-1 by p38 MAPK/Nrf2 pathway in adipocytes attenuates high-fat diet induced adipose hypertrophy in mice. Eur J Pharmacol 2017; 799:201-210. [PMID: 28213287 DOI: 10.1016/j.ejphar.2017.02.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 01/15/2023]
Abstract
Adipose tissue inflammation and oxidative stress are key components in the development of obesity and insulin resistance. Heme oxygenase (HO)-1 in adipocytes protects against obesity and adipose dysfunction. In this study, we report the identification of butein, a flavonoid chalcone, as a novel inducer of HO-1 expression in adipocytes in vitro and in vivo. Butein upregulated HO-1 mRNA and protein expression in 3T3-L1 adipocytes, accompanied by Kelch-Like ECH-Associated Protein (Keap) 1 degradation and increase in the nuclear level of nuclear factor erythroid 2-related factor 2 (Nrf2). Butein modulation of Keap1 and Nrf2 as well as HO-1 upregulation was reversed by pretreatment with p38 MAPK inhibitor SB203580, indicating the involvement of p38 MAPK in butein activation of Nrf2 in adipocytes. In addition, HO-1 activation by butein led to the inhibitions of reactive oxygen species and adipocyte differentiation, as evidenced by the fact that butein repression of reactive oxygen species and adipogenesis was reversed by pretreatment with HO-1 inhibitor SnPP. Induction of HO-1 expression by butein was also demonstrated in the adipose tissue of C57BL/6 mice fed a high-fat diet administered along with butein for three weeks, and correlated with the inhibitions of adiposity and adipose tissue inflammation, which were reversed by co-administration of SnPP. Altogether, our results demonstrate that butein activates the p38 MAPK/Nrf2/HO-1 pathway to act as a potent inhibitor of adipose hypertrophy and inflammation in a diet-induced obesity model and thus has potential for suppressing obesity-linked metabolic syndrome.
Collapse
Affiliation(s)
- Zheng Wang
- College of Pharmacy, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sun-O Ka
- Chonbuk National University Medical School, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Youngyi Lee
- Chonbuk National University Medical School, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Byung-Hyun Park
- Chonbuk National University Medical School, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Eun Ju Bae
- College of Pharmacy, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
9
|
Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B 2016; 6:1-19. [PMID: 26904394 PMCID: PMC4724661 DOI: 10.1016/j.apsb.2015.06.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level, by responding to hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed. Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans, such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop pharmacological activators of AMPK. Many such activators have been described, and the various mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines. While the mechanism by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores, and that many of them will turn out to be inhibitors of mitochondrial function.
Collapse
Affiliation(s)
- David Grahame Hardie
- Division of Cell Signaling & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|