1
|
Farkas A, Zsindely N, Nagy G, Kovács L, Deák P, Bodai L. The ubiquitin thioesterase YOD1 ameliorates mutant Huntingtin induced pathology in Drosophila. Sci Rep 2023; 13:21951. [PMID: 38081944 PMCID: PMC10713573 DOI: 10.1038/s41598-023-49241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a dominant gain-of-function mutation in the huntingtin gene, resulting in an elongated polyglutamine repeat in the mutant Huntingtin (mHtt) that mediates aberrant protein interactions. Previous studies implicated the ubiquitin-proteasome system in HD, suggesting that restoring cellular proteostasis might be a key element in suppressing pathology. We applied genetic interaction tests in a Drosophila model to ask whether modulating the levels of deubiquitinase enzymes affect HD pathology. By testing 32 deubiquitinase genes we found that overexpression of Yod1 ameliorated all analyzed phenotypes, including neurodegeneration, motor activity, viability, and longevity. Yod1 did not have a similar effect in amyloid beta overexpressing flies, suggesting that the observed effects might be specific to mHtt. Yod1 overexpression did not alter the number of mHtt aggregates but moderately increased the ratio of larger aggregates. Transcriptome analysis showed that Yod1 suppressed the transcriptional effects of mHtt and restored the expression of genes involved in neuronal plasticity, vesicular transport, antimicrobial defense, and protein synthesis, modifications, and clearance. Furthermore, Yod1 overexpression in HD flies leads to the upregulation of genes involved in transcriptional regulation and synaptic transmission, which might be part of a response mechanism to mHtt-induced stress.
Collapse
Affiliation(s)
- Anita Farkas
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Levente Kovács
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
- Divison of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, 91125, USA
| | - Péter Deák
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary.
| |
Collapse
|
2
|
Pai YL, Lin YJ, Peng WH, Huang LT, Chou HY, Wang CH, Chien CT, Chen GC. The deubiquitinase Leon/USP5 interacts with Atg1/ULK1 and antagonizes autophagy. Cell Death Dis 2023; 14:540. [PMID: 37607937 PMCID: PMC10444890 DOI: 10.1038/s41419-023-06062-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/21/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Accumulating evidence has shown that the quality of proteins must be tightly monitored and controlled to maintain cellular proteostasis. Misfolded proteins and protein aggregates are targeted for degradation through the ubiquitin proteasome (UPS) and autophagy-lysosome systems. The ubiquitination and deubiquitinating enzymes (DUBs) have been reported to play pivotal roles in the regulation of the UPS system. However, the function of DUBs in the regulation of autophagy remain to be elucidated. In this study, we found that knockdown of Leon/USP5 caused a marked increase in the formation of autophagosomes and autophagic flux under well-fed conditions. Genetic analysis revealed that overexpression of Leon suppressed Atg1-induced cell death in Drosophila. Immunoblotting assays further showed a strong interaction between Leon/USP5 and the autophagy initiating kinase Atg1/ULK1. Depletion of Leon/USP5 led to increased levels of Atg1/ULK1. Our findings indicate that Leon/USP5 is an autophagic DUB that interacts with Atg1/ULK1, negatively regulating the autophagic process.
Collapse
Affiliation(s)
- Yueh-Ling Pai
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Yuchieh Jay Lin
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Wen-Hsin Peng
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Li-Ting Huang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - He-Yen Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chien-Hsiang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
3
|
Yan B, Guo J, Deng S, Chen D, Huang M. A pan-cancer analysis of the role of USP5 in human cancers. Sci Rep 2023; 13:8972. [PMID: 37268697 DOI: 10.1038/s41598-023-35793-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023] Open
Abstract
Posttranslational modifications (PTM) such as acetylation, deubiquitination, and phosphorylation of proteins, play important roles in various kinds of cancer progression. Ubiquitin-specific proteinase 5 (USP5), a unique member of deubiquitinating enzymes (DUBs) which recognizes unanchored polyubiquitin specifically, could regulate the stability of many tumorigenesis-associated proteins to influence cancer initiation and progression. However, the diverse biological significance of USP5 in pan-cancer has not been systematically and comprehensively studied. Here, we explored the role of USP5 in pan-cancer using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database, and we also acquired and analyzed data via various software and web platforms such as R, GEPIA2.0, HPA, TISIDB, cBioPortal, UALCAN, TIMER 2.0, CancerSEA and BioGRID. USP5 expression was high in most cancers and differed significantly in different molecular and immune subtypes of cancers. In addition, USP5 had certain diagnostic value in multiple cancers, and high expression of USP5 generally predicted poor prognosis for cancer patients. We also found that the most frequent genetic alterations type of USP5 was mutation, and the DNA methylation level of USP5 decreased in various cancers. Furthermore, USP5 expression correlated with cancer-associated fibroblasts (CAFs), endothelial cells (EC) and genetic markers of immunodulators in cancers. Moreover, the result from single cell sequencing showed that USP5 could regulate several tumor biological behaviors such as apoptosis, DNA damage and metastasis. Gene enrichment analysis indicated "spliceosome" and "RNA splicing" may be the critical mechanism for USP5 to involve in cancer. Taken together, our study elucidates the biological significance of USP5 in the diagnosis, prognosis and immune in human pan-cancer.
Collapse
Affiliation(s)
- Bokang Yan
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, Hunan, China
| | - Jiaxing Guo
- Department of Hematology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, Hunan, China
| | - Shuang Deng
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, Hunan, China
| | - Dongliang Chen
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, Hunan, China.
| | - Meiyuan Huang
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, Hunan, China.
| |
Collapse
|
4
|
Zhang X, Zhai Y, Zhang D, Che C, Zhang Y, Li Q, Zhang X, Zhao L. RNAseq analysis of the drug jian-yan-ling (JYL) using both in vivo and in vitro models. Heliyon 2023; 9:e16143. [PMID: 37251843 PMCID: PMC10213199 DOI: 10.1016/j.heliyon.2023.e16143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Ethnopharmacological relevance Jian-yan-ling (JYL) is a drug used in traditional Chinese medicine (TCM) prescriptions for the treatment of tumors after radiotherapy and chemotherapy, to effectively alleviate leukocytopenia. However, the genetic mechanisms underlying the function of JYL remain unclear. Aim of the study This study aimed to explore the RNA changes and potential biological processes related to the anti-aging or life-extending effects of JYL treatments. Materials and methods In vivo treatments were performed using Canton-S Drosophila corresponding to three groups: control, low-concentration (low-conc.), and high-concentration (high-conc.) groups. The low-conc. And the high-conc. Groups were treated with 4 mg/mL JYL and 8 mg/mL JYL, respectively. Thirty Drosophila eggs were placed in each vial, and the third instar larvae and adults 7 and 21 days post-eclosion were collected for RNA sequencing, irrespective of the gender.In vitro treatments were conducted using humanized immune cell lines HL60 and Jurkat, which were divided into 3 groups: control (0 μg/mL JYL), low-concentration (40 μg/mL JYL), and high-concentration (80 μg/mL JYL). The cells were collected after 48 h of each JYL drug treatment. Both the Drosophila and cell samples were analyzed using RNA sequencing. Results The in vivo experiments revealed 74 upregulated genes in the low-concentration group, and CG13078 was a commonly downregulated differential gene, which is involved in ascorbate iron reductase activity. Further analysis of the co-expression map identified the key genes: regulatory particle non-ATPase (RPN), regulatory particle triple-A ATPase (RPT), and tripeptidyl-peptidase II (TPP II). For the in vitro experiments, 19 co-differential genes were compared between different concentrations of the HL 60 cell line, of which three genes were upregulated: LOC107987457 (phostensin-like gene), HSPA1A (heat shock protein family A member 1 A), and H2AC19 (H2A clustered histone 19). In the HL 60 cell line, JYL activated proteasome-related functions. In the Jurkat cell line, there were no common differential genes despite the presence of a dosage-dependent trend. Conclusions The RNA-seq results showed that the traditional Chinese medicine JYL has longevity and anti-aging effects, indicating that further investigation is required.
Collapse
Affiliation(s)
- Xiaobo Zhang
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yunliang Zhai
- Lei Yun Shang Pharmaceutical Group Co.,Ltd., Suzhou, 215009, China
| | - Dandan Zhang
- Lei Yun Shang Pharmaceutical Group Co.,Ltd., Suzhou, 215009, China
| | - Chang Che
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Yayun Zhang
- Lei Yun Shang Pharmaceutical Group Co.,Ltd., Suzhou, 215009, China
| | - Quan Li
- Lei Yun Shang Pharmaceutical Group Co.,Ltd., Suzhou, 215009, China
| | - Xue Zhang
- Lei Yun Shang Pharmaceutical Group Co.,Ltd., Suzhou, 215009, China
| | - Lingrui Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| |
Collapse
|
5
|
Sparks A, Kelly CJ, Saville MK. Ubiquitin receptors play redundant roles in the proteasomal degradation of the p53 repressor MDM2. FEBS Lett 2022; 596:2746-2767. [PMID: 35735670 PMCID: PMC9796813 DOI: 10.1002/1873-3468.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 01/07/2023]
Abstract
Much remains to be determined about the participation of ubiquitin receptors in proteasomal degradation and their potential as therapeutic targets. Suppression of the ubiquitin receptor S5A/PSMD4/hRpn10 alone stabilises p53/TP53 but not the key p53 repressor MDM2. Here, we observed S5A and the ubiquitin receptors ADRM1/PSMD16/hRpn13 and RAD23A and B functionally overlap in MDM2 degradation. We provide further evidence that degradation of only a subset of ubiquitinated proteins is sensitive to S5A knockdown because ubiquitin receptor redundancy is commonplace. p53 can be upregulated by S5A modulation while degradation of substrates with redundant receptors is maintained. Our observations and analysis of Cancer Dependency Map (DepMap) screens show S5A depletion/loss substantially reduces cancer cell line viability. This and selective S5A dependency of proteasomal substrates make S5A a target of interest for cancer therapy.
Collapse
Affiliation(s)
| | - Christopher J. Kelly
- School of MedicineUniversity of DundeeUK,Institute of Infection, Immunity and InflammationUniversity of GlasgowUK
| | - Mark K. Saville
- School of MedicineUniversity of DundeeUK,Silver River EditingDundeeUK
| |
Collapse
|
6
|
Usp5, Usp34, and Otu1 deubiquitylases mediate DNA repair in Drosophila melanogaster. Sci Rep 2022; 12:5870. [PMID: 35393473 PMCID: PMC8990000 DOI: 10.1038/s41598-022-09703-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Ubiquitylation is critical for preventing aberrant DNA repair and for efficient maintenance of genome stability. As deubiquitylases (DUBs) counteract ubiquitylation, they must have a great influence on many biological processes, including DNA damage response. To elucidate the role of DUBs in DNA repair in Drosophila melanogaster, systematic siRNA screening was applied to identify DUBs with a reduced survival rate following exposure to ultraviolet and X-ray radiations. As a secondary validation, we applied the direct repeat (DR)-white reporter system with which we induced site-specific DSBs and affirmed the importance of the DUBs Ovarian tumor domain-containing deubiquitinating enzyme 1 (Otu1), Ubiquitin carboxyl-terminal hydrolase 5 (Usp5), and Ubiquitin carboxyl-terminal hydrolase 34 (Usp34) in DSB repair pathways using Drosophila. Our results indicate that the loss of Otu1 and Usp5 induces strong position effect variegation in Drosophila eye following I-SceI-induced DSB deployment. Otu1 and Usp5 are essential in DNA damage-induced cellular response, and both DUBs are required for the fine-tuned regulation of the non-homologous end joining pathway. Furthermore, the Drosophila DR-white assay demonstrated that homologous recombination does not occur in the absence of Usp34, indicating an indispensable role of Usp34 in this process.
Collapse
|
7
|
Koyuncu S, Loureiro R, Lee HJ, Wagle P, Krueger M, Vilchez D. Rewiring of the ubiquitinated proteome determines ageing in C. elegans. Nature 2021; 596:285-290. [PMID: 34321666 PMCID: PMC8357631 DOI: 10.1038/s41586-021-03781-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/29/2021] [Indexed: 12/20/2022]
Abstract
Ageing is driven by a loss of cellular integrity1. Given the major role of ubiquitin modifications in cell function2, here we assess the link between ubiquitination and ageing by quantifying whole-proteome ubiquitin signatures in Caenorhabditis elegans. We find a remodelling of the ubiquitinated proteome during ageing, which is ameliorated by longevity paradigms such as dietary restriction and reduced insulin signalling. Notably, ageing causes a global loss of ubiquitination that is triggered by increased deubiquitinase activity. Because ubiquitination can tag proteins for recognition by the proteasome3, a fundamental question is whether deficits in targeted degradation influence longevity. By integrating data from worms with a defective proteasome, we identify proteasomal targets that accumulate with age owing to decreased ubiquitination and subsequent degradation. Lowering the levels of age-dysregulated proteasome targets prolongs longevity, whereas preventing their degradation shortens lifespan. Among the proteasomal targets, we find the IFB-2 intermediate filament4 and the EPS-8 modulator of RAC signalling5. While increased levels of IFB-2 promote the loss of intestinal integrity and bacterial colonization, upregulation of EPS-8 hyperactivates RAC in muscle and neurons, and leads to alterations in the actin cytoskeleton and protein kinase JNK. In summary, age-related changes in targeted degradation of structural and regulatory proteins across tissues determine longevity.
Collapse
Affiliation(s)
- Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Rute Loureiro
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hyun Ju Lee
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Prerana Wagle
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marcus Krueger
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Blount JR, Johnson SL, Todi SV. Unanchored Ubiquitin Chains, Revisited. Front Cell Dev Biol 2020; 8:582361. [PMID: 33195227 PMCID: PMC7659471 DOI: 10.3389/fcell.2020.582361] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
The small modifier protein, ubiquitin, holds a special place in eukaryotic biology because of its myriad post-translational effects that control normal cellular processes and are implicated in various diseases. By being covalently conjugated onto other proteins, ubiquitin changes their interaction landscape - fostering new interactions as well as inhibiting others - and ultimately deciding the fate of its substrates and controlling pathways that span most cell physiology. Ubiquitin can be attached onto other proteins as a monomer or as a poly-ubiquitin chain of diverse structural topologies. Among the types of poly-ubiquitin species generated are ones detached from another substrate - comprising solely ubiquitin as their constituent - referred to as unanchored, or free chains. Considered to be toxic byproducts, these species have recently emerged to have specific physiological functions in immune pathways and during cell stress. Free chains also do not appear to be detrimental to multi-cellular organisms; they can be active members of the ubiquitination process, rather than corollary species awaiting disassembly into mono-ubiquitin. Here, we summarize past and recent studies on unanchored ubiquitin chains, paying special attention to their emerging roles as second messengers in several signaling pathways. These investigations paint complex and flexible outcomes for free ubiquitin chains, and present a revised model of unanchored poly-ubiquitin biology that is in need of additional investigation.
Collapse
Affiliation(s)
- Jessica R Blount
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sean L Johnson
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
9
|
Blount JR, Libohova K, Silva GM, Todi SV. Isoleucine 44 Hydrophobic Patch Controls Toxicity of Unanchored, Linear Ubiquitin Chains through NF-κB Signaling. Cells 2020; 9:cells9061519. [PMID: 32580388 PMCID: PMC7348737 DOI: 10.3390/cells9061519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination is a post-translational modification that regulates cellular processes by altering the interactions of proteins to which ubiquitin, a small protein adduct, is conjugated. Ubiquitination yields various products, including mono- and poly-ubiquitinated substrates, as well as unanchored poly-ubiquitin chains whose accumulation is considered toxic. We previously showed that transgenic, unanchored poly-ubiquitin is not problematic in Drosophila melanogaster. In the fruit fly, free chains exist in various lengths and topologies and are degraded by the proteasome; they are also conjugated onto other proteins as one unit, eliminating them from the free ubiquitin chain pool. Here, to further explore the notion of unanchored chain toxicity, we examined when free poly-ubiquitin might become problematic. We found that unanchored chains can be highly toxic if they resemble linear poly-ubiquitin that cannot be modified into other topologies. These species upregulate NF-κB signaling, and modulation of the levels of NF-κB components reduces toxicity. In additional studies, we show that toxicity from untethered, linear chains is regulated by isoleucine 44, which anchors a key interaction site for ubiquitin. We conclude that free ubiquitin chains can be toxic, but only in uncommon circumstances, such as when the ability of cells to modify and regulate them is markedly restricted.
Collapse
Affiliation(s)
- Jessica R. Blount
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield St., Scott Hall Rm. 3108, Detroit, MI 48201, USA; (J.R.B.); (K.L.)
| | - Kozeta Libohova
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield St., Scott Hall Rm. 3108, Detroit, MI 48201, USA; (J.R.B.); (K.L.)
| | | | - Sokol V. Todi
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield St., Scott Hall Rm. 3108, Detroit, MI 48201, USA; (J.R.B.); (K.L.)
- Department of Neurology, Wayne State University School of Medicine, 540 East Canfield St., Scott Hall Rm. 3108, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
10
|
Kovács L, Nagy Á, Pál M, Deák P. Usp14 is required for spermatogenesis and ubiquitin stress responses in Drosophila melanogaster. J Cell Sci 2020; 133:133/2/jcs237511. [DOI: 10.1242/jcs.237511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Deubiquitylating (DUB) enzymes free covalently linked ubiquitin moieties from ubiquitin–ubiquitin and ubiquitin–protein conjugates, and thereby maintain the equilibrium between free and conjugated ubiquitin moieties and regulate ubiquitin-mediated cellular processes. Here, we performed genetic analyses of mutant phenotypes in Drosophila melanogaster and demonstrate that loss of Usp14 function results in male sterility, with defects in spermatid individualization and reduced testicular free monoubiquitin levels. These phenotypes were rescued by germline-specific overexpression of wild-type Usp14. Synergistic genetic interactions with Ubi-p63E and cycloheximide sensitivity suggest that ubiquitin shortage is a primary cause of male sterility. In addition, Usp14 is predominantly expressed in testes in Drosophila, indicating a higher demand for this DUB in testes that is also reflected by testis-specific loss-of-function Usp14 phenotypes. Collectively, these results suggest a major role of Usp14 in maintaining normal steady state free monoubiquitin levels during the later stages of Drosophila spermatogenesis.
This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Levente Kovács
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - Ágota Nagy
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - Margit Pál
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - Peter Deák
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| |
Collapse
|
11
|
Ning F, Xin H, Liu J, Lv C, Xu X, Wang M, Wang Y, Zhang W, Zhang X. Structure and function of USP5: Insight into physiological and pathophysiological roles. Pharmacol Res 2019; 157:104557. [PMID: 31756387 DOI: 10.1016/j.phrs.2019.104557] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022]
Abstract
Deubiquitinase (DUB)-mediated cleavage of ubiquitin chains from substrate proteins plays a crucial role in various cellular processes, such as DNA repair and protein stabilization and localization. DUBs can be classified into five families based on their sequence and structural homology, and the majority belong to the ubiquitin-specific proteinase (USP) family. As one of the USPs, ubiquitin-specific proteinase 5 (USP5) is unique in that it can specifically recognize unanchored (not conjugated to target proteins) polyubiquitin and is essential for maintaining homeostasis of the monoubiquitin pool. USP5 has also been implicated in a wide variety of cellular events. In the present review, we focus on USP5 and provide a comprehensive overview of the current knowledge regarding its structure, physiological roles in multiple cellular events, and pathophysiological roles in relevant diseases, especially cancer. Signaling pathways and emerging pharmacological profiles of USP5 are also introduced, which fully embody the therapeutic potential of USP5 for human diseases ranging from cancer to neurological diseases.
Collapse
Affiliation(s)
- Fengling Ning
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Junqiu Liu
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Chao Lv
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Xu
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou 215123, China
| | - Mengling Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yinhang Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
12
|
Nagy Á, Kovács L, Lipinszki Z, Pál M, Deák P. Developmental and tissue specific changes of ubiquitin forms in Drosophila melanogaster. PLoS One 2018; 13:e0209080. [PMID: 30543682 PMCID: PMC6292614 DOI: 10.1371/journal.pone.0209080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/29/2018] [Indexed: 11/19/2022] Open
Abstract
In most Eukaryotes, ubiquitin either exists as free monoubiquitin or as a molecule that is covalently linked to other proteins. These two forms cycle between each other and due to the concerted antagonistic activity of ubiquitylating and deubiquitylating enzymes, an intracellular ubiquitin equilibrium is maintained that is essential for normal biological function. However, measuring the level and ratio of these forms of ubiquitin has been difficult and time consuming. In this paper, we have adapted a simple immunoblotting technique to monitor ubiquitin content and equilibrium dynamics in different developmental stages and tissues of Drosophila. Our data show that the level of total ubiquitin is distinct in different developmental stages, lowest at the larval-pupal transition and in three days old adult males, and highest in first instar larvae. Interestingly, the ratio of free mono-ubiquitin remains within 30–50% range of the total throughout larval development, but peaks to 70–80% at the larval-pupal and the pupal-adult transitions. It stays within the 70–80% range in adults. In developmentally and physiologically active tissues, the ratio of free ubiquitin is similarly high, most likely reflecting a high demand for ubiquitin availability. We also used this method to demonstrate the disruption of the finely tuned ubiquitin equilibrium by the abolition of proteasome function or the housekeeping deubiquitylase, Usp5. Our data support the notion that the ubiquitin equilibrium is regulated by tissue- and developmental stage-specific mechanisms.
Collapse
Affiliation(s)
- Ágota Nagy
- Department of Genetics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Levente Kovács
- Department of Genetics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Zoltán Lipinszki
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Biological Research Centre, Szeged, Hungary
| | - Margit Pál
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Péter Deák
- Department of Genetics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- * E-mail:
| |
Collapse
|
13
|
Wang Z, Zhang H, Liu C, Xing J, Chen XL. A Deubiquitinating Enzyme Ubp14 Is Required for Development, Stress Response, Nutrient Utilization, and Pathogenesis of Magnaporthe oryzae. Front Microbiol 2018; 9:769. [PMID: 29720973 PMCID: PMC5915541 DOI: 10.3389/fmicb.2018.00769] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/04/2018] [Indexed: 02/02/2023] Open
Abstract
Ubiquitination is an essential protein modification in eukaryotic cells, which is reversible. Deubiquitinating enzymes (DUBs) catalyze deubiquitination process to reverse ubiquitination, maintain ubiquitin homeostasis or promote protein degradation by recycling ubiquitins. In order to investigate effects of deubiquitination process in plant pathogenic fungus Magnaporthe oryzae, we generated deletion mutants of MoUBP14. Ortholog of MoUbp14 was reported to play general roles in ubiquitin-mediated protein degradation in Saccharomyces cerevisiae. The ΔMoubp14 mutant lost its pathogenicity and was severely reduced in mycelial growth, sporulation, carbon source utilization, and increased in sensitivity to distinct stresses. The mutant was blocked in penetration, which could due to defect in turgor generation. It is also blocked in invasive growth, which could due to reduction in stress tolerance and nutrient utilization. Deletion of UBP14 also led to accumulation of free polyubiquitin chains. Pulldown assay identified some proteins related to carbohydrate metabolism and stress response may putatively interact with MoUbp14, including two key rate-limiting enzymes of gluconeogenesis, MoFbp1 and MoPck1. These two proteins were degraded when the glucose was supplied to M. oryzae grown in low glucose media for a short period of time (∼12 h), and this process required MoUbp14. In summary, pleiotropic phenotypes of the deletion mutants indicated that MoUbp14 is required for different developments and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Zhao Wang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hong Zhang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Caiyun Liu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Xiao-Lin Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
14
|
Simões T, Schuster R, den Brave F, Escobar-Henriques M. Cdc48 regulates a deubiquitylase cascade critical for mitochondrial fusion. eLife 2018; 7:30015. [PMID: 29309037 PMCID: PMC5798933 DOI: 10.7554/elife.30015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022] Open
Abstract
Cdc48/p97, a ubiquitin-selective chaperone, orchestrates the function of E3 ligases and deubiquitylases (DUBs). Here, we identify a new function of Cdc48 in ubiquitin-dependent regulation of mitochondrial dynamics. The DUBs Ubp12 and Ubp2 exert opposing effects on mitochondrial fusion and cleave different ubiquitin chains on the mitofusin Fzo1. We demonstrate that Cdc48 integrates the activities of these two DUBs, which are themselves ubiquitylated. First, Cdc48 promotes proteolysis of Ubp12, stabilizing pro-fusion ubiquitylation on Fzo1. Second, loss of Ubp12 stabilizes Ubp2 and thereby facilitates removal of ubiquitin chains on Fzo1 inhibiting fusion. Thus, Cdc48 synergistically regulates the ubiquitylation status of Fzo1, allowing to control the balance between activation or repression of mitochondrial fusion. In conclusion, we unravel a new cascade of ubiquitylation events, comprising Cdc48 and two DUBs, fine-tuning the fusogenic activity of Fzo1. Mitochondria are little compartments within a cell that produce the energy needed for most biological processes. Each cell possesses several mitochondria, which can fuse together and then break again into smaller units. This fusion process is essential for cellular health. Two proteins in the cell have a major role in controlling mitochondrial fusion: Ubp12 and Ubp2. Ubp12 prevents fusion, while Ubp2 activates it. These molecules carry out their roles by acting on a third protein called mitofusin, which is a key gatekeeper of the fusion mechanism. Cells often ‘tag’ proteins with small molecules called ubiquitin to change the protein’s role and how it interacts with other cellular structures. Depending on how they are ‘tagged’, mitofusins can exist in two forms. One type of tagging means that the protein then promotes fusion of the mitochondria; the other leads to the mitofusin being destroyed by the cell. It is still unclear how Ubp12, Ubp2 and the different forms of mitofusins interact with each other to finely control mitochondrial fusion. Here, Simões, Schuster et al. clarify these interactions in yeast and show how these proteins are themselves regulated. Ubp2 promotes fusion by attaching to the mitofusin that is labeled to be destroyed, and removing this tag: the mitofusin will then not be degraded, and can promote fusion. Ubp12 prevents fusion through two mechanisms. First, it can remove the ‘pro-fusion’ tag on the mitofusin that prompts mitochondrial fusion. Second, Simões, Schuster et al. now show that Ubp12 also inhibits Ubp2 and its fusion-promoting activity. In turn, the experiments reveal that a master protein called Cdc48 can control the entire Ubp12-Ubp2-mitofusin pathway. Cdc48 directly represses Ubp12 and therefore its anti-fusion activity. This inhibition also leaves Ubp2 free to stimulate fusion through its action on mitofusin. The molecules involved in controlling mitochondrial fusion in yeast are very similar to the ones in people. In humans, improper regulation of mitofusins causes an incurable disease of the nerves and the brain called Charcot-Marie-Tooth 2A. Understanding how the fusion of mitochondria is controlled can lead to new drug discoveries.
Collapse
Affiliation(s)
- Tânia Simões
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Ramona Schuster
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Fabian den Brave
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Proapoptotic function of deubiquitinase DUSP31 in Drosophila. Oncotarget 2017; 8:70452-70462. [PMID: 29050293 PMCID: PMC5642568 DOI: 10.18632/oncotarget.19715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/26/2017] [Indexed: 11/25/2022] Open
Abstract
Drosophila have been used to identify new components in apoptosis regulation. The Drosophila protein Dark forms an octameric apoptosome complex that induces the initiator caspase Dronc to trigger the caspase cell death pathway and, therefore, plays an important role in controlling apoptosis. Caspases and Dark are constantly expressed in cells, but their activity is blocked by DIAP1 E3 ligase-mediated ubiquitination and subsequent inactivation or proteasomal degradation. One of the regulatory mechanisms that stabilize proapoptotic factors is the removal of ubiquitin chains by deubiquitinases. In this study performed a modified genetic screen for deubiquitinases (dsRNA lines) to identify those involved in stabilizing proapoptotic components. Loss-of-function alleles of deubiquitinase DUSP31 were identified as suppressors of the Dronc overexpression phenotype. DUSP31 deficiency also suppresses apoptosis induced by the RHG protein, Grim. Genetic analysis revealed for the first time that DUSP31 deficiency sufficiently suppresses the Dark phenotype, indicating its involvement in the control of Dark/Dronc apoptosome function in invertebrate apoptosis.
Collapse
|
16
|
Ling X, Huang Q, Xu Y, Jin Y, Feng Y, Shi W, Ye X, Lin Y, Hou L, Lin X. The deubiquitinating enzyme Usp5 regulates Notch and RTK signaling duringDrosophilaeye development. FEBS Lett 2017; 591:875-888. [PMID: 28140449 DOI: 10.1002/1873-3468.12580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Xuemei Ling
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Qinzhu Huang
- Taizhou Hospital of Zhejiang Province; Wenzhou Medical University; Linhai Zhejiang China
| | - Yanqin Xu
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Yuxiao Jin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Ying Feng
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Weijie Shi
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Xiaolei Ye
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Yi Lin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Ling Hou
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Xinhua Lin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| |
Collapse
|
17
|
Ristic G, Tsou WL, Guzi E, Kanack AJ, Scaglione KM, Todi SV. USP5 Is Dispensable for Monoubiquitin Maintenance in Drosophila. J Biol Chem 2016; 291:9161-72. [PMID: 26917723 DOI: 10.1074/jbc.m115.703504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 11/06/2022] Open
Abstract
Ubiquitination is a post-translational modification that regulates most cellular pathways and processes, including degradation of proteins by the proteasome. Substrate ubiquitination is controlled at various stages, including through its reversal by deubiquitinases (DUBs). A critical outcome of this process is the recycling of monoubiquitin. One DUB whose function has been proposed to include monoubiquitin recycling is USP5. Here, we investigated whether Drosophila USP5 is important for maintaining monoubiquitin in vivo We found that the fruit fly orthologue of USP5 has catalytic preferences similar to its human counterpart and that this DUB is necessary during fly development. Our biochemical and genetic experiments indicate that reduction of USP5 does not lead to monoubiquitin depletion in developing flies. Also, introduction of exogenous ubiquitin does not suppress developmental lethality caused by loss of endogenous USP5. Our work indicates that a primary physiological role of USP5 is not to recycle monoubiquitin for reutilization, but that it may involve disassembly of conjugated ubiquitin to maintain proteasome function.
Collapse
Affiliation(s)
| | | | - Ermal Guzi
- From the Departments of Pharmacology and
| | - Adam J Kanack
- the Department of Biochemistry and the Neuroscience Research Center, Medical College of Wisconsin, Milwaukee Wisconsin 53226
| | - Kenneth Matthew Scaglione
- the Department of Biochemistry and the Neuroscience Research Center, Medical College of Wisconsin, Milwaukee Wisconsin 53226
| | - Sokol V Todi
- From the Departments of Pharmacology and Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201 and
| |
Collapse
|