1
|
Wang Y, Zhang G, Zhong L, Qian M, Wang M, Cui R. Filamentous bacteriophages, natural nanoparticles, for viral vaccine strategies. NANOSCALE 2022; 14:5942-5959. [PMID: 35389413 DOI: 10.1039/d1nr08064d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Filamentous bacteriophages are natural nanoparticles formed by the self-assembly of structural proteins that have the capability of replication and infection. They are used as a highly efficient vaccine platform to enhance immunogenicity and effectively stimulate the innate and adaptive immune response. Compared with traditional vaccines, phage-based vaccines offer thermodynamic stability, biocompatibility, homogeneity, high carrying capacity, self-assembly, scalability, and low toxicity. This review summarizes recent research on phage-based vaccines in virus prevention. In addition, the expression systems of filamentous phage-based virus vaccines and their application principles are discussed. Moreover, the prospect of the prevention of emerging infectious diseases, such as coronavirus 2019 (COVID-19), is also discussed.
Collapse
Affiliation(s)
- Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Guangxin Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun 130024, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Min Qian
- Department of Neonatology, The Second Hospital of Jilin University, Changchun 130024, China
| | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| |
Collapse
|
2
|
Korie NPU, Tandoh KZ, Kwofie SK, Quaye O. Therapeutic potential of HIV-1 entry inhibitor peptidomimetics. Exp Biol Med (Maywood) 2021; 246:1060-1068. [PMID: 33596698 PMCID: PMC8113741 DOI: 10.1177/1535370221990870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) infection remains a public health concern globally. Although great strides in the management of HIV-1 have been achieved, current highly active antiretroviral therapy is limited by multidrug resistance, prolonged use-related effects, and inability to purge the HIV-1 latent pool. Even though novel therapeutic options with HIV-1 broadly neutralizing antibodies (bNAbs) are being explored, the scalability of bNAbs is limited by economic cost of production and obligatory requirement for parenteral administration. However, these limitations can be addressed by antibody mimetics/peptidomimetics of HIV-1 bNAbs. In this review we discuss the limitations of HIV-1 bNAbs as HIV-1 entry inhibitors and explore the potential therapeutic use of antibody mimetics/peptidomimetics of HIV-1 entry inhibitors as an alternative for HIV-1 bNAbs. We highlight the reduced cost of production, high specificity, and oral bioavailability of peptidomimetics compared to bNAbs to demonstrate their suitability as candidates for novel HIV-1 therapy and conclude with some perspectives on future research toward HIV-1 novel drug discovery.
Collapse
Affiliation(s)
- Nneka PU Korie
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra 00233, Ghana
| | - Kwesi Z Tandoh
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra 00233, Ghana
| | - Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Accra 00233, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra 00233, Ghana
| |
Collapse
|
3
|
Villa-Mancera A, Alcalá-Canto Y, Olivares-Pérez J, Molina-Mendoza P, Hernández-Guzmán K, Utrera-Quintana F, Carreón-Luna L, Olmedo-Juárez A, Reynoso-Palomar A. Vaccination with cathepsin L mimotopes of Fasciola hepatica in goats reduces worm burden, morphometric measurements, and reproductive structures. Microb Pathog 2021; 155:104859. [PMID: 33845124 DOI: 10.1016/j.micpath.2021.104859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
Fasciolosis is a worldwide emergent zoonotic disease that significantly constrains the productivity of livestock. We conducted an experimental trial with four groups of five goats each, vaccinated with 1 × 1013 phage particles of cathepsin L1 (CLI: DPWWLKQ), CL1 (SGTFLFS), and CL2 (PPIRNGK) mimotopes combined with Quil A adjuvant. Animals received a booster four weeks later. The control group received phosphate-buffered saline. All animals were infected with 200 Fasciola hepatica metacercariae at week six and euthanised 16 weeks later. The percentage of significant worm reduction in CL1 (DPWWLKQ), CL1 (SGTFLFS), and CL2 (PPIRNGK) compared to the control group were 55.40%, 70.42% (P < 0.05), and 32.39%, respectively. Vaccinated animals showed a significant reduction in faecal egg production and egg viability. A significant reduction in the total biomass of parasites recovered was observed in the CL1 (DPWWLKQ) and CL1 (SGTFLFS) groups. In goats vaccinated with CL2 (PPIRNGK), fluke length and width were smaller than those in the control group. Furthermore, animals receiving CL mimotopes showed a significant reduction in the total area of reproductive structures. Goats immunised with phage-displayed mimotopes produced significantly high titres of specific IgG1 and IgG2 isotypes, indicating a mixed Th1/Th2 response. The liver fluke burdens in goats vaccinated with CL1 (DPWWLKQ) and CL1 (SGTFLFS) were significantly correlated with IgG and IgG1 levels.
Collapse
Affiliation(s)
- Abel Villa-Mancera
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Puebla, Mexico.
| | - Yazmín Alcalá-Canto
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 3000, Delegación Coyoacán, Ciudad de México, C.P. 04510, Mexico
| | - Jaime Olivares-Pérez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Ciudad Altamirano, Guerrero, Mexico
| | - Pedro Molina-Mendoza
- Ingeniería en Agronomía y Zootecnia, División de Ciencias Naturales. Universidad Intercultural del Estado de Puebla. Calle Principal a Lipuntahuaca S/N, Lipuntahuaca, Huehuetla, Puebla, C.P. 73475, Mexico
| | - Karina Hernández-Guzmán
- Ingeniería en Agronomía y Zootecnia, División de Ciencias Naturales. Universidad Intercultural del Estado de Puebla. Calle Principal a Lipuntahuaca S/N, Lipuntahuaca, Huehuetla, Puebla, C.P. 73475, Mexico
| | - Fernando Utrera-Quintana
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Puebla, Mexico
| | - Lorenzo Carreón-Luna
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Puebla, Mexico
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534 / Col. Progreso, C.P. 62550, Jiutepec, Morelos, A.P. 206-CIVAC, Mexico
| | - Alejandro Reynoso-Palomar
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Puebla, Mexico
| |
Collapse
|
4
|
Villa-Mancera A, Olivares-Pérez J, Olmedo-Juárez A, Reynoso-Palomar A. Phage display-based vaccine with cathepsin L and excretory-secretory products mimotopes of Fasciola hepatica induces protective cellular and humoral immune responses in sheep. Vet Parasitol 2020; 289:109340. [PMID: 33373968 DOI: 10.1016/j.vetpar.2020.109340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/10/2023]
Abstract
Fasciolosis is a foodborne zoonotic disease that affects grazing animals and causes substantial economic losses worldwide. Excretory/secretory (E/S) products and cathepsin L mimotopes from Fasciola hepatica were used to immunise experimentally infected sheep against liver flukes. The level of protection was measured in terms of fluke burden, morphometric measurements and faecal egg counts, as well as the humoral and cellular immune responses elicited. Five groups of 5 sheep each were immunised with 1 × 1013 phage particles of cathepsin L1 (group 1: SGTFLFS), cathepsin L1 (group 2: WHVPRTWWVLPP) and immunodominant E/S product (group 3) mimotopes with Quil A adjuvant, and wild-type M13KE phage (group 4) at the beginning and as a booster two weeks later. The control group received phosphate-buff ;ered saline. All groups were challenged with 300 metacercariae at week four and slaughtered 18 weeks later. The mean fluke burdens after challenge were reduced by 52.39 % and 67.17 % in sheep vaccinated with E/S products (group 3) and cathepsin L1 (group 1: SGTFLFS), respectively; no eff ;ect was observed in animals inoculated with cathepsin L1 (group 2: WHVPRTWWVLPP). Animals vaccinated showed a significant reduction in fluke length and width, wet weights and egg output Sheep immunised with phage-displayed mimotopes induced the development of specific IgG1 and IgG2, indicating a mixed Th1/Th2 immune response. Measurement of cytokine levels revealed higher levels of IFN-γ as well as lower production of IL-4 in sheep vaccinated with the mimotope peptide of F. hepatica. Fluke-specific production of IFN-γ in immunised animals was significantly correlated with fluke burden (P < 0.01). As helminth infection progressed, increased levels of IL-4 were evident in the wild-type M13KE phage (group 4) and the control groups (group 5), accompanied by a downregulation of IFN-γ production. Vaccinated animals with cathepsin L1 (group 1: SGTFLFS) showed that amino acids located in the middle (64SG65) of the linear sequence and C-terminal end (314TFLFS318) were associated with significant protection.
Collapse
Affiliation(s)
- Abel Villa-Mancera
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Puebla, Mexico.
| | - Jaime Olivares-Pérez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Ciudad Altamirano, Guerrero, Mexico
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534 / Col. Progreso, C.P. 62550, Jiutepec, Morelos, A.P. 206-CIVAC, Mexico
| | - Alejandro Reynoso-Palomar
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Puebla, Mexico
| |
Collapse
|
5
|
Selection and immune recognition of HIV-1 MPER mimotopes. Virology 2020; 550:99-108. [PMID: 32980676 DOI: 10.1016/j.virol.2020.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/20/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022]
Abstract
The membrane proximal external region (MPER) of HIV-1 gp41 is targeted by several neutralizing antibodies (NAbs) and is of interest for vaccine design. In this study, we identified novel MPER peptide mimotopes and evaluated their reactivity with HIV + plasma antibodies to characterize the diversity of the immune responses to MPER during natural infection. We utilized phage display technology to generate novel mimotopes that fit antigen-binding sites of MPER NAbs 4E10, 2F5 and Z13. Plasma antibodies from 10 HIV + patients were mapped by phage immunoprecipitation, to identify unique patient MPER binding profiles that were distinct from, and overlapping with, those of MPER NAbs. 4E10 mimotope binding profiles correlated with plasma neutralization of HIV-2/HIV-1 MPER chimeric virus, and with overall plasma neutralization breadth and potency. When administered as vaccines, 4E10 mimotopes elicited low titer NAb responses in mice. HIV mimotopes may be useful for detailed analysis of plasma antibody specificity.
Collapse
|
6
|
Agarwal G, Gabrani R. Antiviral Peptides: Identification and Validation. Int J Pept Res Ther 2020; 27:149-168. [PMID: 32427225 PMCID: PMC7233194 DOI: 10.1007/s10989-020-10072-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022]
Abstract
Despite rapid advances in the human healthcare, the infection caused by certain viruses results in high morbidity and mortality accentuate the importance for development of new antivirals. The existing antiviral drugs are limited, due to their inadequate response, increased rate of resistance and several adverse side effects. Therefore, one of the newly emerging field “peptide-based therapeutics” against viruses is being explored and seems promising. Over the last few years, a lot of scientific effort has been made for the identification of novel and potential peptide-based therapeutics using various advanced technologies. Consequently, there are more than 60 approved peptide drugs available for sale in the market of United States, Europe, Japan, and some Asian countries. Moreover, the number of peptide drugs undergoing the clinical trials is rising gradually year by year. The peptide-based antiviral therapeutics have been approved for the Human immunodeficiency virus (HIV), Influenza virus and Hepatitis virus (B and C). This review enlightens the various peptide sources and the different approaches that have contributed to the search of potential antiviral peptides. These include computational approaches, natural and biological sources (library based high throughput screening) for the identification of lead peptide molecules against their target. Further the applications of few advanced techniques based on combinatorial chemistry and molecular biology have been illustrated to measure the binding parameters such as affinity and kinetics of the screened interacting partners. The employment of these advanced techniques can contribute to investigate antiviral peptide therapeutics for emerging infections.
Collapse
Affiliation(s)
- Garima Agarwal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| | - Reema Gabrani
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| |
Collapse
|
7
|
Combadière B, Beaujean M, Chaudesaigues C, Vieillard V. Peptide-Based Vaccination for Antibody Responses Against HIV. Vaccines (Basel) 2019; 7:vaccines7030105. [PMID: 31480779 PMCID: PMC6789779 DOI: 10.3390/vaccines7030105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
HIV-1 is responsible for a global pandemic of 35 million people and continues to spread at a rate of >2 million new infections/year. It is widely acknowledged that a protective vaccine would be the most effective means to reduce HIV-1 spread and ultimately eliminate the pandemic, whereas a therapeutic vaccine might help to mitigate the clinical course of the disease and to contribute to virus eradication strategies. However, despite more than 30 years of research, we do not have a vaccine capable of protecting against HIV-1 infection or impacting on disease progression. This, in part, denotes the challenge of identifying immunogens and vaccine modalities with a reduced risk of failure in late stage development. However, progress has been made in epitope identification for the induction of broadly neutralizing antibodies. Thus, peptide-based vaccination has become one of the challenges of this decade. While some researchers reconstitute envelope protein conformation and stabilization to conserve the epitope targeted by neutralizing antibodies, others have developed strategies based on peptide-carrier vaccines with a similar goal. Here, we will review the major peptide-carrier based approaches in the vaccine field and their application and recent development in the HIV-1 field.
Collapse
Affiliation(s)
- Behazine Combadière
- Sorbonne University, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Center of Immunology and Infectious Diseases (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France.
| | - Manon Beaujean
- Sorbonne University, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Center of Immunology and Infectious Diseases (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Chloé Chaudesaigues
- Sorbonne University, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Center of Immunology and Infectious Diseases (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Vincent Vieillard
- Sorbonne University, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Center of Immunology and Infectious Diseases (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| |
Collapse
|
8
|
Rudometov AP, Chikaev AN, Rudometova NB, Antonets DV, Lomzov AA, Kaplina ON, Ilyichev AA, Karpenko LI. Artificial Anti-HIV-1 Immunogen Comprising Epitopes of Broadly Neutralizing Antibodies 2F5, 10E8, and a Peptide Mimic of VRC01 Discontinuous Epitope. Vaccines (Basel) 2019; 7:vaccines7030083. [PMID: 31390770 PMCID: PMC6789618 DOI: 10.3390/vaccines7030083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 01/05/2023] Open
Abstract
The construction of artificial proteins using conservative B-cell and T-cell epitopes is believed to be a promising approach for a vaccine design against diverse viral infections. This article describes the development of an artificial HIV-1 immunogen using a polyepitope immunogen design strategy. We developed a recombinant protein, referred to as nTBI, that contains epitopes recognized by broadly neutralizing HIV-1 antibodies (bNAbs) combined with Th-epitopes. This is a modified version of a previously designed artificial protein, TBI (T- and B-cell epitopes containing Immunogen), carrying four T- and five B-cell epitopes from HIV-1 Env and Gag proteins. To engineer the nTBI molecule, three B-cell epitopes of the TBI protein were replaced with the epitopes recognized by broadly neutralizing HIV-1 antibodies 10E8, 2F5, and a linear peptide mimic of VRC01 epitope. We showed that immunization of rabbits with the nTBI protein elicited antibodies that recognize HIV-1 proteins and were able to neutralize Env-pseudotyped SF162.LS HIV-1 strain (tier 1). Competition assay revealed that immunization of rabbits with nTBI induced mainly 10E8-like antibodies. Our findings support the use of nTBI protein as an immunogen with predefined favorable antigenic properties.
Collapse
Affiliation(s)
- Andrey P Rudometov
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region 630559, Russia.
| | - Anton N Chikaev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, 8/2 Lavrentiev Avenue Novosibirsk, Novosibirsk 630090, Russia.
| | - Nadezhda B Rudometova
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region 630559, Russia
| | - Denis V Antonets
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region 630559, Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Olga N Kaplina
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region 630559, Russia
| | - Alexander A Ilyichev
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region 630559, Russia
| | - Larisa I Karpenko
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region 630559, Russia.
| |
Collapse
|
9
|
Kazemi-Lomedasht F, Rahimi Jamnani F, Behdani M, Shahbazzadeh D. Linear mimotope analysis of Iranian cobra ( Naja oxiana) snake venom using peptide displayed phage library. TOXIN REV 2019. [DOI: 10.1080/15569543.2017.1420082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fatemeh Kazemi-Lomedasht
- Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahimi Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Delavar Shahbazzadeh
- Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Lopes RS, Queiroz MAF, Gomes STM, Vallinoto ACR, Goulart LR, Ishak R. Phage display: an important tool in the discovery of peptides with anti-HIV activity. Biotechnol Adv 2018; 36:1847-1854. [PMID: 30012540 DOI: 10.1016/j.biotechadv.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/14/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Human immunodeficiency virus (HIV) remains a worldwide health problem despite huge investments and research breakthroughs, and no single drug is effective in killing the virus yet. Among new strategies to control HIV infection, the phage display (PD) technology has become a promising tool in the discovery of peptides that can be used as new drugs, or also as possible vaccine candidates. This review discusses basic aspects of PD and its use to advance two main objectives related to combating HIV-1 infection: the identification of peptides that inhibit virus replication and the identification of peptides that induce the production of neutralizing antibodies. We will cover the different approaches used for mapping and selection of mimotopes, and discuss the promising results of these biologicals as antiviral agents.
Collapse
Affiliation(s)
- Ronaldo Souza Lopes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Maria Alice Freitas Queiroz
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Samara Tatielle Monteiro Gomes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlândia (Universidade Federal de Uberlândia - UFU), Laboratory of Nanobiotechnology, Av. Amazonas s/n, Bloco 2E, Sala 248 - Campus Umuarama, Uberlândia, MG, CEP 38400-902, Brazil.
| | - Ricardo Ishak
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| |
Collapse
|