1
|
Diniz MO, Maini MK, Swadling L. T cell control of SARS-CoV-2: When, which, and where? Semin Immunol 2023; 70:101828. [PMID: 37651850 DOI: 10.1016/j.smim.2023.101828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Efficient immune protection against viruses such as SARS-CoV-2 requires the coordinated activity of innate immunity, B and T cells. Accumulating data point to a critical role for T cells not only in the clearance of established infection, but also for aborting viral replication independently of humoral immunity. Here we review the evidence supporting the contribution of antiviral T cells and consider which of their qualitative features favour efficient control of infection. We highlight how studies of SARS-CoV-2 and other coronaviridae in animals and humans have provided important lessons on the optimal timing (When), functionality and specificity (Which), and location (Where) of antiviral T cells. We discuss the clinical implications, particularly for the development of next-generation vaccines, and emphasise areas requiring further study.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Skandorff I, Gille J, Ragonnaud E, Andersson AM, Schrödel S, Thirion C, Wagner R, Holst PJ. The Insertion of an Evolutionary Lost Four-Amino-Acid Cytoplasmic Tail Peptide into a Syncytin-1 Vaccine Increases T- and B-Cell Responses in Mice. Viruses 2023; 15:1686. [PMID: 37632028 PMCID: PMC10458386 DOI: 10.3390/v15081686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Human endogenous retrovirus type W (HERV-W) is expressed in various cancers. We previously developed an adenovirus-vectored cancer vaccine targeting HERV-W by encoding an assembled HERV-W group-specific antigen sequence and the HERV-W envelope sequence Syncytin-1. Syncytin-1 is constitutively fusogenic and forms large multinucleated cell fusions when overexpressed. Consequently, immunising humans with a vaccine encoding Syncytin-1 can lead to the formation of extensive syncytia, which is undesirable and poses a potential safety issue. Here, we show experiments in cell lines that restoring an evolutionary lost cleavage site of the fusion inhibitory R-peptide of Syncytin-1 inhibit cell fusion. Interestingly, this modification of the HERV-W vaccine's fusogenicity increased the expression of the vaccine antigens in vitro. It also enhanced Syncytin-1-specific antibody responses and CD8+-mediated T-cell responses compared to the wildtype vaccine in vaccinated mice, with a notable enhancement in responses to subdominant T-cell epitopes but equal responses to dominant epitopes and similar rates of survival following a tumour challenge. The impairment of cell-cell fusion and the enhanced immunogenicity profile of this HERV-W vaccine strengthens the prospects of obtaining a meaningful immune response against HERV-W in patients with HERV-W-overexpressing cancers.
Collapse
Affiliation(s)
- Isabella Skandorff
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
- InProTher, COBIS, Ole Maaloesvej 3, 2200 Copenhagen, Denmark; (E.R.); (A.-M.A.)
| | - Jasmin Gille
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology, University of Regensburg Germany, 93053 Regensburg, Germany; (J.G.); (R.W.)
| | - Emeline Ragonnaud
- InProTher, COBIS, Ole Maaloesvej 3, 2200 Copenhagen, Denmark; (E.R.); (A.-M.A.)
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Silke Schrödel
- Sirion Biotech GmbH, Am Haag 6, 82166 Graefelfing, Germany; (S.S.); (C.T.)
| | - Christian Thirion
- Sirion Biotech GmbH, Am Haag 6, 82166 Graefelfing, Germany; (S.S.); (C.T.)
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology, University of Regensburg Germany, 93053 Regensburg, Germany; (J.G.); (R.W.)
| | - Peter Johannes Holst
- InProTher, COBIS, Ole Maaloesvej 3, 2200 Copenhagen, Denmark; (E.R.); (A.-M.A.)
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
3
|
Oftung F, Næss LM, Laake I, Stoloff G, Pleguezuelos O. FLU-v, a Broad-Spectrum Influenza Vaccine, Induces Cross-Reactive Cellular Immune Responses in Humans Measured by Dual IFN-γ and Granzyme B ELISpot Assay. Vaccines (Basel) 2022; 10:1528. [PMID: 36146606 PMCID: PMC9505334 DOI: 10.3390/vaccines10091528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022] Open
Abstract
Previous reports demonstrated that FLU-v, a peptide-based broad-spectrum influenza vaccine candidate, induced antibody and cellular immune responses in humans. Here, we evaluate cellular effector functions and cross-reactivity. PBMC sampled pre- (day 0) and post-vaccination (days 42 and 180) from vaccine (n = 58) and placebo (n = 27) recipients were tested in vitro for responses to FLU-v and inactivated influenza strains (A/H3N2, A/H1N1, A/H5N1, A/H7N9, B/Yamagata) using IFN-γ and granzyme B ELISpot. FLU-v induced a significant increase in the number of IFN-γ- and granzyme-B-secreting cells responding to the vaccine antigens from pre-vaccination (medians: 5 SFU/106 cells for both markers) to day 42 (125 and 40 SFU/106 cells, p < 0.0001 for both) and day 180 (75 and 20 SFU/106 cells, p < 0.0001 and p = 0.0047). The fold increase from pre-vaccination to day 42 for IFN-γ-, granzyme-B-, and double-positive-secreting cells responding to FLU-v was significantly elevated compared to placebo (medians: 16.3-fold vs. 1.0-fold, p < 0.0001; 3.5-fold vs. 1.0-fold, p < 0.0001; 3.0-fold vs. 1.0-fold, p = 0.0012, respectively). Stimulation of PBMC with inactivated influenza strains showed significantly higher fold increases from pre-vaccination to day 42 in the vaccine group compared to placebo for IFN-γ-secreting cells reacting to H1N1 (medians: 2.3-fold vs. 0.8-fold, p = 0.0083), H3N2 (1.7-fold vs. 0.8-fold, p = 0.0178), and H5N1 (1.7-fold vs. 1.0-fold, p = 0.0441); for granzyme B secreting cells reacting to H1N1 (3.5-fold vs. 1.0-fold, p = 0.0075); and for double positive cells reacting to H1N1 (2.9-fold vs. 1.0-fold, p = 0.0219), H3N2 (1.7-fold vs. 0.9-fold, p = 0.0136), and the B strain (2.0-fold vs. 0.8-fold, p = 0.0227). The correlation observed between number of cells secreting IFN-γ or granzyme B in response to FLU-v and to the influenza strains supported vaccine-induced cross-reactivity. In conclusion, adjuvanted FLU-v vaccination induced cross-reactive cellular responses with cytotoxic capacity, further supporting the development of FLU-v as a broad-spectrum influenza vaccine.
Collapse
Affiliation(s)
- Fredrik Oftung
- Department of Method Development and Analytics, Division of Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway
| | - Lisbeth M. Næss
- Department of Infection Control and Vaccines, Division of Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway
| | - Ida Laake
- Department of Method Development and Analytics, Division of Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway
| | - Gregory Stoloff
- SEEK, London Bioscience Innovation Centre, 2 Royal College St, London NW1 0NH, UK
| | | |
Collapse
|
4
|
Samassa F, Mallone R. Self-antigens, benign autoimmunity and type 1 diabetes: a beta-cell and T-cell perspective. Curr Opin Endocrinol Diabetes Obes 2022; 29:370-378. [PMID: 35777965 DOI: 10.1097/med.0000000000000735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Recent work using immunopeptidomics and deconvolution of the antigenic reactivity of islet-infiltrating CD8+ T cells has expanded our knowledge about the autoimmune target epitopes of type 1 diabetes. The stem-like properties of autoimmune CD8+ T cells have also been described. We here propose a possible link between these findings. RECENT FINDINGS Weak major histocompatibility complex (MHC)-binding epitopes list among the major targets of human islet-infiltrating CD8+ T cells, likely resulting in low peptide-MHC presentation that delivers weak T-cell receptor (TCR) signals, especially in the face of low-affinity autoimmune TCRs. These weak TCR signals may favor the maintenance of the partially differentiated stem-like phenotype recently described for islet-reactive CD8+ T cells in the blood and pancreatic lymph nodes. These weak TCR signals may also be physiological, reflecting the need for self-peptide-MHC contacts to maintain homeostatic T-cell survival and proliferation. These features may underlie the universal state of benign autoimmunity that we recently described, which is characterized by islet-reactive, naïve-like CD8+ T cells circulating in all individuals. SUMMARY These observations provide novel challenges and opportunities to develop circulating T-cell biomarkers for autoimmune staging. Therapeutic halting of islet autoimmunity may require targeting of stem-like T cells to blunt their self-regeneration.
Collapse
Affiliation(s)
| | - Roberto Mallone
- Institut Cochin, Université Paris Cité, CNRS, INSERM
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
5
|
Lübke M, Spalt S, Kowalewski DJ, Zimmermann C, Bauersfeld L, Nelde A, Bichmann L, Marcu A, Peper JK, Kohlbacher O, Walz JS, Le-Trilling VTK, Hengel H, Rammensee HG, Stevanović S, Halenius A. Identification of HCMV-derived T cell epitopes in seropositive individuals through viral deletion models. J Exp Med 2020; 217:e20191164. [PMID: 31869419 PMCID: PMC7062530 DOI: 10.1084/jem.20191164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 11/25/2022] Open
Abstract
In healthy individuals, immune control of persistent human cytomegalovirus (HCMV) infection is effectively mediated by virus-specific CD4+ and CD8+ T cells. However, identifying the repertoire of T cell specificities for HCMV is hampered by the immense protein coding capacity of this betaherpesvirus. Here, we present a novel approach that employs HCMV deletion mutant viruses lacking HLA class I immunoevasins and allows direct identification of naturally presented HCMV-derived HLA ligands by mass spectrometry. We identified 368 unique HCMV-derived HLA class I ligands representing an unexpectedly broad panel of 123 HCMV antigens. Functional characterization revealed memory T cell responses in seropositive individuals for a substantial proportion (28%) of these novel peptides. Multiple HCMV-directed specificities in the memory T cell pool of single individuals indicate that physiologic anti-HCMV T cell responses are directed against a broad range of antigens. Thus, the unbiased identification of naturally presented viral epitopes enabled a comprehensive and systematic assessment of the physiological repertoire of anti-HCMV T cell specificities in seropositive individuals.
Collapse
Affiliation(s)
- Maren Lübke
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Stefanie Spalt
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, Partner Site Tübingen, Tübingen, Germany
| | - Daniel J. Kowalewski
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Cosima Zimmermann
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Liane Bauersfeld
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annika Nelde
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Department of Hematology and Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Leon Bichmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Ana Marcu
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Janet Kerstin Peper
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Department of Hematology and Oncology, University Hospital Tübingen, Tübingen, Germany
| | | | - Hartmut Hengel
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, Partner Site Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, Partner Site Tübingen, Tübingen, Germany
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Brennick CA, George MM, Srivastava PK, Karandikar SH. Prediction of cancer neoepitopes needs new rules. Semin Immunol 2020; 47:101387. [PMID: 31952902 DOI: 10.1016/j.smim.2020.101387] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/01/2020] [Indexed: 12/30/2022]
Abstract
Tumors are immunogenic and the non-synonymous point mutations harbored by tumors are a source of their immunogenicity. Immunologists have long been enamored by the idea of synthetic peptides corresponding to mutated epitopes (neoepitopes) as specific "vaccines" against tumors presenting those neoepitopes in context of MHC I. Tumors may harbor hundreds of point mutations and it would require effective prediction algorithms to identify candidate neoepitopes capable of eliciting potent tumor-specific CD8+ T cell responses. Our current understanding of MHC I-restricted epitopes come from the observance of CD8+ T cell responses against viral (vaccinia, lymphocytic choriomeningitis etc.) and model (chicken ovalbumin, hen egg lysozyme etc.) antigens. Measurable CD8+ T cell responses elicited by model or viral antigens are always directed against epitopes possessing strong binding affinity for the restricting MHC I alleles. Immense collective effort to develop methodologies combining genomic sequencing, bioinformatics and traditional immunological techniques to identify neoepitopes with strong binding affinity to MHC I has only yielded inaccurate prediction algorithms. Additionally, new evidence has emerged suggesting that neoepitopes, which unlike the epitopes of viral or model antigens have closely resembling wild-type counterparts, may not necessarily demonstrate strong affinity to MHC I. Our bearing need recalibration.
Collapse
Affiliation(s)
- Cory A Brennick
- Department of Immunology, Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Mariam M George
- Department of Immunology, Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Pramod K Srivastava
- Department of Immunology, Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Sukrut H Karandikar
- Department of Immunology, Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| |
Collapse
|
7
|
Schwerdtfeger M, Andersson AMC, Neukirch L, Holst PJ. Virus-like vaccines against HIV/SIV synergize with a subdominant antigen T cell vaccine. J Transl Med 2019; 17:175. [PMID: 31126293 PMCID: PMC6534914 DOI: 10.1186/s12967-019-1924-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/15/2019] [Indexed: 11/10/2022] Open
Abstract
Background In non-human primates (NHPs) and humans, partial protection from HIV/SIV infection or suppression of replication is achievable by Env-binding antibodies and Gag-specific CD8+ T-cells targeting protective epitopes. Unfortunately, such T-cell responses are frequently dominated by responses to non-protective, variable epitopes. In this study we attempt to combine three independent approaches, each developed to prevent immunodominance of non-protective epitopes. These approaches were (1) vaccines consisting exclusively of putatively protective p24 Gag highly conserved elements (CEs), (2) vaccines using solely subdominant antigens which were acutely protective in a recent NHP trial, and (3) virus-encoded virus-like particle vaccines (virus-like vaccines/VLVs) using heterologous Env and Gag sequences to enable selection of broadly cross-reactive responses and to avoid immunodominance of non-conserved sequences in prime-boost regimens as previously observed. Methods We vaccinated outbred CD1 mice with HIV-1 clade B Gag/Env encoded in an adenoviral prime and SIVmac239 Gag/Env in an MVA boost. We combined this completely heterologous immunization regimen and the homologous SIVmac239 Gag/Env immunization regimen with an additional prime encoding SIV CEs and accessory antigens Rev, Vif and Vpr (Ad-Ii-SIVCErvv). T-cell responses were analyzed by intracellular cytokine staining of splenocytes and antibody responses by trimer-specific ELISA, avidity and isotype-specific ELISA. Results Env dominance could be avoided successfully in the completely heterologous prime-boost regimen, but Env immunodominance reappeared when Ad-Ii-SIVCErvv was added to the prime. This regimen did however still induce more cross-reactive Gag-specific CD8+ T-cells and Env-specific antibodies. Including Ad-Ii-SIVCErvv in the homologous prime-boost not only elicited accessory antigen-specific CD8+ memory T-cells, but also significantly increased the ratio of Gag- to Env-specific CD8+ T-cells. The CD4+ T-cell response shifted away from structural antigens previously associated with infection-enhancement. Conclusion The homologous Gag/Env prime-boost with Ad-Ii-SIVCErvv prime combined acutely protective CD8+ T-cell responses to subdominant antigens and Env-binding antibodies with chronically protective Gag-specific CD8+ T-cells in outbred mice. This vaccine regimen should be tested in an NHP efficacy trial. Electronic supplementary material The online version of this article (10.1186/s12967-019-1924-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melanie Schwerdtfeger
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Mærsk Tower 07-11, Blegdamsvej 3B, 2200, Copenhagen N, Denmark. .,Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138, Naples, Italy.
| | - Anne-Marie Carola Andersson
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Mærsk Tower 07-11, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.,InProTherApS, BioInnovation Institute, COBIS, Ole Maaløes Vej 3, 2200, Copenhagen N, Denmark
| | - Lasse Neukirch
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Mærsk Tower 07-11, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.,Clinical Cooperation Unit "Applied Tumor Immunity", National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Peter Johannes Holst
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Mærsk Tower 07-11, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.,InProTherApS, BioInnovation Institute, COBIS, Ole Maaløes Vej 3, 2200, Copenhagen N, Denmark
| |
Collapse
|
8
|
Soundarya JSV, Ranganathan UD, Tripathy SP. Current trends in tuberculosis vaccine. Med J Armed Forces India 2019; 75:18-24. [PMID: 30705473 DOI: 10.1016/j.mjafi.2018.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 12/21/2022] Open
Abstract
Despite the global efforts made to control tuberculosis (TB) and the large number of available new anti-TB drugs, TB still affects one-third of the world population. The conventional vaccine bacille Calmette-Guérin (BCG) shows varying efficacy in different populations, and there are safety issues in immunocompromised patients. Hence, there is an urgent requirement for a new and better TB vaccine candidate than BCG. There are several alternate vaccines available for TB such as DNA, subunit, adjuvant, and live-attenuated vaccines. Use of auxotrophic vaccine is an emerging technology. Newer vaccine technologies include vaccine delivery methods such as adenovirus- and cytomegalovirus (CMV)-based vector delivery, chimeric monoclonal antibody, single-chain fragment variable, RNA-lipoplexes, and nanoparticle-based technology. Based on its application, TB vaccines are classified as conventional, prophylactic, booster, therapeutic, and reinfection preventive vaccines. Currently, there are 12 vaccine candidates in clinical trials. In this review, we have briefly discussed about each of these vaccines in different phases of clinical trials. These vaccines should be analyzed further for developing a safe and more efficacious vaccine for TB.
Collapse
Affiliation(s)
- J S V Soundarya
- PhD Research Scholar, Department of Immunology, National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Uma Devi Ranganathan
- Scientist 'D', Department of Immunology, National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Srikanth P Tripathy
- Scientist 'G' & Director-in-charge, National Institute for Research in Tuberculosis, Chennai 600031, India
| |
Collapse
|
9
|
Zapata JC, Medina-Moreno S, Guzmán-Cardozo C, Salvato MS. Improving the Breadth of the Host's Immune Response to Lassa Virus. Pathogens 2018; 7:E84. [PMID: 30373278 PMCID: PMC6313495 DOI: 10.3390/pathogens7040084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
In 2017, the global Coalition for Epidemic Preparedness (CEPI) declared Lassa virus disease to be one of the world's foremost biothreats. In January 2018, World Health Organization experts met to address the Lassa biothreat. It was commonly recognized that the diversity of Lassa virus (LASV) isolated from West African patient samples was far greater than that of the Ebola isolates from the West African epidemic of 2013⁻2016. Thus, vaccines produced against Lassa virus disease face the added challenge that they must be broadly-protective against a wide variety of LASV. In this review, we discuss what is known about the immune response to Lassa infection. We also discuss the approaches used to make broadly-protective influenza vaccines and how they could be applied to developing broad vaccine coverage against LASV disease. Recent advances in AIDS research are also potentially applicable to the design of broadly-protective medical countermeasures against LASV disease.
Collapse
Affiliation(s)
- Juan Carlos Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Sandra Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Camila Guzmán-Cardozo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Maria S Salvato
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
10
|
Rojas JM, Avia M, Pascual E, Sevilla N, Martín V. Vaccination with recombinant adenovirus expressing peste des petits ruminants virus-F or -H proteins elicits T cell responses to epitopes that arises during PPRV infection. Vet Res 2017; 48:79. [PMID: 29157291 PMCID: PMC5697415 DOI: 10.1186/s13567-017-0482-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) causes an economically important disease that limits productivity in small domestic ruminants and often affects the livestock of the poorest populations in developing countries. Animals that survive PPRV develop strong cellular and humoral responses, which are probably necessary for protection. Vaccination should thus aim at mimicking these natural responses. Immunization strategies against this morbillivirus using recombinant adenoviruses expressing PPRV-F or -H proteins can protect PPRV-challenged animals and permit differentiation of infected from vaccinated animals. Little is known of the T cell repertoire these recombinant vaccines induce. In the present work, we identified several CD4+ and CD8+ T cell epitopes in sheep infected with PPRV. We also show that recombinant adenovirus vaccination induced T cell responses to the same epitopes, and led to memory T cell differentiation. T cells primed by these recombinant adenovirus vaccines expanded after PPRV challenge and probably contributed to protection. These data validate the use of recombinant adenovirus expressing PPRV genes as DIVA strategies to control this highly contagious disease.
Collapse
Affiliation(s)
- José Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Elena Pascual
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain.
| |
Collapse
|
11
|
Broadening CD4 + and CD8 + T Cell Responses against Hepatitis C Virus by Vaccination with NS3 Overlapping Peptide Panels in Cross-Priming Liposomes. J Virol 2017; 91:JVI.00130-17. [PMID: 28446674 DOI: 10.1128/jvi.00130-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/19/2017] [Indexed: 02/08/2023] Open
Abstract
Despite the introduction of effective drugs to treat patients with chronic hepatitis C virus (HCV) infection, a vaccine would be the only means to substantially reduce the worldwide disease burden. An incomplete understanding of how HCV interacts with its human host and evades immune surveillance has hampered vaccine development. It is generally accepted that in infected individuals, a narrow repertoire of exhausted T cells is a hallmark of persistent infection, whereas broad, vigorous CD4+ and CD8+ T cell responses are associated with control of acute hepatitis C. We employed a vaccine approach based on a mixture of peptides (pepmix) spanning the entire sequence of HCV nonstructural protein 3 (NS3) in cross-priming cationic liposomes (CAF09) to facilitate a versatile presentation of all possible T cell epitopes, regardless of the HLA background of the vaccine recipient. Here, we demonstrate that vaccination of mice with NS3 pepmix broadens the repertoire of epitope-specific T cells compared to the corresponding recombinant protein (rNS3). Moreover, vaccination with rNS3 induced only CD4+ T cells, whereas the NS3 pepmix induced a far more vigorous CD4+ T cell response and was as potent a CD8+ T cell inducer as an adenovirus-vectored vaccine expressing NS3. Importantly, the cellular responses are dominated by multifunctional T cells, such as gamma interferon-positive (IFN-γ+) tumor necrosis factor alpha-positive (TNF-α+) coproducers, and displayed cytotoxic capacity in mice. In conclusion, we present a novel vaccine approach against HCV, inducing a broadened T cell response targeting both immunodominant and potential subdominant epitopes, which may be key elements to counter T cell exhaustion and prevent chronicity.IMPORTANCE With at least 700,000 annual deaths, development of a vaccine against hepatitis C virus (HCV) has high priority, but the tremendous ability of the virus to dodge the human immune system poses great challenges. Furthermore, many chronic infections, including HCV infection, have a remarkable ability to drive initially strong CD4+ and CD8+ T cell responses against dominant epitopes toward an exhausted, dysfunctional state. Thus, new and innovative vaccine approaches to control HCV should be evaluated. Here, we report on a novel peptide-based nanoparticle vaccine strategy (NS3 pepmix) aimed at generating T cell immunity against potential subdominant T cell epitopes that are not efficiently targeted by vaccination with full-length recombinant protein (rNS3) or infection with HCV. As proof of concept, we found that NS3 pepmix excels in broadening the repertoire of epitope-specific, multifunctional, and cytotoxic CD4+ and CD8+ T cells compared to vaccination with rNS3, which generated only CD4+ T cell responses.
Collapse
|
12
|
Robb ML, Bolton DL. Accessories to SIV Control: T Cell Vaccination Shows Potential. EBioMedicine 2017; 18:17-18. [PMID: 28427945 PMCID: PMC5405193 DOI: 10.1016/j.ebiom.2017.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 11/17/2022] Open
Affiliation(s)
- Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20818, United States.
| | - Diane L Bolton
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20818, United States
| |
Collapse
|
13
|
Xu H, Andersson AM, Ragonnaud E, Boilesen D, Tolver A, Jensen BAH, Blanchard JL, Nicosia A, Folgori A, Colloca S, Cortese R, Thomsen AR, Christensen JP, Veazey RS, Holst PJ. Mucosal Vaccination with Heterologous Viral Vectored Vaccine Targeting Subdominant SIV Accessory Antigens Strongly Inhibits Early Viral Replication. EBioMedicine 2017; 18:204-215. [PMID: 28302457 PMCID: PMC5405164 DOI: 10.1016/j.ebiom.2017.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022] Open
Abstract
Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in providing long-term control. We immunized rhesus macaques intramuscularly and rectally using a heterologous adenovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat, vif, rev and vpr antigens fused to the MHC class II associated invariant chain. Immunizations induced broad T cell responses in all vaccinees. Following up to 10 repeated low-dose intrarectal challenges, vaccinees suppressed early viral replication (P = 0.01) and prevented the peak viremia in 5/6 animals. Despite consistently undetectable viremia in 2 out of 6 vaccinees, all animals showed evidence of infection induced immune responses indicating that infection had taken place. Vaccinees, with and without detectable viremia better preserved their rectal CD4 + T cell population and had reduced immune hyperactivation as measured by naïve T cell depletion, Ki-67 and PD-1 expression on T cells. These results indicate that vaccination towards SIV accessory antigens vaccine can provide a level of acute control of SIV replication with a suggestion of beneficial immunological consequences in infected animals of unknown long-term significance. In conclusion, our studies demonstrate that a vaccine encoding subdominant antigens not normally associated with virus control can exert a significant impact on acute peak viremia. Mucosal heterologousvirus-vectored vaccine used with MHC class II associated invariant chain linked SIV accessory antigens Mucosal vaccination targeting subdominant antigens delay SIV mac251 replication in rhesus macaques. Longterm reduction of immune hyperactivation following SIV infection of vaccinated macaques.
Mucosal immunization is used with heterologous viral vectors and a genetic adjuvant to raise responses against poorly immunogenic SIV antigens. Following repeated low-dose challenge we observed delayed establishment of chronic phase viremia and reduced immune hyperactivation 6 months after established infection. Vaccination was found to strongly reduce viremia at early, but not late time points, after detected infection and in 2 out of 6 animals infection could only observed as virus induced T cell responses. Subdominant antigen vaccines may thus be used to delay SIV mac251 infection and can enable control of chronic viremia in a minority of cases.
Collapse
Affiliation(s)
- Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Anne-Marie Andersson
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1014, Denmark
| | - Emeline Ragonnaud
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1014, Denmark
| | - Ditte Boilesen
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1014, Denmark
| | - Anders Tolver
- Department of Mathematical Sciences, University of Copenhagen, 2100, Denmark
| | | | - James L Blanchard
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Alfredo Nicosia
- ReiThera, viale Città d'Europa 679, 00144 Rome, Italy; CEINGE, via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 1014, Denmark.
| |
Collapse
|
14
|
Andersson AMC, Holst PJ. Increased T cell breadth and antibody response elicited in prime-boost regimen by viral vector encoded homologous SIV Gag/Env in outbred CD1 mice. J Transl Med 2016; 14:343. [PMID: 27998269 PMCID: PMC5175304 DOI: 10.1186/s12967-016-1102-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A major obstacle for the development of HIV vaccines is the virus' worldwide sequence diversity. Nevertheless, the presence of T cell epitopes within conserved regions of the virus' structural Gag protein and conserved structures in the envelope (env) sequence raises the possibility that cross-reactive responses may be induced by vaccination. In this study, the aim was to investigate the importance of antigenic match on immunodominance and breadth of obtainable T cell responses. METHODS Outbred CD1 mice were immunized with either heterologous (SIVmac239 and HIV-1 clade B consensus) or homologous (SIVmac239) gag sequences using adenovirus (Ad5) and MVA vectors. Env (SIVmac239) was co-encoded in the vectors to study the induction of antibodies, which is a primary target of current HIV vaccine designs. All three vaccines were designed as virus-encoded virus-like particle vaccines. Antibody responses were analysed by ELISA, avidity ELISA, and neutralization assay. T cell responses were determined by intracellular cytokine staining of splenocytes. RESULTS The homologous Env/Gag prime-boost regimen induced higher Env binding antibodies, and induced stronger and broader Gag specific CD8+ T cell responses than the homologous Env/heterologous Gag prime-boost regimen. Homologous Env/heterologous Gag immunization resulted in selective boosting of Env specific CD8+ T cell responses and consequently a paradoxical decreased recognition of variant sequences including conserved elements of p24 Gag. CONCLUSIONS These results contrast with related studies using Env or Gag as the sole antigen and suggest that prime-boost immunizations based on homologous SIVmac239 Gag inserts is an efficient component of genetic VLP vaccines-both for induction of potent antibody responses and cross-reactive CD8+ T cell responses.
Collapse
Affiliation(s)
- Anne-Marie Carola Andersson
- Department of Immunology and Microbiology, Center for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.
| | - Peter Johannes Holst
- Department of Immunology and Microbiology, Center for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Ragonnaud E, Andersson AMC, Pedersen AE, Laursen H, Holst PJ. An adenoviral cancer vaccine co-encoding a tumor associated antigen together with secreted 4-1BBL leads to delayed tumor progression. Vaccine 2016; 34:2147-56. [PMID: 27004934 DOI: 10.1016/j.vaccine.2015.06.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/19/2015] [Accepted: 06/22/2015] [Indexed: 01/24/2023]
Abstract
Previous studies have shown promising results when using an agonistic anti-4-1BB antibody treatment against established tumors. While this is promising, this type of treatment can induce severe side effects. Therefore, we decided to incorporate the membrane form of 4-1BB ligand (4-1BBL) in a replicative deficient adenovirus vaccine expressing the invariant chain (Ii) adjuvant fused to a tumor associated antigen (TAA). The Ii adjuvant increases and prolongs TAA specific CD8+ T cells as previously shown and local expression of 4-1BBL was chosen to avoid the toxicity associated with systemic antibody administration. Furthermore, adenovirus encoded 4-1BBL expression has previously been successfully used to enhance responses toward Plasmodium falciparum and Influenza A antigens. We showed that the incorporation of 4-1BBL in the adenovirus vector led to surface expression of 4-1BBL on antigen presenting cells, but it did not enhance T cell responses in mice towards the Ii linked antigen. In tumor-bearing mice, our vaccine was found to decrease the frequency of TAA specific CD8+ T cells, but this difference did not alter the therapeutic efficacy. In order to reconcile our findings with the previous reports of increased anti-cancer efficacy using systemically delivered 4-1BB agonists, we incorporated a secreted version of 4-1BBL (Fc-4-1BBL) in our vaccine and co-expressed it with the Ii linked to TAA. In tumor bearing mice, this vaccine initially delayed tumor growth and slightly increased survival compared to the vaccine expressing the membrane form of 4-1BBL. Accordingly, secreted 4-1BBL co-encoded with the Ii linked antigen may offer a simplification compared to administration of drug and vaccine separately.
Collapse
Affiliation(s)
- Emeline Ragonnaud
- Center for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Anne-Marie C Andersson
- Center for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anders Elm Pedersen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henriette Laursen
- Center for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter J Holst
- Center for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
16
|
Steffensen MA, Pedersen LH, Jahn ML, Nielsen KN, Christensen JP, Thomsen AR. Vaccine Targeting of Subdominant CD8+ T Cell Epitopes Increases the Breadth of the T Cell Response upon Viral Challenge, but May Impair Immediate Virus Control. THE JOURNAL OF IMMUNOLOGY 2016; 196:2666-76. [PMID: 26873995 DOI: 10.4049/jimmunol.1502018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/14/2016] [Indexed: 11/19/2022]
Abstract
As a result of the difficulties in making efficient vaccines against genetically unstable viruses such as HIV, it has been suggested that future vaccines should preferentially target subdominant epitopes, the idea being that this should allow a greater breadth of the induced T cell response and, hence, a greater efficiency in controlling escape variants. However, to our knowledge the evidence supporting this concept is limited at best. To improve upon this, we used the murine lymphocytic choriomeningitis virus model and adenoviral vectors to compare a vaccine expressing unmodified Ag to a vaccine expressing the same Ag without its immunodominant epitope. We found that removal of the dominant epitope allowed the induction of CD8(+) T cell responses targeting at least two otherwise subdominant epitopes. Importantly, the overall magnitude of the induced T cell responses was similar, allowing us to directly compare the efficiency of these vaccines. Doing this, we observed that mice vaccinated with the vaccine expressing unmodified Ag more efficiently controlled an acute viral challenge. In the course of a more chronic viral infection, mice vaccinated using the vaccine targeting subdominant epitopes caught up with the conventionally vaccinated mice, and analysis of the breadth of the CD8(+) T cell response revealed that this was notably greater in the former mice. However, under the conditions of our studies, we never saw any functional advantage of this. This may represent a limitation of our model, but clearly our findings underscore the importance of carefully weighing the pros and cons of changes in epitope targeting before any implementation.
Collapse
Affiliation(s)
- Maria A Steffensen
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Louise H Pedersen
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marie L Jahn
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Karen N Nielsen
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|