1
|
Zheng XQ, Wang DB, Jiang YR, Song CL. Gut microbiota and microbial metabolites for osteoporosis. Gut Microbes 2025; 17:2437247. [PMID: 39690861 DOI: 10.1080/19490976.2024.2437247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Osteoporosis is an age-related bone metabolic disease. As an essential endocrine organ, the skeletal system is intricately connected with extraosseous organs. The crosstalk between bones and other organs supports this view. In recent years, the link between the gut microecology and bone metabolism has become an important research topic, both in preclinical studies and in clinical trials. Many studies have shown that skeletal changes are accompanied by changes in the composition and structure of the gut microbiota (GM). At the same time, natural or artificial interventions targeting the GM can subsequently affect bone metabolism. Moreover, microbiome-related metabolites may have important effects on bone metabolism. We aim to review the relationships among the GM, microbial metabolites, and bone metabolism and to summarize the potential mechanisms involved and the theory of the gut‒bone axis. We also describe existing bottlenecks in laboratory studies, as well as existing challenges in clinical settings, and propose possible future research directions.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Ding-Ben Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yi-Rong Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
2
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Kobayashi A, Azuma K, Takeiwa T, Kitami T, Horie K, Ikeda K, Inoue S. A FRET-based respirasome assembly screen identifies spleen tyrosine kinase as a target to improve muscle mitochondrial respiration and exercise performance in mice. Nat Commun 2023; 14:312. [PMID: 36697396 PMCID: PMC9877034 DOI: 10.1038/s41467-023-35865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Aerobic muscle activities predominantly depend on fuel energy supply by mitochondrial respiration, thus, mitochondrial activity enhancement may become a therapeutic intervention for muscle disturbances. The assembly of mitochondrial respiratory complexes into higher-order "supercomplex" structures has been proposed to be an efficient biological process for energy synthesis, although there is controversy in its physiological relevance. We here established Förster resonance energy transfer (FRET) phenomenon-based live imaging of mitochondrial respiratory complexes I and IV interactions using murine myoblastic cells, whose signals represent in vivo supercomplex assembly of complexes I, III, and IV, or respirasomes. The live FRET signals were well correlated with supercomplex assembly observed by blue native polyacrylamide gel electrophoresis (BN-PAGE) and oxygen consumption rates. FRET-based live cell screen defined that the inhibition of spleen tyrosine kinase (SYK), a non-receptor protein tyrosine kinase that belongs to the SYK/ zeta-chain-associated protein kinase 70 (ZAP-70) family, leads to an increase in supercomplex assembly in murine myoblastic cells. In parallel, SYK inhibition enhanced mitochondrial respiration in the cells. Notably, SYK inhibitor administration enhances exercise performance in mice. Overall, this study proves the feasibility of FRET-based respirasome assembly assay, which recapitulates in vivo mitochondrial respiration activities.
Collapse
Affiliation(s)
- Ami Kobayashi
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.,Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kotaro Azuma
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Toshimori Kitami
- Laboratory for Metabolic Networks, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kuniko Horie
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan. .,Division of Systems Medicine and Gene Therapy, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan.
| |
Collapse
|
4
|
Simancas Escorcia V, Diarra A, Naveau A, Dessombz A, Felizardo R, Cannaya V, Chatziantoniou C, Quentric M, Vikkula M, Cases O, Berdal A, De La Dure-Molla M, Kozyraki R. Lack of FAM20A, Ectopic Gingival Mineralization and Chondro/Osteogenic Modifications in Enamel Renal Syndrome. Front Cell Dev Biol 2021; 8:605084. [PMID: 33425910 PMCID: PMC7793853 DOI: 10.3389/fcell.2020.605084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Enamel renal syndrome (ERS) is a rare recessive disorder caused by loss-of-function mutations in FAM20A (family with sequence similarity 20 member A, OMIM #611062). Enamel renal syndrome is characterized by amelogenesis imperfecta, delayed or failed tooth eruption, intrapulpal calcifications, gingival overgrowth and nephrocalcinosis. Although gingival overgrowth has consistently been associated with heterotopic calcifications the pathogenesis, structure and interactions of the mineral deposits with the surrounding connective tissue are largely unknown. We here report a novel FAM20A mutation in exon 1 (c.358C > T) introducing a premature stop codon (p.Gln120*) and resulting in a complete loss of FAM20A. In addition to the typical oral findings and nephrocalcinosis, ectopic calcified nodules were also seen in the cervical and thoracic vertebrae regions. Histopathologic analysis of the gingiva showed an enlarged papillary layer associated with aberrant angiogenesis and a lamina propria displaying significant changes in its extracellular matrix composition, including disruption of the collagen I fiber network. Ectopic calcifications were found throughout the connective gingival tissue. Immunomorphological and ultrastructural analyses indicated that the calcification process was associated with epithelial degeneration and transformation of the gingival fibroblasts to chondro/osteoblastic-like cells. Mutant gingival fibroblasts cultures were prone to calcify and abnormally expressed osteoblastic markers such as RUNX2 or PERIOSTIN. Our findings expand the previously reported phenotypes and highlight some aspects of ERS pathogenesis.
Collapse
Affiliation(s)
- Victor Simancas Escorcia
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | - Abdoulaziz Diarra
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | - Adrien Naveau
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | - Arnaud Dessombz
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | - Rufino Felizardo
- CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris, Paris, France
| | - Vidjeacoumary Cannaya
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | | | - Mickaël Quentric
- Department of Human Genetics, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Department of Human Genetics, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | - Ariane Berdal
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France.,CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris, Paris, France
| | - Muriel De La Dure-Molla
- CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris, Paris, France.,Institut des maladies génétiques, Imagine, Paris, France
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France.,CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris, Paris, France
| |
Collapse
|
5
|
Ran C, Shi Y, Li N, Liu C, Xiao J. FAM20A is Dispensable for Dentinogenesis and Osteogenesis. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chunxiao Ran
- Department of Oral Pathology, College of Stomatolgy, Dalian Medical University
| | - Yiding Shi
- Department of Oral Pathology, College of Stomatolgy, Dalian Medical University
| | - Nan Li
- Department of Oral Pathology, College of Stomatolgy, Dalian Medical University
| | - Chao Liu
- Department of Oral Pathology, College of Stomatolgy, Dalian Medical University
| | - Jing Xiao
- Department of Oral Pathology, College of Stomatolgy, Dalian Medical University
| |
Collapse
|
6
|
Lee H. Vitamin E acetate as linactant in the pathophysiology of EVALI. Med Hypotheses 2020; 144:110182. [PMID: 33254504 PMCID: PMC7422838 DOI: 10.1016/j.mehy.2020.110182] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/25/2020] [Accepted: 08/11/2020] [Indexed: 11/11/2022]
Abstract
The recent identification of Vitamin E acetate as one of the causal agents for the e-cigarette, or vaping, product use associated lung injury (EVALI) is a major milestone. In membrane biophysics, Vitamin E is a linactant and a potent modulator of lateral phase separation that effectively reduces the line tension at the two-dimensional phase boundaries and thereby exponentially increases the surface viscosity of the pulmonary surfactant. Disrupted dynamics of respiratory compression-expansion cycling may result in an extensive hypoxemia, leading to an acute respiratory distress entailing the formation of intraalveolar lipid-laden macrophages. Supplementation of pulmonary surfactants which retain moderate level of cholesterol and controlled hypothermia for patients are recommended when the hypothesis that the line-active property of the vitamin derivative drives the pathogenesis of EVALI holds.
Collapse
Affiliation(s)
- Hanjun Lee
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|
7
|
Fusaro M, Cosmai L, Evenepoel P, Nickolas TL, Cheung AM, Aghi A, Tripepi G, Plebani M, Iervasi G, Vettor R, Zaninotto M, Ravera M, Foramitti M, Giannini S, Sella S, Gallieni M. Vitamin K and Kidney Transplantation. Nutrients 2020; 12:nu12092717. [PMID: 32899501 PMCID: PMC7551925 DOI: 10.3390/nu12092717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
The assessment of the vitamin K status and its effects on clinical outcomes in kidney transplantation (KT) patients has sparked interest, but it is still largely unfulfilled. In part, this is due to difficulties in laboratory measurements of vitamin K, especially K2 vitamers. Vitamin K status is currently best assessed by measuring undercarboxylated vitamin-K-dependent proteins. The relative contribution of vitamin K1 and K2 to the health status of the general population and CKD (chronic kidney disease) patients, including KT patients, is also poorly studied. Through a complete and first review of the existing literature, we summarize the current knowledge of vitamin K pathophysiology and its potential role in preventing KT complications and improving organ survival. A specific focus is placed on cardiovascular complications, bone fractures, and the relationship between vitamin K and cancer. Vitamin K deficiency could determine adverse outcomes, and KT patients should be better studied for vitamin K assessment and modalities of effective therapeutic approaches.
Collapse
Affiliation(s)
- Maria Fusaro
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 56124 Pisa, Italy;
- Department of Medicine, University of Padova, 35128 Padova, Italy;
- Correspondence:
| | - Laura Cosmai
- Nephrology Unit, ASST Fatebenefratelli Sacco, 20157 Milano, Italy; (L.C.); (M.G.)
| | - Pieter Evenepoel
- Laboratory of Nephrology, Department of Immunology and Microbiology, B-3000 Leuven, Belgium;
| | - Thomas L. Nickolas
- Division of Nephrology, Department of Medicine, Columbia University, New York City, NY 10032, USA;
| | - Angela M. Cheung
- Department of Medicine, University of Toronto, Toronto, ON M5S, Canada;
| | - Andrea Aghi
- Department of Medicine, Clinica Medica 1, University of Padua, 35128 Padova, PD, Italy; (A.A.); (S.G.); (S.S.)
| | - Giovanni Tripepi
- CNR-IFC, Clinical Epidemiology of Renal Diseases and Hypertension, Ospedali Riuniti, 89124 Reggio Calabria, Italy;
| | - Mario Plebani
- Laboratory Medicine Unit, Department of Medicine, University of Padua, 35128 Padova, Italy; (M.P.); (M.Z.)
| | - Giorgio Iervasi
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 56124 Pisa, Italy;
| | - Roberto Vettor
- Department of Medicine, University of Padova, 35128 Padova, Italy;
| | - Martina Zaninotto
- Laboratory Medicine Unit, Department of Medicine, University of Padua, 35128 Padova, Italy; (M.P.); (M.Z.)
| | | | - Marina Foramitti
- Divisione di Nefrologia e Dialisi, Renal Department, ASST-Cremona, Largo Priori 1, 26100 Cremona, Italy;
| | - Sandro Giannini
- Department of Medicine, Clinica Medica 1, University of Padua, 35128 Padova, PD, Italy; (A.A.); (S.G.); (S.S.)
| | - Stefania Sella
- Department of Medicine, Clinica Medica 1, University of Padua, 35128 Padova, PD, Italy; (A.A.); (S.G.); (S.S.)
| | - Maurizio Gallieni
- Nephrology Unit, ASST Fatebenefratelli Sacco, 20157 Milano, Italy; (L.C.); (M.G.)
- Department of Biomedical and Clinical Sciences ‘Luigi Sacco’, Università di Milano, 20157 Milano, Italy
| |
Collapse
|
8
|
Shea MK, Booth SL, Harshman SG, Smith D, Carlson CS, Harper L, Armstrong AR, Fang M, Cancela ML, Márcio Simão, Loeser RF. The effect of vitamin K insufficiency on histological and structural properties of knee joints in aging mice. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100078. [PMID: 36474686 PMCID: PMC9718348 DOI: 10.1016/j.ocarto.2020.100078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023] Open
Abstract
Objective While a role for vitamin K in maintaining joint tissue homeostasis has been proposed based on the presence of vitamin K dependent proteins in cartilage and bone, it is not clear if low vitamin K intake is causally linked to joint tissue degeneration. To address this gap, we manipulated vitamin K status in aging mice to test its effect on age-related changes in articular cartilage and sub-chondral bone. Methods Eleven-month old male C57BL6 mice were randomly assigned to a low vitamin K diet containing 120 mcg phylloquinone/kg diet (n = 32) or a control diet containing 1.5 mg phylloquinone/kg diet (n = 30) for 6 months. Knees were evaluated histologically using Safranin O and H&E staining, as well as using micro-CT. Results Eleven mice in the low vitamin K diet group and three mice in the control group died within the first 100 days of the experiment (p = 0.024). Mice fed the low vitamin K diet had higher Safranin-O scores, indicative of more proteoglycan loss, compared to mice fed the control diet (p ≤ 0.026). The articular cartilage structure scores did not differ between the two groups (p ≥ 0.190). The sub-chondral bone parameters measured using micro CT also did not differ between the two groups (all p ≥ 0.174). Conclusion Our findings suggest low vitamin K status can promote joint tissue proteoglycan loss in older male mice. Future studies are needed to confirm our findings and obtain a better understanding of the molecular mechanisms underlying the role of vitamin K in joint tissue homeostasis.
Collapse
Affiliation(s)
- M. Kyla Shea
- USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA, USA
| | - Sarah L. Booth
- USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA, USA
| | | | - Donald Smith
- USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA, USA
| | - Cathy S. Carlson
- College of Veterinary Medicine, University of Minnesota, St. Paul MN, USA
| | - Lindsey Harper
- College of Veterinary Medicine, University of Minnesota, St. Paul MN, USA
| | | | - Min Fang
- Small Animal Imaging Preclinical Testing Facility, Tufts University School of Medicine, Boston MA, USA
| | - M. Leonor Cancela
- Center of Marine Sciences University of Algarve, Faro Portugal
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro Portugal
- Algarve Biomedical Centre and Centre for Biomedical Research, Universidade do Algarve, Faro, Portugal
| | - Márcio Simão
- Center of Marine Sciences University of Algarve, Faro Portugal
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro Portugal
| | - Richard F. Loeser
- Thurston Arthritis Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Azuma K, Inoue S. Multiple Modes of Vitamin K Actions in Aging-Related Musculoskeletal Disorders. Int J Mol Sci 2019; 20:E2844. [PMID: 31212662 PMCID: PMC6600274 DOI: 10.3390/ijms20112844] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/01/2019] [Accepted: 06/07/2019] [Indexed: 01/14/2023] Open
Abstract
Vitamin K is a fat-soluble vitamin that was originally found as an essential factor for blood coagulation. With the discovery of its role as a co-factor for γ-glutamyl carboxylase (GGCX), its function for blood coagulation was understood as the activation of several blood coagulation factors by their γ-carboxylation. Over the last two decades, other modes of vitamin K actions have been discovered, such as the regulation of transcription by activating the steroid and xenobiotic receptor (SXR), physical association to 17β-Hydroxysteroid dehydrogenase type 4 (17β-HSD4), covalent modification of Bcl-2 antagonist killer 1 (Bak), and the modulation of protein kinase A (PKA) activity. In addition, several epidemiological studies have revealed that vitamin K status is associated with some aging-related diseases including osteoporosis, osteoarthritis, and sarcopenia. Clinical studies on single nucleotide polymorphisms of GGCX suggested an association between higher GGCX activity and bone protective effect, while recent findings using conditional knockout mice implied that a contribution in protective effect for bone loss by GGCX in osteoblastic lineage was unclear. GGCX in other cell lineages or in other tissues might play a protective role for osteoporosis. Meanwhile, animal experiments by our groups among others revealed that SXR, a putative receptor for vitamin K, could be important in the bone metabolism. In terms of the cartilage protective effect of vitamin K, both GGCX- and SXR-dependent mechanisms have been suggested. In clinical studies on osteoarthritis, the γ-carboxylation of matrix Gla protein (MGP) and gla-rich protein (GRP) may have a protective role for the disease. It is also suggested that SXR signaling has protective role for cartilage by inducing family with sequence similarity 20a (Fam20a) expression in chondrocytes. In the case of sarcopenia, a high vitamin K status in plasma was associated with muscle strength, large muscle mass, and high physical performance in some observational studies. However, the basic studies explaining the effects of vitamin K on muscular tissue are limited. Further research on vitamin K will clarify new biological mechanisms which contribute to human longevity and health through the prevention and treatment of aging-related musculoskeletal disorders.
Collapse
Affiliation(s)
- Kotaro Azuma
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.
| |
Collapse
|
10
|
Fernández I, Gavaia PJ, Laizé V, Cancela ML. Fish as a model to assess chemical toxicity in bone. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:208-226. [PMID: 29202272 DOI: 10.1016/j.aquatox.2017.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Environmental toxicology has been expanding as growing concerns on the impact of produced and released chemical compounds over the environment and human health are being demonstrated. Among the toxic effects observed in organisms exposed to pollutants, those affecting skeletal tissues (osteotoxicity) have been somehow overlooked in comparison to hepato-, immune-, neuro- and/or reproductive toxicities. Nevertheless, sub-lethal effects of toxicants on skeletal development and/or bone maintenance may result in impaired growth, reduced survival rate, increased disease susceptibility and diminished welfare. Osteotoxicity may occur by acute or chronic exposure to different environmental insults. Because of biologically and technically advantagous features - easy to breed and inexpensive to maintain, external and rapid rate of development, translucent larvae and the availability of molecular and genetic tools - the zebrafish (Danio rerio) has emerged in the last decade as a vertebrate model system of choice to evaluate osteotoxicity. Different experimental approaches in fish species and analytical tools have been applied, from in vitro to in vivo systems, from specific to high throughput methodologies. Current knowledge on osteotoxicity and underlying mechanisms gained using fish, with a special emphasis on zebrafish systems, is reviewed here. Osteotoxicants have been classified into four categories according to the pathway involved in the transduction of the osteotoxic effects: activation/inhibition of membrane and/or nuclear receptors, alteration of redox condition, mimicking of bone constituents and unknown pathways. Knowledge on these pathways is also reported here as it may provide critical insights into the development, production and release of future chemical compounds with none or low osteotoxicity, thus promoting the green/environmental friendly chemistry.
Collapse
Affiliation(s)
- Ignacio Fernández
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal.
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal; Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
11
|
Kawabata H, Azuma K, Ikeda K, Sugitani I, Kinowaki K, Fujii T, Osaki A, Saeki T, Horie-Inoue K, Inoue S. TRIM44 Is a Poor Prognostic Factor for Breast Cancer Patients as a Modulator of NF-κB Signaling. Int J Mol Sci 2017; 18:ijms18091931. [PMID: 28885545 PMCID: PMC5618580 DOI: 10.3390/ijms18091931] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022] Open
Abstract
Many of the tripartite motif (TRIM) proteins function as E3 ubiquitin ligases and are assumed to be involved in various events, including oncogenesis. In regard to tripartite motif-containing 44 (TRIM44), which is an atypical TRIM family protein lacking the RING finger domain, its pathophysiological significance in breast cancer remains unknown. We performed an immunohistochemical study of TRIM44 protein in clinical breast cancer tissues from 129 patients. The pathophysiological role of TRIM44 in breast cancer was assessed by modulating TRIM44 expression in MCF-7 and MDA-MB-231 breast cancer cells. TRIM44 strong immunoreactivity was significantly associated with nuclear grade (p = 0.033), distant disease-free survival (p = 0.031) and overall survival (p = 0.027). Multivariate analysis revealed that the TRIM44 status was an independent prognostic factor for distant disease-free survival (p = 0.005) and overall survival (p = 0.002) of patients. siRNA-mediated TRIM44 knockdown significantly decreased the proliferation of MCF-7 and MDA-MB-231 cells and inhibited the migration of MDA-MB-231 cells. Microarray analysis and qRT-PCR showed that TRIM44 knockdown upregulated CDK19 and downregulated MMP1 in MDA-MB-231 cells. Notably, TRIM44 knockdown impaired nuclear factor-kappa B (NF-κB)-mediated transcriptional activity stimulated by tumor necrosis factor α (TNFα). Moreover, TRIM44 knockdown substantially attenuated the TNFα-dependent phosphorylation of the p65 subunit of NF-κB and IκBα in both MCF-7 and MDA-MB-231 cells. TRIM44 would play a role in the progression of breast cancer by promoting cell proliferation and migration, as well as by enhancing NF-κB signaling.
Collapse
Affiliation(s)
- Hidetaka Kawabata
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.
- Department of Breast Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi, Saitama 350-1298, Japan.
- Department of Breast and Endocrine Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan.
| | - Kotaro Azuma
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.
| | - Ikuko Sugitani
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.
- Department of Breast Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi, Saitama 350-1298, Japan.
| | - Keiichi Kinowaki
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan.
| | - Takeshi Fujii
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan.
| | - Akihiko Osaki
- Department of Breast Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi, Saitama 350-1298, Japan.
| | - Toshiaki Saeki
- Department of Breast Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi, Saitama 350-1298, Japan.
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.
| | - Satoshi Inoue
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.
| |
Collapse
|
12
|
Fusaro M, Gallieni M, Rizzo MA, Stucchi A, Delanaye P, Cavalier E, Moysés RMA, Jorgetti V, Iervasi G, Giannini S, Fabris F, Aghi A, Sella S, Galli F, Viola V, Plebani M. Vitamin K plasma levels determination in human health. Clin Chem Lab Med 2017; 55:789-799. [PMID: 27732556 DOI: 10.1515/cclm-2016-0783] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022]
Abstract
Vitamin K (phylloquinone or vitamin K1 and menaquinones or vitamin K2) plays an important role as a cofactor in the synthesis of hepatic blood coagulation proteins, but recently has also aroused an increasing interest for its action in extra-hepatic tissues, in particular in the regulation of bone and vascular metabolism. The accurate measurement of vitamin K status in humans is still a critical issue. Along with indirect assays, such as the undercarboxylated fractions of vitamin K-dependent proteins [prothrombin, osteocalcin (OC), and matrix gla protein], the direct analysis of blood levels of phylloquinone and menaquinones forms might be considered a more informative and direct method for assessing vitamin K status. Different methods for direct quantification of vitamin K serum levels are available. High-performance liquid chromatography (HPLC) methods coupled with post-column reduction procedures and fluorimetric or electrochemical detection are commonly used for food and blood analysis of phylloquinone, but they show some limitations when applied to the analysis of serum menaquinones because of interferences from triglycerides. Recent advancements include liquid chromatography tandem mass spectrometry (LCMS/MS) detection, which assures higher specificity. The optimization and standardization of these methods requires specialized laboratories. The variability of results observed in the available studies suggests the need for further investigations to obtain more accurate analytical results.
Collapse
Affiliation(s)
- Maria Fusaro
- National Research Council (CNR) - Institute of Clinical Physiology (IFC), Pisa Via G. Moruzzi 1, 56124, Pisa, PI
| | - Maurizio Gallieni
- Nephrology and Dialysis Unit, Ospedale San Carlo Borromeo, Department of Clinical and Biomedical Sciences "Luigi Sacco", University of Milan, Milan
| | | | - Andrea Stucchi
- Nephrology and Dialysis Unit, IRCCS Multimedica, Sesto San Giovanni (Milano), Milan
| | - Pierre Delanaye
- Department of Nephrology, Dialysis, and Transplantation, University of Liège, Centre Hospitalier Universitaire du Sart Tilman (ULg CHU), Liège
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liège, Centre Hospitalier Universitaire du Sart Tilman, Liège
| | | | | | - Giorgio Iervasi
- Institute of Clinical Physiology, National Council of Research, Pisa
| | - Sandro Giannini
- Department of Medicine, Clinica Medica 1, University of Padova, Padova
| | - Fabrizio Fabris
- Department of Medicine, Clinica Medica 1, University of Padova, Padova
| | - Andrea Aghi
- Department of Medicine, Clinica Medica 1, University of Padova, Padova
| | - Stefania Sella
- Department of Medicine, Clinica Medica 1, University of Padova, Padova
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia
| | - Valentina Viola
- Azienda Ospedaliera Universitaria Policlinico Tor Vergata, Rome
| | - Mario Plebani
- Laboratory Medicine Unit, Department of Medicine, University of Padova, Padova
| |
Collapse
|
13
|
Verma G, Khan MF, Shaquiquzzaman M, Akhtar W, Akhter M, Hasan SM, Alam MM. Molecular interactions of dioxins and DLCs with the xenosensors (PXR and CAR): An in silico
risk assessment approach. J Mol Recognit 2017. [DOI: 10.1002/jmr.2651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Garima Verma
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Jamia Hamdard; New Delhi India
| | - Mohemmed Faraz Khan
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Jamia Hamdard; New Delhi India
| | - Mohammad Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Jamia Hamdard; New Delhi India
| | | | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Jamia Hamdard; New Delhi India
| | - Syed Misbahul Hasan
- Department of Pharmaceutical Chemistry, College of Pharmacy; Al Jouf University; Sakaka Al Jouf Kingdom of Saudi Arabia
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Jamia Hamdard; New Delhi India
| |
Collapse
|
14
|
He L, Zhou X, Huang N, Li H, Li T, Yao K, Tian Y, Hu CAA, Yin Y. Functions of pregnane X receptor in self-detoxification. Amino Acids 2017; 49:1999-2007. [PMID: 28534176 DOI: 10.1007/s00726-017-2435-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022]
Abstract
Pregnane X receptor (PXR, NR1I2), a member of the nuclear receptor superfamily, is a crucial regulator of nutrient metabolism and metabolic detoxification such as metabolic syndrome, xenobiotic metabolism, inflammatory responses, glucose, cholesterol and lipid metabolism, and endocrine homeostasis. Notably, much experimental and clinical evidence show that PXR senses xenobiotics and triggers the detoxification response to prevent diseases such as diabetes, obesity, intestinal inflammatory diseases and liver fibrosis. In this review we summarize recent advances on remarkable metabolic and regulatory versatility of PXR, and we emphasizes its role and potential implication as an effective modulator of self-detoxification in animals and humans.
Collapse
Affiliation(s)
- Liuqin He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Changsha, 410125, Hunan, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Changsha, 410125, Hunan, China
| | - Niu Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Huan Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Changsha, 410125, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, Hunan, China
| | - Kang Yao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Changsha, 410125, Hunan, China. .,College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China. .,Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, Hunan, China.
| | - Yanan Tian
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China.,Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, TX, 77843, USA
| | - Chien-An Andy Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico, Health Sciences Center, MSC08 4670, Albuquerque, USA
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, Changsha, 410125, Hunan, China. .,Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, Hunan, China.
| |
Collapse
|