1
|
Hariharan S, Seethashankar S, Kannan N, Christopher S, A. AT, Raavi V, Easwaramoorthy V, Murugaiyan P, Perumal V. Enhanced γ-H2AX Foci Frequency and Altered Gene Expression in Participants Exposed to Ionizing Radiation During I-131 Nuclear Medicine Procedures. Nucl Med Mol Imaging 2024; 58:341-353. [PMID: 39308490 PMCID: PMC11415327 DOI: 10.1007/s13139-024-00872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 09/25/2024] Open
Abstract
Purpose Ionizing radiation-based technologies are extensively used in the diagnosis and treatment of diseases. While utilizing the technologies, exposure to a certain amount of radiation is unavoidable. Data can be obtained from participants who received radiation during medical imaging and therapeutic purposes to predict the effects of low-dose radiation. Methods To understand the effects of low-dose radiation, participants (n = 22) who received radioactive I-131 for scan/therapy were used as a model in this study. Blood samples were drawn pre- and post-administration of I-131. Biological effects were measured using markers of DNA damage (γ-H2AX, micronucleus (MN), and chromosomal aberrations (CA)) and response to damage through gene expression changes (ATM, CDKN1A, DDB2, FDXR, and PCNA) in blood samples. Results Mean frequency of γ-H2AX foci in pre-samples was 0.28 ± 0.16, and post-samples were 1.03 ± 0.60. γ-H2AX foci frequency obtained from post-samples showed significant (p < 0.0001) and a heterogeneous increase in all the participants (received I-131 for scan/therapy) when compared to pre-samples. A significant increase (p < 0.0001) in MN and CA frequency was also observed in participants who received the I-131 therapy. Gene expression analysis indicates that all genes (ATM, CDKN1A, DDB2, FDXR, and PCNA) were altered in post-samples, although with varying degrees, suggesting that the cellular responses to DNA damage, such as damage repair, cell cycle regulation to aid in repair and apoptosis are increased, which priority is given to repair, followed by apoptosis. Conclusion The results of this study indicate that the participants who received I-131 (low doses of β- and γ-radiation) can produce substantial biological effects.
Collapse
Affiliation(s)
- Shruti Hariharan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| | - Smruthi Seethashankar
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| | - Nandhini Kannan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| | - Sathesh Christopher
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| | - Aishwarya T. A.
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| | - Venkateswarlu Raavi
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar, 563 103 Karnataka India
| | - Venkatachalapathy Easwaramoorthy
- Department of Nuclear Medicine & PET/CT, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| | - Palani Murugaiyan
- Department of Nuclear Medicine & PET/CT, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| | - Venkatachalam Perumal
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600 116 Tamil Nadu India
| |
Collapse
|
2
|
Valente D, Gentileschi MP, Valenti A, Burgio M, Soddu S, Bruzzaniti V, Guerrisi A, Verdina A. Cumulative Dose from Recurrent CT Scans: Exploring the DNA Damage Response in Human Non-Transformed Cells. Int J Mol Sci 2024; 25:7064. [PMID: 39000171 PMCID: PMC11241671 DOI: 10.3390/ijms25137064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Recurrent computed tomography (CT) examination has become a common diagnostic procedure for several diseases and injuries. Though each singular CT scan exposes individuals at low doses of low linear energy transfer (LET) radiation, the cumulative dose received from recurrent CT scans poses an increasing concern for potential health risks. Here, we evaluated the biological effects of recurrent CT scans on the DNA damage response (DDR) in human fibroblasts and retinal pigment epithelial cells maintained in culture for five months and subjected to four CT scans, one every four weeks. DDR kinetics and eventual accumulation of persistent-radiation-induced foci (P-RIF) were assessed by combined immunofluorescence for γH2AX and 53BP1, i.e., γH2AX/53BP1 foci. We found that CT scan repetitions significantly increased both the number and size of γH2AX/53BP1 foci. In particular, after the third CT scan, we observed the appearance of giant foci that might result from the overlapping of individual small foci and that do not associate with irreversible growth arrest, as shown by DNA replication in the foci-carrying cells. Whether these giant foci represent coalescence of unrepaired DNA damage as reported following single exposition to high doses of high LET radiation is still unclear. However, morphologically, these giant foci resemble the recently described compartmentalization of damaged DNA that should facilitate the repair of DNA double-strand breaks but also increase the risk of chromosomal translocations. Overall, these results indicate that for a correct evaluation of the damage following recurrent CT examinations, it is necessary to consider the size and composition of the foci in addition to their number.
Collapse
Affiliation(s)
- Davide Valente
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (M.P.G.); (S.S.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, 00185 Rome, Italy
| | - Maria Pia Gentileschi
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (M.P.G.); (S.S.)
| | - Alessandro Valenti
- Unit of Radiology and Diagnostic Imaging, Department of Clinical and Dermatological Research, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy; (A.V.); (M.B.)
| | - Massimo Burgio
- Unit of Radiology and Diagnostic Imaging, Department of Clinical and Dermatological Research, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy; (A.V.); (M.B.)
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (M.P.G.); (S.S.)
| | - Vicente Bruzzaniti
- Unit of Medical Physics and Expert Systems, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Antonino Guerrisi
- Unit of Radiology and Diagnostic Imaging, Department of Clinical and Dermatological Research, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy; (A.V.); (M.B.)
| | - Alessandra Verdina
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (M.P.G.); (S.S.)
| |
Collapse
|
3
|
Wang S, Li G, Du H, Feng J. Low-dose radiation from CT examination induces DNA double-strand breaks and detectable changes of DNA methylation in peripheral blood cells. Int J Radiat Biol 2024; 100:197-208. [PMID: 37812067 DOI: 10.1080/09553002.2023.2267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Radiation burden from CT examinations increases rapidly with the increased clinical use frequency. Previous studies have disclosed the association between radiation exposure and increased double-strand breaks (DSBs) and changes in DNA methylation. However, whether the induced DSBs by CT examination recover within 24h and whether a CT examination induces detectable gene-specific methylation changes are still unclear. The aim of the present study was to analyze γ-H2AX in the peripheral blood lymphocyte (PBL) of healthy adults before and after CT examination and to discover the differentially methylated positions (DMPs) along with an analysis of DNA methylation changes caused by CT examination. MATERIALS AND METHODS Peripheral blood samples of 4 ml were drawn from 20 healthy volunteers at three time points: before CT examination, after CT examination 1h, and after CT examination 24h. γ-H2AX immunofluorescence and Illumina Infinium Human Methylation EPIC BeadChip (850k BeadChip) were used respectively for the test of DSBs and the epigenome-wide DNA methylation analysis. Linear mixed-effect (LME) models were used to evaluate the impacts of doses represented by different parameters and foci on genome-wide DNA methylation. RESULTS The number of γ-H2AX foci per cell at 1h showed linear dose-responses for the radiation doses represented by CT index volume (CTDIvol), dose length product (DLP), and blood absorbed dose, respectively. Residual γ-H2AX foci was observed after CT examination at 24h (p < .001). DMPs and γ-H2AX foci changes could be found within 1h. One CpG site related to PAX5 was significantly changed by using most of the parameters in LME models and did not recover till 24h. CONCLUSIONS Residual γ-H2AX foci exist after CT examination at 24h. The DNA methylation changes induced by CT examination may not recover within 24h. The DNA methylation had been changed as early as at 1h. The PAX5-related CpG site may be a potential biomarker of low-dose radiation. CLINICAL RELEVANCE The biological effects and the cancer risks of CT examination are still unclear. The present study is an effort to document the CT scan-induced events in 24h in vivo. The CT scanning area should be strictly limited, and non-essential repeated operations shouldn't be performed within 24h.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Gang Li
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Han Du
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jiling Feng
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
4
|
Kanagaraj K, Phillippi MA, Narayan P, Szolc B, Perrier JR, McLane A, Wolden SL, Barker CA, Wang Q, Amundson SA, Brenner DJ, Turner HC. Assessment of Micronuclei Frequency in the Peripheral Blood of Adult and Pediatric Patients Receiving Fractionated Total Body Irradiation. Cytogenet Genome Res 2023; 163:121-130. [PMID: 37793357 PMCID: PMC10946645 DOI: 10.1159/000534433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023] Open
Abstract
The cytokinesis-block micronucleus (CBMN) assay is an established method for assessing chromosome damage in human peripheral blood lymphocytes resulting from exposure to genotoxic agents such as ionizing radiation. The objective of this study was to measure cytogenetic DNA damage and hematology parameters in vivo based on MN frequency in peripheral blood lymphocytes (PBLs) from adult and pediatric leukemia patients undergoing hematopoietic stem cell transplantation preceded by total body irradiation (TBI) as part of the conditioning regimen. CBMN assay cultures were prepared from fresh blood samples collected before and at 4 and 24 h after the start of TBI, corresponding to doses of 1.25 Gy and 3.75 Gy, respectively. For both age groups, there was a significant increase in MN yields with increasing dose (p < 0.05) and dose-dependent decrease in the nuclear division index (NDI; p < 0.0001). In the pre-radiotherapy samples, there was a significantly higher NDI measured in the pediatric cohort compared to the adult due to an increase in the percentage of tri- and quadri-nucleated cells scored. Complete blood counts with differential recorded before and after TBI at the 24-h time point showed a rapid increase in neutrophil (p = 0.0001) and decrease in lymphocyte (p = 0.0006) counts, resulting in a highly elevated neutrophil-to-lymphocyte ratio (NLR) of 14.45 ± 1.85 after 3.75 Gy TBI (pre-exposure = 4.62 ± 0.49), indicating a strong systemic inflammatory response. Correlation of the hematological cell subset counts with cytogenetic damage, indicated that only the lymphocyte subset survival fraction (after TBI compared with before TBI) showed a negative correlation with increasing MN frequency from 0 to 1.25 Gy (r = -0.931; p = 0.007). Further, the data presented here indicate that the combination of CBMN assay endpoints (MN frequency and NDI values) and hematology parameters could be used to assess cytogenetic damage and early hematopoietic injury in the peripheral blood of leukemia patients, 24 h after TBI exposure.
Collapse
Affiliation(s)
- Karthik Kanagaraj
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Michelle A. Phillippi
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Pratyush Narayan
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Barbara Szolc
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Jay R. Perrier
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Amanda McLane
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Suzanne L. Wolden
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Christopher A. Barker
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Qi Wang
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Sally A. Amundson
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - David J. Brenner
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Helen C. Turner
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Ma Y, Guo L, Fang L, Hou D, Chen R, Wang X, Mao X, Zhao Z, Chen Y. Assessment of radiation doses and DNA damage in pediatric patients undergoing interventional procedures for vascular anomalies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503653. [PMID: 37491112 DOI: 10.1016/j.mrgentox.2023.503653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023]
Abstract
Interventional procedures (IPs) have been widely used to treat vascular anomalies (VA) in recent years. However, patients are exposed to low-dose X-ray ionizing radiation (IR) during these fluoroscopy-guided IPs. We collected clinical information and IR doses during IPs and measured biomarkers including γ-H2AX, chromosome aberrations (CA), and micronuclei (MN), which underpin radiation-induced DNA damage, from 74 pediatric patients before and after IPs. For the 74 children, the range of dose-area product (DAP) values was from 1.2 to 1754.6 Gy∙cm2, with a median value of 27.1 Gy∙cm2. DAP values were significantly higher in children with lesions in the head and neck than in the limbs and trunk; the age and weight of children revealed a strong positive correlation with DAP values. The treated patients as a group demonstrated an increase in all three endpoints relative to baseline following IPs. Children with vascular tumors have a higher risk of dicentric chromosome + centric ring (dic+r) and cytokinesis-block micronucleus (CBMN) after IPs than children with vascular malformations. The younger the patient, the greater the risk of CA after IPs. Moreover, rogue cells (RCs) were found in five children (approximately 10%) after IPs, and the rates of dic+r and CBMN were significantly higher than those of other children (Z = -3.576, p < 0.001). These results suggest that there may be some children with VA who are particularly sensitive to IR, but more data and more in-depth experiments will be needed to verify this in the future.
Collapse
Affiliation(s)
- Ya Ma
- School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), No. 6699 Qingdao Road, Jinan 250117, PR China
| | - Lei Guo
- Jinan Children's Hospital, No. 23976 Jingshi Road, Jinan 250022, PR China
| | - Lianying Fang
- School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), No. 6699 Qingdao Road, Jinan 250117, PR China
| | - Dianjun Hou
- School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), No. 6699 Qingdao Road, Jinan 250117, PR China
| | - Rui Chen
- School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), No. 6699 Qingdao Road, Jinan 250117, PR China
| | - Xiaoshan Wang
- School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), No. 6699 Qingdao Road, Jinan 250117, PR China
| | - Xuesong Mao
- School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), No. 6699 Qingdao Road, Jinan 250117, PR China
| | - Zihan Zhao
- High School Attached to Shandong Normal University, No. 3 Shanshi North Street, Jinan 250014, PR China
| | - Yingmin Chen
- School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), No. 6699 Qingdao Road, Jinan 250117, PR China.
| |
Collapse
|
6
|
Bacon B, Repin M, Shuryak I, Wu HC, Santella RM, Terry MB, Brenner DJ, Turner HC. High-throughput measurement of double strand break global repair phenotype in peripheral blood mononuclear cells after long-term cryopreservation. Cytometry A 2023; 103:575-583. [PMID: 36823754 PMCID: PMC10680149 DOI: 10.1002/cyto.a.24725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/02/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) are a useful model for biochemical assays, particularly for etiological studies. We describe here a method for measuring DNA repair capacity (DRC) in archival cryogenically preserved PBMCs. To model DRC, we measured γ-H2AX repair kinetics in thawed PBMCs after irradiation with 3 Gy gamma rays. Time-dependent fluorescently labeled γ-H2AX levels were measured at five time points from 1 to 20 h, yielding an estimate of global DRC repair kinetics as well as a measure of unrepaired double strand breaks at 20 h. While γ-H2AX levels are traditionally measured by either microscopy or flow-cytometry, we developed a protocol for imaging flow cytometry (IFC) that combines the detailed information of microscopy with the statistical power of flow methods. The visual imaging component of the IFC allows for monitoring aspects such as cellular health and apoptosis as well as fluorescence localization of the γ-H2AX signal, which ensures the power and significance of this technique. Application of a machine-learning based image classification improved flow cytometry fluorescent measurements by identifying apoptotic cells unable to undergo DNA repair. We present here DRC repair parameters from 18 frozen archival PBMCs and 28 fresh blood samples collected from a demographically diverse cohort of women measured in a high-throughput IFC format. This thaw method and assay can be used alone or in conjunction with other assays to measure etiological phenotypes in cryogenic biobanks of PBMCs.
Collapse
Affiliation(s)
- Bezalel Bacon
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
| | - Mary Beth Terry
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
- Department of Epidemiology, Mailman School of Public Health, Columbia University, Irving Medical Center, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| |
Collapse
|
7
|
Okunola HL, Shuryak I, Repin M, Wu HC, Santella RM, Terry MB, Turner HC, Brenner DJ. Improved prediction of breast cancer risk based on phenotypic DNA damage repair capacity in peripheral blood B cells. RESEARCH SQUARE 2023:rs.3.rs-3093360. [PMID: 37461559 PMCID: PMC10350237 DOI: 10.21203/rs.3.rs-3093360/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Standard Breast Cancer (BC) risk prediction models based only on epidemiologic factors generally have quite poor performance, and there have been a number of risk scores proposed to improve them, such as AI-based mammographic information, polygenic risk scores and pathogenic variants. Even with these additions BC risk prediction performance is still at best moderate. In that decreased DNA repair capacity (DRC) is a major risk factor for development of cancer, we investigated the potential to improve BC risk prediction models by including a measured phenotypic DRC assay. Methods Using blood samples from the Breast Cancer Family Registry we assessed the performance of phenotypic markers of DRC in 46 matched pairs of individuals, one from each pair with BC (with blood drawn before BC diagnosis) and the other from controls matched by age and time since blood draw. We assessed DRC in thawed cryopreserved peripheral blood mononuclear cells (PBMCs) by measuring γ-H2AX yields (a marker for DNA double-strand breaks) at multiple times from 1 to 20 hrs after a radiation challenge. The studies were performed using surface markers to discriminate between different PBMC subtypes. Results The parameter F res , the residual damage signal in PBMC B cells at 20 hrs post challenge, was the strongest predictor of breast cancer with an AUC (Area Under receiver-operator Curve) of 0.89 [95% Confidence Interval: 0.84-0.93] and a BC status prediction accuracy of 0.80. To illustrate the combined use of a phenotypic predictor with standard BC predictors, we combined F res in B cells with age at blood draw, and found that the combination resulted in significantly greater BC predictive power (AUC of 0.97 [95% CI: 0.94-0.99]), an increase of 13 percentage points over age alone. Conclusions If replicated in larger studies, these results suggest that inclusion of a fingerstick-based phenotypic DRC blood test has the potential to markedly improve BC risk prediction.
Collapse
Affiliation(s)
| | | | | | - Hui-Chen Wu
- Columbia University Mailman School of Public Health
| | | | | | | | | |
Collapse
|
8
|
López-Riego M, Płódowska M, Lis-Zajęcka M, Jeziorska K, Tetela S, Węgierek-Ciuk A, Sobota D, Braziewicz J, Lundholm L, Lisowska H, Wojcik A. The DNA damage response to radiological imaging: from ROS and γH2AX foci induction to gene expression responses in vivo. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023:10.1007/s00411-023-01033-4. [PMID: 37335333 DOI: 10.1007/s00411-023-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
Candidate ionising radiation exposure biomarkers must be validated in humans exposed in vivo. Blood from patients undergoing positron emission tomography-computed tomography scan (PET-CT) and skeletal scintigraphy (scintigraphy) was drawn before (0 h) and after (2 h) the procedure for correlation analyses of the response of selected biomarkers with radiation dose and other available patient information. FDXR, CDKN1A, BBC3, GADD45A, XPC, and MDM2 expression was determined by qRT-PCR, DNA damage (γH2AX) by flow cytometry, and reactive oxygen species (ROS) levels by flow cytometry using the 2', 7'-dichlorofluorescein diacetate test in peripheral blood mononuclear cells (PBMC). For ROS experiments, 0- and 2-h samples were additionally exposed to UVA to determine whether diagnostic irradiation conditioned the response to further oxidative insult. With some exceptions, radiological imaging induced weak γH2AX foci, ROS and gene expression fold changes, the latter with good coherence across genes within a patient. Diagnostic imaging did not influence oxidative stress in PBMC successively exposed to UVA. Correlation analyses with patient characteristics led to low correlation coefficient values. γH2AX fold change, which correlated positively with gene expression, presented a weak positive correlation with injected activity, indicating a radiation-induced subtle increase in DNA damage and subsequent activation of the DNA damage response pathway. The exposure discrimination potential of these biomarkers in the absence of control samples as frequently demanded in radiological emergencies, was assessed using raw data. These results suggest that the variability of the response in heterogeneous populations might complicate identifying individuals exposed to low radiation doses.
Collapse
Affiliation(s)
- Milagrosa López-Riego
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Magdalena Płódowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Milena Lis-Zajęcka
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Kamila Jeziorska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Sylwia Tetela
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Aneta Węgierek-Ciuk
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Daniel Sobota
- Department of Medical Physics, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Janusz Braziewicz
- Department of Medical Physics, Institute of Biology, Jan Kochanowski University, Kielce, Poland
- Department of Nuclear Medicine With Positron Emission Tomography (PET) Unit, Holy Cross Cancer Centre, Kielce, Poland
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Halina Lisowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
9
|
López JS, Pujol-Canadell M, Puig P, Armengol G, Barquinero JF. Evaluation of γ-H2AX foci distribution among different peripheral blood mononucleated cell subtypes. Int J Radiat Biol 2023; 99:1550-1558. [PMID: 36862979 DOI: 10.1080/09553002.2023.2187480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/19/2023] [Indexed: 03/04/2023]
Abstract
INTRODUCTION The detection of γ-H2AX foci in peripheral blood mononucleated cells (PBMCs) has been incorporated as an early assay for biological dosimetry. However, overdispersion in the γ-H2AX foci distribution is generally reported. In a previous study from our group, it was suggested that overdispersion could be caused by the fact that when evaluating PBMCs, different cell subtypes are analyzed, and that these could differ in their radiosensitivity. This would cause a mixture of different frequencies that would result in the overdispersion observed. OBJECTIVES The objective of this study was to evaluate both the possible differences in the radiosensitivities of the different cell subtypes present in the PBMCs and to evaluate the distribution of γ-H2AX foci in each cell subtype. MATERIALS AND METHODS Peripheral blood samples from three healthy donors were obtained and total PBMCs, and CD3+, CD4+, CD8+, CD19+, and CD56+ cells were separated. Cells were irradiated with 1 and 2 Gy and incubated at 37 °C for 1, 2, 4, and 24 h. Sham-irradiated cells were also analyzed. γ-H2AX foci were detected after immunofluorescence staining and analyzed automatically using a Metafer Scanning System. For each condition, 250 nuclei were considered. RESULTS When the results from each donor were compared, no observable significant differences between donors were observed. When the different cell subtypes were compared, CD8+ cells showed the highest mean of γ-H2AX foci in all post-irradiation time points. The cell type that showed the lowest γ-H2AX foci frequency was CD56+. The frequencies observed in CD4+ and CD19+ cells fluctuated between CD8+ and CD56+ without any clear pattern. For all cell types evaluated, and at all post-irradiation times, overdispersion in γ-H2AX foci distribution was significant. Independent of the cell type evaluated the value of the variance was four times greater than that of the mean. CONCLUSION Although different PBMC subsets studied showed different radiation sensitivity, these differences did not explain the overdispersion observed in the γ-H2AX foci distribution after exposure to IR.
Collapse
Affiliation(s)
- Juan S López
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Mònica Pujol-Canadell
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Pedro Puig
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Centre de Recerca Matemàtica, Bellaterra, Catalonia, Spain
| | - Gemma Armengol
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Joan Francesc Barquinero
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
10
|
Royba E, Repin M, Balajee AS, Shuryak I, Pampou S, Karan C, Wang YF, Lemus OD, Obaid R, Deoli N, Wuu CS, Brenner DJ, Garty G. Validation of a High-Throughput Dicentric Chromosome Assay Using Complex Radiation Exposures. Radiat Res 2023; 199:1-16. [PMID: 35994701 PMCID: PMC9947868 DOI: 10.1667/rade-22-00007.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/24/2022] [Indexed: 01/12/2023]
Abstract
Validation of biodosimetry assays is routinely performed using primarily orthovoltage irradiators at a conventional dose rate of approximately 1 Gy/min. However, incidental/ accidental exposures caused by nuclear weapons can be more complex. The aim of this work was to simulate the DNA damage effects mimicking those caused by the detonation of a several kilotons improvised nuclear device (IND). For this, we modeled complex exposures to: 1. a mixed (photons + IND-neutrons) field and 2. different dose rates that may come from the blast, nuclear fallout, or ground deposition of radionuclides (ground shine). Additionally, we assessed whether myeloid cytokines affect the precision of radiation dose estimation by modulating the frequency of dicentric chromosomes. To mimic different exposure scenarios, several irradiation systems were used. In a mixed field study, human blood samples were exposed to a photon field enriched with neutrons (ranging from 10% to 37%) from a source that mimics Hiroshima's A-bomb's energy spectrum (0.2-9 MeV). Using statistical analysis, we assessed whether photons and neutrons act in an additive or synergistic way to form dicentrics. For the dose rates study, human blood was exposed to photons or electrons at dose rates ranging from low (where the dose was spread over 32 h) to extremely high (where the dose was delivered in a fraction of a microsecond). Potential effects of cytokine treatment on biodosimetry dose predictions were analyzed in irradiated blood subjected to Neupogen or Neulasta for 24 or 48 h at the concentration recommended to forestall manifestation of an acute radiation syndrome in bomb survivors. All measurements were performed using a robotic station, the Rapid Automated Biodosimetry Tool II, programmed to culture lymphocytes and score dicentrics in multiwell plates (the RABiT-II DCA). In agreement with classical concepts of radiation biology, the RABiT-II DCA calibration curves suggested that the frequency of dicentrics depends on the type of radiation and is modulated by changes in the dose rate. The resulting dose-response curves suggested an intermediate dicentric yields and additive effects of photons and IND-neutrons in the mixed field. At ultra-high dose rate (600 Gy/s), affected lymphocytes exhibited significantly fewer dicentrics (P < 0.004, t test). In contrast, we did not find the dose-response modification effects of radiomitigators on the yields of dicentrics (Bonferroni corrected P > 0.006, ANOVA test). This result suggests no bias in the dose predictions should be expected after emergency cytokine treatment initiated up to 48 h prior to blood collection for dicentric analysis.
Collapse
Affiliation(s)
- Ekaterina Royba
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Adayabalam S. Balajee
- Radiation Emergency Assistance Center/Training Site (REAC/TS), Cytogenetic Biodosimetry Laboratory (CBL), Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Sergey Pampou
- Columbia Genome Center High-Throughput Screening facility, Columbia University Irving Medical Center, New York, New York
| | - Charles Karan
- Columbia Genome Center High-Throughput Screening facility, Columbia University Irving Medical Center, New York, New York
| | - Yi-Fang Wang
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Olga Dona Lemus
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Razib Obaid
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
- Currently at Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, California
| | - Naresh Deoli
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
| | - Cheng-Shie Wuu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
| |
Collapse
|
11
|
Garty G, Obaid R, Deoli N, Royba E, Tan Y, Harken AD, Brenner DJ. Ultra-high dose rate FLASH irradiator at the radiological research accelerator facility. Sci Rep 2022; 12:22149. [PMID: 36550150 PMCID: PMC9780319 DOI: 10.1038/s41598-022-19211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
The Radiological Research Accelerator Facility has modified a decommissioned Varian Clinac to deliver ultra-high dose rates: operating in 9 MeV electron mode (FLASH mode), samples can be irradiated at a Source-Surface Distance (SSD) of 20 cm at average dose rates of up to 600 Gy/s (3.3 Gy per 0.13 µs pulse, 180 pulses per second). In this mode multiple pulses are required for most irradiations. By modulating pulse repetition rate and irradiating at SSD = 171 cm, dose rates below 1 Gy/min can be achieved, allowing comparison of FLASH and conventional irradiations with the same beam. Operating in 6 MV photon mode, with the conversion target removed (SuperFLASH mode), samples are irradiated at higher dose rates (0.2-150 Gy per 5 µs pulse, 360 pulses per second) and most irradiations can be performed with a single very high dose rate pulse. In both modes we have seen the expected inverse relation between dose rate and irradiated area, with the highest dose rates obtained for beams with a FWHM of about 2 cm and ± 10% uniformity over 1 cm diameter. As an example of operation of the ultra-high dose rate FLASH irradiator, we present dose rate dependence of dicentric chromosome yields.
Collapse
Affiliation(s)
- Guy Garty
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Box 21, Irvington, NY, 10533, USA.
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA.
| | - Razib Obaid
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Box 21, Irvington, NY, 10533, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Naresh Deoli
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Box 21, Irvington, NY, 10533, USA
| | - Ekaterina Royba
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Yuewen Tan
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Box 21, Irvington, NY, 10533, USA
| | - Andrew D Harken
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Box 21, Irvington, NY, 10533, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
12
|
Danforth JM, Provencher L, Goodarzi AA. Chromatin and the Cellular Response to Particle Radiation-Induced Oxidative and Clustered DNA Damage. Front Cell Dev Biol 2022; 10:910440. [PMID: 35912116 PMCID: PMC9326100 DOI: 10.3389/fcell.2022.910440] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Exposure to environmental ionizing radiation is prevalent, with greatest lifetime doses typically from high Linear Energy Transfer (high-LET) alpha particles via the radioactive decay of radon gas in indoor air. Particle radiation is highly genotoxic, inducing DNA damage including oxidative base lesions and DNA double strand breaks. Due to the ionization density of high-LET radiation, the consequent damage is highly clustered wherein ≥2 distinct DNA lesions occur within 1–2 helical turns of one another. These multiply-damaged sites are difficult for eukaryotic cells to resolve either quickly or accurately, resulting in the persistence of DNA damage and/or the accumulation of mutations at a greater rate per absorbed dose, relative to lower LET radiation types. The proximity of the same and different types of DNA lesions to one another is challenging for DNA repair processes, with diverse pathways often confounding or interplaying with one another in complex ways. In this context, understanding the state of the higher order chromatin compaction and arrangements is essential, as it influences the density of damage produced by high-LET radiation and regulates the recruitment and activity of DNA repair factors. This review will summarize the latest research exploring the processes by which clustered DNA damage sites are induced, detected, and repaired in the context of chromatin.
Collapse
|
13
|
Wanotayan R, Wongsanit S, Boonsirichai K, Sukapirom K, Buppaungkul S, Charoenphun P, Songprakhon P, Jangpatarapongsa K, Uttayarat P. Quantification of histone H2AX phosphorylation in white blood cells induced by ex vivo gamma irradiation of whole blood by both flow cytometry and foci counting as a dose estimation in rapid triage. PLoS One 2022; 17:e0265643. [PMID: 35320288 PMCID: PMC8942256 DOI: 10.1371/journal.pone.0265643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
A quick, reliable, and reproducible biological assay to distinguish individuals with possible life-threatening risk following radiological or nuclear incidents remains a quest in biodosimetry. In this paper, we examined the use of a γ-H2AX assay as an early dose estimation for rapid triage based on both flow cytometry and image analyses. In the experiment, whole blood from 11 donors was irradiated ex vivo inside a water phantom by gamma rays from Co-60 at 0.51 Gy/min. After the lysis of red blood cells, the white blood cells were collected for immunofluorescence labeling of γ-H2AX, CD45, and nuclear stained for signal collection and visualization. Analysis by flow cytometry showed that the relative γ-H2AX intensities of lymphocytes and granulocytes increased linearly with absorbed doses from 0 to 6 Gy with a large variation among individuals observed above 2 Gy. The relative γ-H2AX intensities of lymphocytes assessed by two different laboratories were highly correlated (ICC = 0.979). Using confocal microscopic images, γ-H2AX foci were observed to be discretely distributed inside the nuclei and to increase proportionally with doses from 0 to 2 Gy, whereas large plagues of merged foci appeared at 4 and 6 Gy, resulting in the saturation of foci counts above 4 Gy. The number of total foci per cell as well as the number of foci per plane were significantly different at 0 vs 1 and 2 vs 4 Gy doses (p < 0.01). Blind tests at 0.5 Gy and 1 Gy doses showed that dose estimation by flow cytometry had a mean absolute difference of less than 0.5 Gy from the actual value. In conclusion, while flow cytometry can provide a dose estimation with an uncertainty of 0.5 Gy at doses ≤ 1 Gy, foci counting can identify merged foci that are prominent at doses ≥ 4 Gy.
Collapse
Affiliation(s)
- Rujira Wanotayan
- Faculty of Medical Technology, Department of Radiological Technology, Mahidol University, Nakhon Pathom, Thailand
- * E-mail: , (PU); , (RW)
| | - Sarinya Wongsanit
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, Nakhon Nayok, Thailand
| | - Kanokporn Boonsirichai
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, Nakhon Nayok, Thailand
| | - Kasama Sukapirom
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Microparticle and Exosome in Diseases, Research Department, Bangkok, Thailand
| | - Sakchai Buppaungkul
- Secondary Standard Dosimetry Laboratory (SSDL), Bureau of Radiation and Medical Devices, Ministry of Public Health, Bangkok, Thailand
| | - Putthiporn Charoenphun
- Faculty of Medicine Ramathibodi Hospital, Division of Nuclear Medicine, Department of Diagnostic and Therapeutic Radiology, Mahidol University, Nakhon Pathom, Thailand
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Faculty of Medicine Siriraj Hospital, Research Department, Mahidol University, Bangkok, Thailand
| | - Kulachart Jangpatarapongsa
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Nakhon Pathom, Thailand
| | - Pimpon Uttayarat
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, Nakhon Nayok, Thailand
- * E-mail: , (PU); , (RW)
| |
Collapse
|
14
|
Shen X, Chen Y, Li C, Yang F, Wen Z, Zheng J, Zhou Z. Rapid and automatic detection of micronuclei in binucleated lymphocytes image. Sci Rep 2022; 12:3913. [PMID: 35273270 PMCID: PMC8913785 DOI: 10.1038/s41598-022-07936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Cytokinesis block micronucleus (CBMN) assay is a widely used radiation biological dose estimation method. However, the subjectivity and the time-consuming nature of manual detection limits CBMN for rapid standard assay. The CBMN analysis is combined with a convolutional neural network to create a software for rapid standard automated detection of micronuclei in Giemsa stained binucleated lymphocytes images in this study. Cell acquisition, adhesive cell mass segmentation, cell type identification, and micronucleus counting are the four steps of the software's analysis workflow. Even when the cytoplasm is hazy, several micronuclei are joined to each other, or micronuclei are attached to the nucleus, this algorithm can swiftly and efficiently detect binucleated cells and micronuclei in a verification of 2000 images. In a test of 20 slides, the software reached a detection rate of 99.4% of manual detection in terms of binucleated cells, with a false positive rate of 14.7%. In terms of micronuclei detection, the software reached a detection rate of 115.1% of manual detection, with a 26.2% false positive rate. Each image analysis takes roughly 0.3 s, which is an order of magnitude faster than manual detection.
Collapse
Affiliation(s)
- Xiang Shen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China
| | - Ying Chen
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Chaowen Li
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Fucheng Yang
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Zhanbo Wen
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Jinlin Zheng
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Zhenggan Zhou
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China.
| |
Collapse
|
15
|
Bhat V, Pellizzari S, Allan AL, Wong E, Lock M, Brackstone M, Lohmann AE, Cescon DW, Parsyan A. Radiotherapy and radiosensitization in breast cancer: Molecular targets and clinical applications. Crit Rev Oncol Hematol 2021; 169:103566. [PMID: 34890802 DOI: 10.1016/j.critrevonc.2021.103566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Relatively poor survival outcomes are observed in advanced or metastatic breast cancer, where local control of the primary or metastatic disease may be achieved by surgical resection, local ablative and radiation therapies. Radioresistance, poses a major challenge in achieving durable oncologic outcomes, mandating development of novel management strategies. Although multimodality approaches that combine radiotherapy with chemotherapy, or systemic agents, are utilized for radiosensitization and treatment of various malignancies, this approach has not yet found its clinical application in breast cancer. Some agents for breast cancer treatment can serve as radiosensitizers, creating an opportunity to enhance effects of radiation while providing systemic disease control. Hence, combination of radiotherapy with radiosensitizing agents have the potential to improve oncologic outcomes in advanced or metastatic breast cancer. This review discusses molecular targets for radiosensitization and novel systemic agents that have potential for clinical use as radiosensitizers in breast cancer.
Collapse
Affiliation(s)
- Vasudeva Bhat
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, N6A 3K7, Canada
| | - Sierra Pellizzari
- Department of Anatomy & Cell Biology, Western University, London, ON, N6A 3K7, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, N6A 3K7, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada
| | - Eugene Wong
- Department of Oncology, Western University, London, ON, N6A 4L6, Canada; Department of Physics and Astronomy, Western University, London, ON, N6A 3K7, Canada; Department of Medical Biophysics, Western University, London, N6A 5C1, Canada
| | - Michael Lock
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada
| | - Muriel Brackstone
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada; Department of Surgery, Western University, London, ON, N6A 3K7, Canada
| | - Ana Elisa Lohmann
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada
| | - David W Cescon
- Department of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Armen Parsyan
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, N6A 3K7, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada; Department of Surgery, Western University, London, ON, N6A 3K7, Canada.
| |
Collapse
|
16
|
Ben Kacem M, Benadjaoud MA, Dos Santos M, Buard V, Tarlet G, Le Guen B, François A, Guipaud O, Milliat F, Paget V. Variation of 4 MV X-ray dose rate in fractionated irradiation strongly impacts biological endothelial cell response in vitro. Int J Radiat Biol 2021; 98:50-59. [PMID: 34705615 DOI: 10.1080/09553002.2022.1998703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Even though X-ray beams are widely used in medical diagnosis or radiotherapy, the comparisons of their dose rates are scarce. We have recently demonstrated in vitro (clonogenic assay, cell viability, cell cycle, senescence) and in vivo (weight follow-up of animals and bordering epithelium staining of lesion), that for a single dose of irradiation, the relative biological effectiveness (RBE) deviates from 1 (up to twofold greater severe damage at the highest dose rate depending on the assay) when increasing the dose rate of high energy X-ray beams. MATERIAL AND METHODS To further investigate the impact of the dose rate on RBE, in this study, we performed in vitro fractionated irradiations by using the same two dose rates (0.63 and 2.5 Gy.min-1) of high-energy X-rays (both at 4 MV) on normal endothelial cells (HUVECs). We investigated the viability/mortality, characterized radiation-induced senescence by using flow cytometry and measured gene analysis deregulations on custom arrays. RESULTS The overall results enlighten that, in fractionated irradiations when varying the dose rate of high-energy X-rays, the RBE of photons deviates from 1 (up to 2.86 for viability/mortality experiments performed 21 days postirradiation). CONCLUSION These results strengthen the interest of multiparametric analysis approaches in providing an accurate evaluation of the outcomes of irradiated cells in support of clonogenic assays, especially when such assays are not feasible.
Collapse
Affiliation(s)
- Mariam Ben Kacem
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - Mohamed A Benadjaoud
- Department of RAdiobiology and regenerative MEDicine (SERAMED), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Morgane Dos Santos
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of Radiobiology of Accidental exposures (LRAcc), Fontenay-aux-Roses, France
| | - Valérie Buard
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - Georges Tarlet
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | | | - A François
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - O Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - F Milliat
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - Vincent Paget
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| |
Collapse
|
17
|
Qu M, Xu H, Li W, Chen J, Zhang Y, Xu B, Li Z, Liu T, Guo L, Xie J. Dynamically monitoring cellular γ-H2AX reveals the potential of carcinogenicity evaluation for genotoxic compounds. Arch Toxicol 2021; 95:3559-3573. [PMID: 34510228 DOI: 10.1007/s00204-021-03156-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Amongst all toxicological endpoints, carcinogenicity might pose the greatest concern. Genetic damage has been considered an important underlying mechanism for the carcinogenicity of chemical substances. The demand for in vitro genotoxic tests as alternative approaches is growing rapidly with the implementation of new regulations for compounds. However, currently available in vitro genotoxicity tests are often limited by relatively high false positive rates. Moreover, few studies have explored carcinogenicity potential by in vitro genotoxicity testing due to the shortage of suitable toxicological biomarkers to link gene damage with cancer risk. γ-H2AX is a recently acknowledged attractive endpoint (biomarker) for evaluating DNA damage and can simultaneously reflect the DNA damage response and repair of cells. We previously reported an ultrasensitive and reliable method, namely stable-isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS), for detecting cellular γ-H2AX and evaluating genotoxic chemicals. More importantly, our method can dynamically monitor the specific processes of genotoxic compounds affecting DNA damage and repair reflected by the amount of γ-H2AX. To clarify the possibility of using this method to assess the potential carcinogenicity of genotoxic chemicals, we applied it to a set of 69 model compounds recommended by the European Center for the Validation of Alternative Methods (ECVAM), with already-characterized genotoxic potential. Compared to conventional in vitro genotoxicity assays, including the Ames test, the γ-H2AX assay by MS has high accuracy (94-96%) due to high sensitivity and specificity (88% and 100%, respectively). The dynamic profiles of model compounds after exposure in HepG2 cells were explored, and a mathematical approach was employed to simulate and quantitatively model the DNA repair kinetics of genotoxic carcinogens (GCs) based on γ-H2AX time-effect curves up to 8 h. Two crucial parameters, i.e., k (rate of γ-H2AX decay) and t50 (time required for γ-H2AX from maximum decrease to half) estimated by the least squares method, were achieved. An open web server to help researchers calculate these two key parameters and profile simulated curves of the tested compound is available online ( http://ccb1.bmi.ac.cn:81/shiny-server/sample-apps/prediction1/ ). We detected a positive association between carcinogenic levels and k and t50 values of γ-H2AX in tested GCs, validating the potential of using this MS-based γ-H2AX in vitro assay to help preliminarily evaluate carcinogenicity and assess genotoxicity. This approach may be used alone or integrated into an existing battery of in vitro genetic toxicity tests.
Collapse
Affiliation(s)
- Minmin Qu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Wuju Li
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Zhi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Tao Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| |
Collapse
|
18
|
Rall-Scharpf M, Friedl TWP, Biechonski S, Denkinger M, Milyavsky M, Wiesmüller L. Sex-specific differences in DNA double-strand break repair of cycling human lymphocytes during aging. Aging (Albany NY) 2021; 13:21066-21089. [PMID: 34506302 PMCID: PMC8457596 DOI: 10.18632/aging.203519] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
The gender gap in life expectancy and cancer incidence suggests differences in the aging process between the sexes. Genomic instability has been recognized as a key factor in aging, but little is known about sex-specific differences. Therefore, we analyzed DNA double-strand break (DSB) repair in cycling human peripheral blood lymphocytes (PBL) from male and female donors of different age. Reporter-based DSB repair analyses revealed differential regulation of pathway usage in PBL from male and female donors with age: Non-homologous end joining (NHEJ) was inversely regulated in men and women; the activity of pathways requiring end processing and strand annealing steps such as microhomology-mediated end joining (MMEJ) declined with age in women but not in men. Screening candidate proteins identified the NHEJ protein KU70 as well as the end resection regulatory factors ATM and BLM showing reduced expression during aging in women. Consistently, the regulatory factor BLM contributed to the MMEJ proficiency in young but not in old women as demonstrated by knockdown analysis. In conclusion, we show that DSB repair is subject to changes upon aging and age-related changes in DSB repair are distinct in men and women.
Collapse
Affiliation(s)
| | - Thomas W P Friedl
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Shahar Biechonski
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Michael Denkinger
- Institute for Geriatric Research Unit, Agaplesion Bethesda Hospital, Ulm University, Ulm, Germany
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| |
Collapse
|
19
|
Gillyard T, Davis J. DNA double-strand break repair in cancer: A path to achieving precision medicine. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:111-137. [PMID: 34507781 DOI: 10.1016/bs.ircmb.2021.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The assessment of DNA damage can be a significant diagnostic for precision medicine. DNA double strand break (DSBs) pathways in cancer are the primary targets in a majority of anticancer therapies, yet the molecular vulnerabilities that underlie each tumor can vary widely making the application of precision medicine challenging. Identifying and understanding these interindividual vulnerabilities enables the design of targeted DSB inhibitors along with evolving precision medicine approaches to selectively kill cancer cells with minimal side effects. A major challenge however, is defining exactly how to target unique differences in DSB repair pathway mechanisms. This review comprises a brief overview of the DSB repair mechanisms in cancer and includes results obtained with revolutionary advances such as CRISPR/Cas9 and machine learning/artificial intelligence, which are rapidly advancing not only our understanding of determinants of DSB repair choice, but also how it can be used to advance precision medicine. Scientific innovation in the methods used to diagnose and treat cancer is converging with advances in basic science and translational research. This revolution will continue to be a critical driver of precision medicine that will enable precise targeting of unique individual mechanisms. This review aims to lay the foundation for achieving this goal.
Collapse
Affiliation(s)
- Taneisha Gillyard
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
20
|
Habibi M, Karyofyllis PK, Nikolakopoulou A, Papagiannis P, Karaiskos P, Georgakilas AG, Hatzi VI, Malakos I, Kollaros N, Mastorakou I, Voudris V, Terzoudi GI. The Use of Genotoxicity Endpoints as Biomarkers of Low Dose Radiation Exposure in Interventional Cardiology. Front Public Health 2021; 9:701878. [PMID: 34368064 PMCID: PMC8342993 DOI: 10.3389/fpubh.2021.701878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
The effect of the reportedly low ionizing radiation doses, such as those very often delivered to patients in interventional cardiology, remains ambiguous. As interventional cardiac procedures may have a significant impact on total collective effective dose, there are radiation protection concerns for patients and physicians regarding potential late health effects. Given that very low doses (<100 mSv) are expected to be delivered during these procedures, the purpose of this study was to assess the potency and suitability of current genotoxicity biomarkers to detect and quantitate biological effects essential for risk estimation in interventional cardiology. Specifically, the biomarkers γ-H2AX foci, dicentric chromosomes, and micronuclei, which underpin radiation-induced DNA damage, were studied in blood lymphocytes of 25 adult patients before and after interventional cardiac procedures. Even though the mean values of all patients as a group for all three endpoints tested show increased yields relative to baseline following medical exposure, our results demonstrate that only the γ-H2AX biomarker enables detection of statistically significant differences at the individual level (p < 0.001) for almost all patients (91%). Furthermore, 24 h after exposure, residual γ-H2AX foci were still detectable in irradiated lymphocytes. Their decline was found to vary significantly among the individuals and the repair kinetics of γ-H2AX foci was found to range from 25 to 95.6% of their maximum values obtained.
Collapse
Affiliation(s)
- Martha Habibi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece.,Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Aggeliki Nikolakopoulou
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece.,Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Papagiannis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Vasiliki I Hatzi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Ioannis Malakos
- Division of Interventional Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | | | - Irene Mastorakou
- Imaging Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Vassilis Voudris
- Division of Interventional Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Georgia I Terzoudi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
21
|
Xu Y, Zuo W, Wang X, Zhang Q, Gan X, Tan N, Jia W, Liu J, Li Z, Zhou B, Zhao D, Xie Z, Tan Y, Zheng S, Liu C, Li H, Chen Z, Yang X, Huang Z. Deciphering the effects of PYCR1 on cell function and its associated mechanism in hepatocellular carcinoma. Int J Biol Sci 2021; 17:2223-2239. [PMID: 34239351 PMCID: PMC8241733 DOI: 10.7150/ijbs.58026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/16/2021] [Indexed: 12/28/2022] Open
Abstract
Overexpression of pyrroline-5-carboxylate reductase 1 (PYCR1) has been associated with the development of certain cancers; however, no studies have specifically examined the role of PYCR1 in hepatocellular carcinoma (HCC). Based on The Cancer Genome Atlas expression array and meta-analysis conducted using the Gene Expression Omnibus database, we determined that PYCR1 was upregulated in HCC compared to adjacent nontumor tissues (P < 0.05). These data were verified using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry analysis. Additionally, patients with low PYCR1 expression showed a higher overall survival rate than patients with high PYCR1 expression. Furthermore, PYCR1 overexpression was associated with the female sex, higher levels of alpha-fetoprotein, advanced clinical stages (III and IV), and a younger age (< 45 years old). Silencing of PYCR1 inhibited cell proliferation, invasive migration, epithelial-mesenchymal transition, and metastatic properties in HCC in vitro and in vivo. Using RNA sequencing and bioinformatics tools for data-dependent network analysis, we found binary relationships among PYCR1 and its interacting proteins in defined pathway modules. These findings indicated that PYCR1 played a multifunctional role in coordinating a variety of biological pathways involved in cell communication, cell proliferation and growth, cell migration, a mitogen-activated protein kinase cascade, ion binding, etc. The structural characteristics of key pathway components and PYCR1-interacting proteins were evaluated by molecular docking, and hotspot analysis showed that better affinities between PYCR1 and its interacting molecules were associated with the presence of arginine in the binding site. Finally, a candidate regulatory microRNA, miR-2355-5p, for PYCR1 mRNA was discovered in HCC. Overall, our study suggests that PYCR1 plays a vital role in HCC pathogenesis and may potentially serve as a molecular target for HCC treatment.
Collapse
Affiliation(s)
- Yanzhen Xu
- Department of pathology, Affiliated hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Department of Pathology, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 310000, Hangzhou, China
| | - Wenpu Zuo
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Medical Scientific Research Center, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xiao Wang
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qinle Zhang
- Genetic and metabolic central laboratory, the maternal and children's health hospital of Guangxi, Nanning, 530000, Guangxi, China
| | - Xiang Gan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Ning Tan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Wenxian Jia
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Jiayi Liu
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhouquan Li
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Bo Zhou
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Dong Zhao
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhibin Xie
- Department of Urology, the Five Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Yanjun Tan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Shengfeng Zheng
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Chengwu Liu
- Department of Pathophysiology, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Hongtao Li
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhijian Chen
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xiaoli Yang
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhaoquan Huang
- Department of pathology, Affiliated hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| |
Collapse
|
22
|
Broustas CG, Duval AJ, Amundson SA. Impact of aging on gene expression response to x-ray irradiation using mouse blood. Sci Rep 2021; 11:10177. [PMID: 33986387 PMCID: PMC8119453 DOI: 10.1038/s41598-021-89682-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
As a radiation biodosimetry tool, gene expression profiling is being developed using mouse and human peripheral blood models. The impact of dose, dose-rate, and radiation quality has been studied with the goal of predicting radiological tissue injury. In this study, we determined the impact of aging on the gene expression profile of blood from mice exposed to radiation. Young (2 mo) and old (21 mo) male mice were irradiated with 4 Gy x-rays, total RNA was isolated from whole blood 24 h later, and subjected to whole genome microarray analysis. Pathway analysis of differentially expressed genes revealed young mice responded to x-ray exposure by significantly upregulating pathways involved in apoptosis and phagocytosis, a process that eliminates apoptotic cells and preserves tissue homeostasis. In contrast, the functional annotation of senescence was overrepresented among differentially expressed genes from irradiated old mice without enrichment of phagocytosis pathways. Pathways associated with hematologic malignancies were enriched in irradiated old mice compared with irradiated young mice. The fibroblast growth factor signaling pathway was underrepresented in older mice under basal conditions. Similarly, brain-related functions were underrepresented in unirradiated old mice. Thus, age-dependent gene expression differences should be considered when developing gene signatures for use in radiation biodosimetry.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W. 168th St., New York, NY, 10032, USA.
| | - Axel J Duval
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| |
Collapse
|
23
|
Bensimon Etzol J, Rizzi Y, Gateau T, Guersen J, Pereira B, Gouzou E, Lanaret M, Grand O, Bettencourt C, Bouvet S, Ugolin N, Chevillard S, Boyer L. Biodosimetry in interventional radiology: cutaneous-based immunoassay for anticipating risks of dermatitis. Eur Radiol 2021; 31:7476-7483. [PMID: 33791818 DOI: 10.1007/s00330-021-07885-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Interventional radiology procedures expose individuals to ionizing radiation. However, existing dosimetry methods do not provide the dose effectively absorbed to the skin, and do not consider the patient's individual response to irradiation. To resolve this lack of dosimetry data, we developed a new external irradiation biodosimetry device, DosiKit, based on the dose-dependent relationship between irradiation dose and radiation-induced H2AX protein phosphorylation in hair follicles. This new biological method was tested in Clermont-Ferrand University Hospital to evaluate the assay performances in the medical field and to estimate DosiKit sensitivity threshold. METHODS DosiKit was tested over 95 patients treated with neuroradiological interventions. For each intervention, lithium fluoride thermoluminescent dosimeters (TLD) were used to measure total dose received at each hair collection point (lateral and occipital skull areas), and conventional indirect dosimetry parameters were collected with a Dosimetry Archiving and Communication System (DACS). RESULTS Quantitative measurement of radiation-induced H2AX protein phosphorylation was performed on 174 hair samples before and after the radiation exposure and 105 samples showed a notable induction of gammaH2AX protein after the radiological procedure. According to a statistical analysis, the threshold sensitivity of the DosiKit immunoassay was estimated around 700 mGy. CONCLUSIONS With this study, we showed that DosiKit provides a useful way for mapping the actually absorbed doses, allowing to identify patients overexposed in interventional radiology procedures, and thus for anticipating risk of developing dermatitis. KEY POINTS • DosiKit is a new external irradiation biodosimetry device, based on the dose-dependent relationship between irradiation dose and radiation-induced H2AX protein phosphorylation in hair follicles. • DosiKit was tested over 95 patients treated with neuroradiological interventions. • The threshold sensitivity of the DosiKit immunoassay was estimated around 700 mGy and DosiKit provides a useful way for mapping the actually absorbed doses.
Collapse
Affiliation(s)
| | - Yassine Rizzi
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Theo Gateau
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Joel Guersen
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Bruno Pereira
- Unité de Biostatistiques (DRCI), CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Emmanuel Gouzou
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Mathieu Lanaret
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Oceane Grand
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | | | | | - Nicolas Ugolin
- Commissariat à l'Energie Atomique (CEA), Fontenay-aux-Roses, France
| | | | - Louis Boyer
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France.,TGI Institut Pascal UMR 6602 CNRS UCA SIGMA, Clermont-Ferrand, France
| |
Collapse
|
24
|
Owiti NA, Nagel ZD, Engelward BP. Fluorescence Sheds Light on DNA Damage, DNA Repair, and Mutations. Trends Cancer 2020; 7:240-248. [PMID: 33203608 DOI: 10.1016/j.trecan.2020.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022]
Abstract
DNA damage can lead to carcinogenic mutations and toxicity that promotes diseases. Therefore, having rapid assays to quantify DNA damage, DNA repair, mutations, and cytotoxicity is broadly relevant to health. For example, DNA damage assays can be used to screen chemicals for genotoxicity, and knowledge about DNA repair capacity has applications in precision prevention and in personalized medicine. Furthermore, knowledge of mutation frequency has predictive power for downstream cancer, and assays for cytotoxicity can predict deleterious health effects. Tests for all of these purposes have been rendered faster and more effective via adoption of fluorescent readouts. Here, we provide an overview of established and emerging cell-based assays that exploit fluorescence for studies of DNA damage and its consequences.
Collapse
Affiliation(s)
- Norah A Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zachary D Nagel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
25
|
Semochkina YP, Moskaleva EY, Malashenkova IK, Krynskiy SA, Hailov NA, Ogurtsov DP, Ponomareva EV, Gavrilova SI. [Effectiveness of the DNA double-strand breaks repair system in lymphocytes of patients with cognitive impairments and healthy volunteers]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:345-352. [PMID: 32893818 DOI: 10.18097/pbmc20206604345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The individual differences in the efficiency of DNA DSB repair were estimated by the level of residual γH2AX foci after γ-irradiation at a dose of 2 Gy, in lymphocytes of patients with amnestic mild cognitive impairment (AMCI) and Alzheimer's disease (AD) and of healthy volunteers. Lymphocytes were isolated from the peripheral blood of the examined patients and were frozen in a medium for freezing cells. Before the study, the lymphocytes were thawed, suspended in RPMI 1640 culture medium supplemented with 10% inactivated fetal bovine serum, and half of the cells were γ-irradiated at 4°C from a 60Co source on a GUT-200M facility at a dose of 2 Gy (a dose rate of 0.75 Gy/min). Control and irradiated lymphocytes were cultured for 24 h, collected, fixed, and stored until the study of the number of spontaneous and residual foci of γH2AX using fluorescent microscopy after staining with fluorescent labeled antibodies. In lymphocytes of patients with AMCI and AD a higher number of residual γH2AX foci in lymphocytes and the higher number of lymphocytes with foci were found compared with healthy volunteers. This indicates a decrease in the ability to repair DNA DSB in these patients. Indicators of cellular immunity and the concentration of TNF-α in the blood serum in the group of examined patients were normal. In the group of patients with the cognitive impairments (AMCI+AD), a correlation was found between the number of residual foci of γH2AX and the number of CD3+CD4+ lymphocytes and the concentration of proinflammatory cytokine TNF-α in the blood serum. This suggests the development of stronger neuroinflammation in patients with reduced ability to repair DNA DSB in this pathology.
Collapse
|
26
|
Minea RO, Duc TC, Swenson SD, Cho HY, Huang M, Hartman H, Hofman FM, Schönthal AH, Chen TC. Developing a clinically relevant radiosensitizer for temozolomide-resistant gliomas. PLoS One 2020; 15:e0238238. [PMID: 32881880 PMCID: PMC7470340 DOI: 10.1371/journal.pone.0238238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/12/2020] [Indexed: 12/25/2022] Open
Abstract
The prognosis for patients with glioblastoma (GB) remains grim. Concurrent temozolomide (TMZ) radiation—the cornerstone of glioma control—extends the overall median survival of GB patients by only a few months over radiotherapy alone. While these survival gains could be partly attributed to radiosensitization, this benefit is greatly minimized in tumors expressing O6-methylguanine DNA methyltransferase (MGMT), which specifically reverses O6-methylguanine lesions. Theoretically, non-O6-methylguanine lesions (i.e., the N-methylpurine adducts), which represent up to 90% of TMZ-generated DNA adducts, could also contribute to radiosensitization. Unfortunately, at concentrations attainable in clinical practice, the alkylation capacity of TMZ cannot overwhelm the repair of N-methylpurine adducts to efficiently exploit these lesions. The current therapeutic application of TMZ therefore faces two main obstacles: (i) the stochastic presence of MGMT and (ii) a blunted radiosensitization potential at physiologic concentrations. To circumvent these limitations, we are developing a novel molecule called NEO212—a derivatization of TMZ generated by coupling TMZ to perillyl alcohol. Based on gas chromatography/mass spectrometry and high-performance liquid chromatography analyses, we determined that NEO212 had greater tumor cell uptake than TMZ. In mouse models, NEO212 was more efficient than TMZ at crossing the blood-brain barrier, preferentially accumulating in tumoral over normal brain tissue. Moreover, in vitro analyses with GB cell lines, including TMZ-resistant isogenic variants, revealed more potent cytotoxic and radiosensitizing activities for NEO212 at physiologic concentrations. Mechanistically, these advantages of NEO212 over TMZ could be attributed to its enhanced tumor uptake presumably leading to more extensive DNA alkylation at equivalent dosages which, ultimately, allows for N-methylpurine lesions to be better exploited for radiosensitization. This effect cannot be achieved with TMZ at clinically relevant concentrations and is independent of MGMT. Our findings establish NEO212 as a superior radiosensitizer and a potentially better alternative to TMZ for newly diagnosed GB patients, irrespective of their MGMT status.
Collapse
Affiliation(s)
- Radu O. Minea
- Department of Neurological Surgery, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, California (CA), United States of America
| | - Tuan Cao Duc
- Haiphong University School of Pharmacy, Haiphong, Vietnam
| | - Stephen D. Swenson
- Department of Neurological Surgery, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, California (CA), United States of America
| | - Hee-Yeon Cho
- Department of Neurological Surgery, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, California (CA), United States of America
| | - Mickey Huang
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States of America
| | - Hannah Hartman
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Florence M. Hofman
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Axel H. Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Thomas C. Chen
- Department of Neurological Surgery, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, California (CA), United States of America
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
27
|
Anglada T, Repullés J, Espinal A, LaBarge MA, Stampfer MR, Genescà A, Martín M. Delayed γH2AX foci disappearance in mammary epithelial cells from aged women reveals an age-associated DNA repair defect. Aging (Albany NY) 2020; 11:1510-1523. [PMID: 30875333 PMCID: PMC6428106 DOI: 10.18632/aging.101849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/09/2019] [Indexed: 01/15/2023]
Abstract
Aging is a degenerative process in which genome instability plays a crucial role. To gain insight into the link between organismal aging and DNA repair capacity, we analyzed DNA double-strand break (DSB) resolution efficiency in human mammary epithelial cells from 12 healthy donors of young and old ages. The frequency of DSBs was measured by quantifying the number of γH2AX foci before and after 1Gy of γ-rays and it was higher in cells from aged donors (ADs) at all times analyzed. At 24 hours after irradiation, ADs retained a significantly higher frequency of residual DSBs than young donors (YDs), which had already reached values close to basal levels. The kinetics of DSB induction and disappearance showed that cells from ADs and YDs repair DSBs with similar speed, although analysis of early times after irradiation indicate that a repair defect may lie within the firing of the DNA repair machinery in AD cells. Indeed, using a mathematical model we calculated a constant factor of delay affecting aged human epithelial cells repair kinetics. This defect manifests with the accumulation of DSBs that might eventually undergo illegitimate repair, thus posing a relevant threat to the maintenance of genome integrity in older individuals.
Collapse
Affiliation(s)
- Teresa Anglada
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Joan Repullés
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Microscopy Platform, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, 08041, Spain
| | - Anna Espinal
- Servei d'Estadística Aplicada, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mark A LaBarge
- Department of Population Sciences, and Center for Cancer and Aging, Beckman Research Institute at City of Hope, Duarte, CA, 91010, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Martha R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Genescà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marta Martín
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
28
|
Lai Y, Tsai MY, Tian Z, Qin N, Yan C, Hung SH, Chi Y, Jia X. A new open-source GPU-based microscopic Monte Carlo simulation tool for the calculations of DNA damages caused by ionizing radiation - Part II: sensitivity and uncertainty analysis. Med Phys 2020; 47:1971-1982. [PMID: 31975390 DOI: 10.1002/mp.14036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Calculations of deoxyribonucleic acid (DNA) damages involve many parameters in the computation process. As these parameters are often subject to uncertainties, it is of central importance to comprehensively quantify their impacts on DNA single-strand break (SSB) and double-strand break (DSB) yields. This has been a challenging task due to the required large number of simulations and the relatively low computational efficiency using CPU-based MC packages. In this study, we present comprehensive evaluations on sensitivities and uncertainties of DNA SSB and DSB yields on 12 parameters using our GPU-based MC tool, gMicroMC. METHODS We sampled one electron at a time in a water sphere containing a human lymphocyte nucleus and transport the electrons and generated radicals until 2 Gy dose was accumulated in the nucleus. We computed DNA damages caused by electron energy deposition events in the physical stage and the hydroxyl radicals at the end of the chemical stage. We repeated the computations by varying 12 parameters: (a) physics cross section, (b) cutoff energy for electron transport, (c)-(e) three branching ratios of hydroxyl radicals in the de-excitation of excited water molecules, (f) temporal length of the chemical stage, (g)-(h) reaction radii for direct and indirect damages, (i) threshold energy defining the threshold damage model to generate a physics damage, (j)-(k) minimum and maximum energy values defining the linear-probability damage model to generate a physics damage, and (l) probability to generate a damage by a radical. We quantified sensitivity of SSB and DSB yields with respect to these parameters for cases with 1.0 and 4.5 keV electrons. We further estimated uncertainty of SSB and DSB yields caused by uncertainties of these parameters. RESULTS Using a threshold of 10% uncertainty as a criterion, threshold energy in the threshold damage model, maximum energy in the linear-probability damage model, and probability for a radical to generate a damage were found to cause large uncertainties in both SSB and DSB yields. The scaling factor of the cross section, cutoff energy, physics reaction radius, and minimum energy in the linear-probability damage model were found to generate large uncertainties in DSB yields. CONCLUSIONS We identified parameters that can generate large uncertainties in the calculations of SSB and DSB yields. Our study could serve as a guidance to reduce uncertainties of parameters and hence uncertainties of the simulation results.
Collapse
Affiliation(s)
- Youfang Lai
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA.,Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Min-Yu Tsai
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA.,Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Zhen Tian
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| | - Nan Qin
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| | - Congchong Yan
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| | - Shih-Hao Hung
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Yujie Chi
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Xun Jia
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| |
Collapse
|
29
|
The Impact of Dose Rate on DNA Double-Strand Break Formation and Repair in Human Lymphocytes Exposed to Fast Neutron Irradiation. Int J Mol Sci 2019; 20:ijms20215350. [PMID: 31661782 PMCID: PMC6862539 DOI: 10.3390/ijms20215350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of information on how biological systems respond to low-dose and low dose-rate exposures makes it difficult to accurately assess the carcinogenic risks. This is of critical importance to space radiation, which remains a serious concern for long-term manned space exploration. In this study, the γ-H2AX foci assay was used to follow DNA double-strand break (DSB) induction and repair following exposure to neutron irradiation, which is produced as secondary radiation in the space environment. Human lymphocytes were exposed to high dose-rate (HDR: 0.400 Gy/min) and low dose-rate (LDR: 0.015 Gy/min) p(66)/Be(40) neutrons. DNA DSB induction was investigated 30 min post exposure to neutron doses ranging from 0.125 to 2 Gy. Repair kinetics was studied at different time points after a 1 Gy neutron dose. Our results indicated that γ-H2AX foci formation was 40% higher at HDR exposure compared to LDR exposure. The maximum γ-H2AX foci levels decreased gradually to 1.65 ± 0.64 foci/cell (LDR) and 1.29 ± 0.45 (HDR) at 24 h postirradiation, remaining significantly higher than background levels. This illustrates a significant effect of dose rate on neutron-induced DNA damage. While no significant difference was observed in residual DNA damage after 24 h, the DSB repair half-life of LDR exposure was slower than that of HDR exposure. The results give a first indication that the dose rate should be taken into account for cancer risk estimations related to neutrons.
Collapse
|
30
|
Iriki H, Kawata T, Muramoto T. Generation of deletions and precise point mutations in Dictyostelium discoideum using the CRISPR nickase. PLoS One 2019; 14:e0224128. [PMID: 31622451 PMCID: PMC6797129 DOI: 10.1371/journal.pone.0224128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022] Open
Abstract
The CRISPR/Cas9 system enables targeted genome modifications across a range of eukaryotes. Although we have reported that transient introduction of all-in-one vectors that express both Cas9 and sgRNAs can efficiently induce multiple gene knockouts in Dictyostelium discoideum, concerns remain about off-target effects and false-positive amplification during mutation detection via PCR. To minimise these effects, we modified the system to permit gene deletions of greater than 1 kb via use of paired sgRNAs and Cas9 nickase. An all-in-one vector expressing the Cas9 nickase and sgRNAs was transiently introduced into D. discoideum, and the resulting mutants showed long deletions with a relatively high efficiency of 10-30%. By further improving the vector, a new dual sgRNA expression vector was also constructed to allow simultaneous insertion of two sgRNAs via one-step cloning. By applying this system, precise point mutations and genomic deletions were generated in the target locus via simultaneous introduction of the vector and a single-stranded oligonucleotide template without integrating a drug resistance cassette. These systems enable simple and straightforward genome editing that requires high specificity, and they can serve as an alternative to the conventional homologous recombination-based gene disruption method in D. discoideum.
Collapse
Affiliation(s)
- Hoshie Iriki
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
31
|
Ricoul M, Gnana Sekaran TS, Brochard P, Herate C, Sabatier L. γ-H2AX Foci Persistence at Chromosome Break Suggests Slow and Faithful Repair Phases Restoring Chromosome Integrity. Cancers (Basel) 2019; 11:cancers11091397. [PMID: 31546867 PMCID: PMC6770925 DOI: 10.3390/cancers11091397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Many toxic agents can cause DNA double strand breaks (DSBs), which are in most cases quickly repaired by the cellular machinery. Using ionising radiation, we explored the kinetics of DNA lesion signaling and structural chromosome aberration formation at the intra- and inter-chromosomal level. Using a novel approach, the classic Premature Chromosome Condensation (PCC) was combined with γ-H2AX immunofluorescence staining in order to unravel the kinetics of DNA damage signalisation and chromosome repair. We identified an early mechanism of DNA DSB joining that occurs within the first three hours post-irradiation, when dicentric chromosomes and chromosome exchanges are formed. The slower and significant decrease of ”deleted chromosomes” and 1 acentric telomere fragments observed until 24 h post-irradiation, leads to the conclusion that a second and error-free repair mechanism occurs. In parallel, we revealed remaining signalling of γ-H2AX foci at the site of chromosome fusion long after the chromosome rearrangement formation. Moreover there is important signalling of foci on the site of telomere and sub-telomere sequences suggesting either a different function of γ-H2AX signalling in these regions or an extreme sensibility of the telomere sequences to DNA damage that remains unrepaired 24 h post-irradiation. In conclusion, chromosome repair happens in two steps, including a last and hardly detectable one because of restoration of the chromosome integrity.
Collapse
Affiliation(s)
- Michelle Ricoul
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Tamizh Selvan Gnana Sekaran
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Patricia Brochard
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Cecile Herate
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Laure Sabatier
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| |
Collapse
|
32
|
Lee Y, Wang Q, Shuryak I, Brenner DJ, Turner HC. Development of a high-throughput γ-H2AX assay based on imaging flow cytometry. Radiat Oncol 2019; 14:150. [PMID: 31438980 PMCID: PMC6704696 DOI: 10.1186/s13014-019-1344-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022] Open
Abstract
Background Measurement of γ-H2AX foci levels in cells provides a sensitive and reliable method for quantitation of the radiation-induced DNA damage response. The objective of the present study was to develop a rapid, high-throughput γ-H2AX assay based on imaging flow cytometry (IFC) using the ImageStream®X Mk II (ISX) platform to evaluate DNA double strand break (DSB) repair kinetics in human peripheral blood cells after exposure to ionizing irradiation. Methods The γ-H2AX protocol was developed and optimized for small volumes (100 μL) of human blood in Matrix™ 96-tube format. Blood cell lymphocytes were identified and captured by ISX INSPIRE™ software and analyzed by Data Exploration and Analysis Software. Results Dose- and time-dependent γ-H2AX levels corresponding to radiation exposure were measured at various time points over 24 h using the IFC system. γ-H2AX fluorescence intensity at 1 h after exposure, increased linearly with increasing radiation dose (R2 = 0.98) for the four human donors tested, whereas the dose response for the mean number of γ-H2AX foci/cell was not as robust (R2 = 0.81). Radiation-induced γ-H2AX levels rapidly increased within 30 min and reached a maximum by ~ 1 h, after which time there was fast decline by 6 h, followed by a much slower rate of disappearance up to 24 h. A mathematical approach for quantifying DNA repair kinetics using the rate of γ-H2AX decay (decay constant, Kdec), and yield of residual unrepaired breaks (Fres) demonstrated differences in individual repair capacity between the healthy donors. Conclusions The results indicate that the IFC-based γ-H2AX protocol may provide a practical and high-throughput platform for measurements of individual global DNA DSB repair capacity which can facilitate precision medicine by predicting individual radiosensitivity and risk of developing adverse effects related to radiotherapy treatment. Electronic supplementary material The online version of this article (10.1186/s13014-019-1344-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA. .,Present Address: Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.
| | - Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| |
Collapse
|
33
|
Moreno-Villanueva M, Kramer A, Hammes T, Venegas-Carro M, Thumm P, Bürkle A, Gruber M. Influence of Acute Exercise on DNA Repair and PARP Activity before and after Irradiation in Lymphocytes from Trained and Untrained Individuals. Int J Mol Sci 2019; 20:E2999. [PMID: 31248182 PMCID: PMC6628277 DOI: 10.3390/ijms20122999] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023] Open
Abstract
Several studies indicate that acute exercise induces DNA damage, whereas regular exercise increases DNA repair kinetics. Although the molecular mechanisms are not completely understood, the induction of endogenous reactive oxygen species (ROS) during acute exhaustive exercise due to metabolic processes might be responsible for the observed DNA damage, while an adaptive increase in antioxidant capacity due to regular physical activity seems to play an important protective role. However, the protective effect of physical activity on exogenously induced DNA damage in human immune cells has been poorly investigated. We asked the question whether individuals with a high aerobic capacity would have an enhanced response to radiation-induced DNA damage. Immune cells are highly sensitive to radiation and exercise affects lymphocyte dynamics and immune function. Therefore, we measured endogenous and radiation-induced DNA strand breaks and poly (ADP-ribose) polymerase-1 (PARP1) activity in peripheral blood mononuclear cells (PBMCs) from endurance-trained (maximum rate of oxygen consumption measured during incremental exercise V'O2max > 55 mL/min/kg) and untrained (V'O2max < 45 mL/min/kg) young healthy male volunteers before and after exhaustive exercise. Our results indicate that: (i) acute exercise induces DNA strand breaks in lymphocytes only in untrained individuals, (ii) following acute exercise, trained individuals repaired radiation-induced DNA strand breaks faster than untrained individuals, and (iii) trained subjects retained a higher level of radiation-induced PARP1 activity after acute exercise. The results of the present study indicate that increased aerobic fitness can protect immune cells against radiation-induced DNA strand breaks.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| | - Andreas Kramer
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| | - Tabea Hammes
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Maria Venegas-Carro
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| | - Patrick Thumm
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
34
|
Bakkenist CJ, Czambel RK, Lin Y, Yates NA, Zeng X, Shogan J, Schmitz JC. Quantitative analysis of ATM phosphorylation in lymphocytes. DNA Repair (Amst) 2019; 80:1-7. [PMID: 31176958 DOI: 10.1016/j.dnarep.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 11/18/2022]
Abstract
Since many anticancer therapies target DNA and DNA damage response pathways, biomarkers of DNA damage endpoints may prove valuable in basic and clinical cancer research. Ataxia telangiectasia-mutated (ATM) kinase is the principal regulator of cellular responses to DNA double-strand breaks (DSBs). In humans, ATM autophosphorylation at serine 1981 (p-S1981) is an immediate molecular response to nascent DSBs and ionizing radiation (IR). Here we describe the analytical characteristics and fit-for-purpose validation of a quantitative dual-labeled immunoblot that simultaneously measures p-S1981-ATM and pan-ATM in human peripheral blood mononuclear cells (PBMCs) following ex vivo exposure to 2 Gy IR, facilitating the calculation of %p-ATM. To validate our assay, we isolated PBMCs from 41 volunteers. We report that the median basal level of p-S1981-ATM and pan-ATM was 2.4 and 49.5 ng/107 PBMCs, respectively, resulting in %p-ATM of 4%. Following exposure of PBMCs to 2 Gy IR, p-S1981-ATM levels increased 12-fold to 29.8 ng/107 PBMCs resulting in %p-ATM of 63%. Interestingly, we show that PBMCs from women have a 2.6-fold greater median p-S1981-ATM level following IR exposure than men (44.4 versus 16.9 ng/107 cells; p < 0.01). This results in a significantly greater %p-ATM for women (68% versus 49%; p < 0.01). Our rigorous description of the analytical characteristics and reproducibility of phosphoprotein immunoblotting, along with our finding that the ATM DNA damage response is greater in women, has far reaching implications for biomedical researchers.
Collapse
Affiliation(s)
- Christopher J Bakkenist
- Department of Radiation Oncology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States
| | - R Kenneth Czambel
- Department of Medicine, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States
| | - Yan Lin
- Department of Biostatistics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States
| | - Nathan A Yates
- Department of Cell Biology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States; Biomedical Mass Spectrometry Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States
| | - Jeffery Shogan
- Department of Radiation Oncology, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States
| | - John C Schmitz
- Department of Medicine, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, United States.
| |
Collapse
|
35
|
Turner HC, Lee Y, Weber W, Melo D, Kowell A, Ghandhi SA, Amundson SA, Brenner DJ, Shuryak I. Effect of dose and dose rate on temporal γ-H2AX kinetics in mouse blood and spleen mononuclear cells in vivo following Cesium-137 administration. BMC Mol Cell Biol 2019; 20:13. [PMID: 31138230 PMCID: PMC6540459 DOI: 10.1186/s12860-019-0195-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 11/21/2022] Open
Abstract
Background Cesium-137 (137Cs) is one of the major and most clinically relevant radionuclides of concern in a radiological dispersal device, “dirty bomb” scenario as well as in nuclear accidents and detonations. In this exposure scenario, a significant amount of soluble radionuclide(s) may be dispersed into the atmosphere as a component of fallout. The objectives of the present study were to investigate the effect of protracted 137Cs radionuclide exposures on DNA damage in mouse blood and spleen mononuclear cells (MNCs) in vivo using the γ-H2AX biomarker, and to develop a mathematical formalism for these processes. Results C57BL/6 mice were injected with a range of 137CsCl activities (5.74, 6.66, 7.65 and 9.28 MBq) to achieve total-body committed doses of ~ 4 Gy at Days 3, 5, 7, and 14. Close to 50% of 137Cs was excreted by day 5, leading to a slower rate of decay for the remaining time of the study; 137Cs excretion kinetics were independent of activity level within the tested range, and the absorbed radiation dose was determined by injected activity and time after injection. Measurements of γ-H2AX fluorescence in blood and spleen MNCs at each time point were used to develop a new biodosimetric mathematical formalism to estimate injected activity based on γ-H2AX fluorescence and time after injection. The formalism performed reasonably well on blood data at 2–5 days after injection: Pearson and Spearman’s correlation coefficients between actual and predicted activity values were 0.857 (p = 0.00659) and 0.929 (p = 0.00223), respectively. Conclusions Despite the complicated nature of the studied biological system and the time-dependent changes in radiation dose and dose rate due to radionuclide excretion and other processes, we have used the γ-H2AX repair kinetics to develop a mathematical formalism, which can relatively accurately predict injected 137Cs activity 2–5 days after initial exposure. To determine the assay’s usefulness to predict retrospective absorbed dose for medical triage, further studies are required to validate the sensitivity and accuracy of the γ-H2AX response after protracted exposures. Electronic supplementary material The online version of this article (10.1186/s12860-019-0195-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Waylon Weber
- Lovelace Biomedical, Albuquerque, NM, 87108, USA
| | | | - Aimee Kowell
- Lovelace Biomedical, Albuquerque, NM, 87108, USA
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| |
Collapse
|
36
|
Wang Q, Rodrigues MA, Repin M, Pampou S, Beaton-Green LA, Perrier J, Garty G, Brenner DJ, Turner HC, Wilkins RC. Automated Triage Radiation Biodosimetry: Integrating Imaging Flow Cytometry with High-Throughput Robotics to Perform the Cytokinesis-Block Micronucleus Assay. Radiat Res 2019; 191:342-351. [PMID: 30779694 DOI: 10.1667/rr15243.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cytokinesis-block micronucleus (CBMN) assay has become a fully-validated and standardized method for radiation biodosimetry. The assay is typically performed using microscopy, which is labor intensive, time consuming and impractical after a large-scale radiological/nuclear event. Imaging flow cytometry (IFC), which combines the statistical power of traditional flow cytometry with the sensitivity and specificity of microscopy, has been recently used to perform the CBMN assay. Since this technology is capable of automated sample acquisition and multi-file analysis, we have integrated IFC into our Rapid Automated Biodosimetry Technology (RABiT-II). Assay development and optimization studies were designed to increase the yield of binucleated cells (BNCs), and improve data acquisition and analysis templates to increase the speed and accuracy of image analysis. Human peripheral blood samples were exposed ex vivo with up to 4 Gy of c rays at a dose rate of 0.73 Gy/min. After irradiation, samples were transferred to microtubes (total volume of 1 ml including blood and media) and organized into a standard 8 × 12 plate format. Sample processing methods were modified by increasing the blood-to-media ratio, adding hypotonic solution prior to cell fixation and optimizing nuclear DRAQ5 staining, leading to an increase of 81% in BNC yield. Modification of the imaging processing algorithms within IFC software also improved BNC and MN identification, and reduced the average time of image analysis by 78%. Finally, 50 ll of irradiated whole blood was cultured with 200 ll of media in 96-well plates. All sample processing steps were performed automatically using the RABiT-II cell: :explorer robotic system adopting the optimized IFC-CBMN assay protocol. The results presented here detail a novel, high-throughput RABiT-IFC CBMN assay that possesses the potential to increase capacity for triage biodosimetry during a large-scale radiological/nuclear event.
Collapse
Affiliation(s)
- Qi Wang
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | | | - Mikhail Repin
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - Sergey Pampou
- b Columbia Genome Center High-Throughput Screening Facility, Columbia University Medical Center, New York, New York 10032
| | - Lindsay A Beaton-Green
- d Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa K1A 1C1, Canada
| | - Jay Perrier
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - Guy Garty
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - David J Brenner
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - Helen C Turner
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - Ruth C Wilkins
- d Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa K1A 1C1, Canada
| |
Collapse
|
37
|
Noda A. Radiation-induced unrepairable DSBs: their role in the late effects of radiation and possible applications to biodosimetry. JOURNAL OF RADIATION RESEARCH 2018; 59:ii114-ii120. [PMID: 29281054 PMCID: PMC5941153 DOI: 10.1093/jrr/rrx074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/30/2017] [Indexed: 05/21/2023]
Abstract
Although the vast majority of DNA damage induced by radiation exposure disappears rapidly, some lesions remain in the cell nucleus in very small quantities for days to months. These lesions may cause a considerable threat to an organism and include certain types of DNA double-strand breaks (DSBs) called 'unrepairable DSBs'. Unrepairable DSBs are thought to cause persistent malfunctioning of cells and tissues or cause late effects of radiation, especially the induction of delayed cell death, mutation, senescence, or carcinogenesis. Moreover, the measurement of unrepairable DSBs could potentially be used for retrospective biodosimetry or for identifying individuals at greater risk for developing the adverse effects associated with radiotherapy or chemotherapy. This review summarizes the concept of unrepairable DSBs in the context of persistent repair foci formed at DSBs.
Collapse
Affiliation(s)
- Asao Noda
- Department of Molecular Bioscience, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-Ku, Hiroshima 732-0815, Japan
- Corresponding Author. Tel: 082-261-3131; Fax: +082-263-7279;
| |
Collapse
|
38
|
Zhang S, Chen H, Wang A, Liu Y, Hou H, Hu Q. Genotoxicity analysis of five particle matter toxicants from cigarette smoke based on γH2AX assay combined with Hill/Two-component model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:131-140. [PMID: 29329021 DOI: 10.1016/j.etap.2018.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
To investigate the genotoxic characteristics of typical toxicants in particle phase of cigarette smoke, including B[a]P, nicotine, tar, NNN and NNK. The in vitro γH2AX assay was used to detect the DNA double-strand breaks (DSBs) in A549 cells using high content screening (HCS). The results showed all toxicants had a dose/time-dependent effects on induction of γH2AX except for NNN and NNK. Based on dose-response of γH2AX and Hill model, the ability to induce DSBs was evaluated: NNN-acetate > B[a]P > NNK-acetate > tar > nicotine. Based on time-course of γH2AX and two-component model, the complex DNA damage was the main subtypes of DNA damage induced by these toxicants. Overall, all toxicants were genotoxic in A549 cells in a dose- or time- dependent manner except for NNN and NNK based on the γH2AX HCS assay. NNN-acetate had more potential to induce DSBs, which was followed by B[a]P, NNK-acetate, tar and nicotine.
Collapse
Affiliation(s)
- Sen Zhang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, PR China; University of Science and Technology of China, Hefei 230026, PR China; China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China
| | - An Wang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, PR China
| | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, PR China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China.
| |
Collapse
|
39
|
Nayak AA, Mumbrekar KD, Rao BSS. Pharmacological approach to increasing the retention of radiation-induced γ-H2AX foci using phosphatase inhibitors: significance in radiation biodosimetry. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:318-328. [PMID: 29447119 DOI: 10.1088/1361-6498/aaa97a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In a scenario of accidental mass radiation exposure transportation and analysis of samples may take some time, resulting in loss of biomarker information over this period. The present study aims to use phosphatase inhibitors for longer retention of focal signals to adopt γ-H2AX as a biodosimetric biomarker for the management of early triage. Peripheral blood lymphocytes isolated from healthy individuals were irradiated in vitro with x-rays and γ-H2AX foci were analysed using fluorescent microscopy and flow cytometric methods. Further, the effect of protein phosphatase 2A inhibitors such as calyculin A, fostriecin and okadiac acid on the retention of foci was studied. Fluorescent microscopy was found to be a more sensitive method than flow cytometry. Calyculin A showed significant retention of focal signals at 6 h with 1.5-fold increased retention compared to radiation alone; this may prove beneficial in early triage management because of a better dose approximation.
Collapse
Affiliation(s)
- Akshaykumar A Nayak
- Department of Radiation Biology and Toxicology, School of Life Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | | | | |
Collapse
|
40
|
Chaiswing L, Weiss HL, Jayswal RD, St. Clair DK, Kyprianou N. Profiles of Radioresistance Mechanisms in Prostate Cancer. Crit Rev Oncog 2018; 23:39-67. [PMID: 29953367 PMCID: PMC6231577 DOI: 10.1615/critrevoncog.2018025946] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Radiation therapy (RT) is commonly used for the treatment of localized prostate cancer (PCa). However, cancer cells often develop resistance to radiation through unknown mechanisms and pose an intractable challenge. Radiation resistance is highly unpredictable, rendering the treatment less effective in many patients and frequently causing metastasis and cancer recurrence. Understanding the molecular events that cause radioresistance in PCa will enable us to develop adjuvant treatments for enhancing the efficacy of RT. Radioresistant PCa depends on the elevated DNA repair system and the intracellular levels of reactive oxygen species (ROS) to proliferate, self-renew, and scavenge anti-cancer regimens, whereas the elevated heat shock protein 90 (HSP90) and the epithelial-mesenchymal transition (EMT) enable radioresistant PCa cells to metastasize after exposure to radiation. The up-regulation of the DNA repairing system, ROS, HSP90, and EMT effectors has been studied extensively, but not targeted by adjuvant therapy of radioresistant PCa. Here, we emphasize the effects of ionizing radiation and the mechanisms driving the emergence of radioresistant PCa. We also address the markers of radioresistance, the gene signatures for the predictive response to radiotherapy, and novel therapeutic platforms for targeting radioresistant PCa. This review provides significant insights into enhancing the current knowledge and the understanding toward optimization of these markers for the treatment of radioresistant PCa.
Collapse
Affiliation(s)
| | - Heidi L. Weiss
- The Markey Biostatistics and Bioinformatics Shared Resource Facility
| | - Rani D. Jayswal
- The Markey Biostatistics and Bioinformatics Shared Resource Facility
| | | | - Natasha Kyprianou
- Department of Toxicology and Cancer Biology
- Department of Urology
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
41
|
Bensimon Etzol J, Valente M, Altmeyer S, Bettencourt C, Bouvet S, Cosler G, Desangles F, Drouet M, Entine F, Hérodin F, Jourquin F, Lecompte Y, Martigne P, Michel X, Pateux J, Ugolin N, Chevillard S. DosiKit, a New Portable Immunoassay for Fast External Irradiation Biodosimetry. Radiat Res 2017; 190:176-185. [DOI: 10.1667/rr14760.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Marco Valente
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | | | | | | | - Guillaume Cosler
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | | | - Michel Drouet
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Fabrice Entine
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Francis Hérodin
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Flora Jourquin
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Yannick Lecompte
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Patrick Martigne
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Xavier Michel
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Jérôme Pateux
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Nicolas Ugolin
- Commissariat à l'Energie Atomique (CEA), Fontenay-aux-Roses, France
| | | |
Collapse
|
42
|
Manivannan B, Kuppusamy T, Venkatesan S, Perumal V. A comparison of estimates of doses to radiotherapy patients obtained with the dicentric chromosome analysis and the γ-H2AX assay: Relevance to radiation triage. Appl Radiat Isot 2017; 131:1-7. [PMID: 29080427 DOI: 10.1016/j.apradiso.2017.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 11/18/2022]
Abstract
The γ-H2AX assay was investigated as an alternative to the time-consuming dicentric chromosome assay (DCA). Radiation doses to 25 radiotherapy patients were estimated in parallel by DCA and the γ-H2AX assay. The γ-H2AX assay yielded doses in line with the calculated equivalent whole body doses in 92% of the patients, whereas the success rate of DCA was only 76%. The result shows that the γ-H2AX assay can be effectively used as a rapid and more precise alternative to DCA.
Collapse
Affiliation(s)
- Bhavani Manivannan
- Department of Human Genetics, College of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| | - Thayalan Kuppusamy
- Dr. Kamakshi Memorial Hospital Pvt. Ltd., Pallikaranai, Chennai 600100, Tamil Nadu, India.
| | - Srinivasan Venkatesan
- Dr. Kamakshi Memorial Hospital Pvt. Ltd., Pallikaranai, Chennai 600100, Tamil Nadu, India.
| | - Venkatachalam Perumal
- Department of Human Genetics, College of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| |
Collapse
|
43
|
Efficient repair of DNA double strand breaks in individuals from high level natural radiation areas of Kerala coast, south-west India. Mutat Res 2017; 806:39-50. [PMID: 28963924 DOI: 10.1016/j.mrfmmm.2017.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 08/14/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
Abstract
High level natural radiation areas (HLNRA) of Kerala coastal strip (55km long and 0.5km wide) in southwest India exhibit wide variations in the level of background dose (< 1.0-45.0mGy/year) due to thorium deposits in the beach sand. The areas with ≤1.5mGy/year are considered as normal level natural radiation area (NLNRA), whereas areas with >1.5mGy/year are HLNRA. Individuals belonging to HLNRA were stratified into two groups, Low dose group (LDG: 1.51-5.0mGy/year) and high dose group (HDG: >5.0mGy/year). The mean annual dose received by the individuals from NLNRA, LDG and HDG was 1.3±0.1, 2.7±0.9 and 9.4±2.3mGy/year, respectively. Induction and repair of DNA double strand breaks (DSBs) in terms of gamma-H2AX positive cells were analysed in peripheral blood mononuclear cells (PBMCs) using flow cytometry. Induction of DSBs was studied at low (0.25Gy) and high challenge doses (1.0 and 2.0Gy) of gamma radiation in 78 individuals {NLNRA, N=23; HLNRA (LDG, N=21 and HDG, N=34)}. Repair kinetics of DSBs were evaluated in PBMCs of 30 individuals belonging to NLNRA (N=8), LDG (N=7) and HDG (N=15) at low (0.25Gy) and high doses (2.0Gy) of gamma radiation. Transcription profile of DNA damage response (DDR) and DSB repair genes involved in non-homologous end joining (NHEJ) and homologous recombination repair (HRR) pathways was analysed after a challenge dose of 2.0Gy in PBMCs of NLNRA (N=10) and HDG, HLNRA (N=10) group. Our results revealed significantly lower induction and efficient repair of DSBs in HLNRA groups as compared to NLNRA. Transcription profile of DCLRE1C, XRCC4, NBS1 and CDK2 showed significant up-regulation (p≤0.05) in HDG at a challenge dose of 2.0Gy indicating active involvement of DDR and DSB repair pathways. In conclusion, lower induction and efficient repair of DNA DSBs in HLNRA groups is suggestive of an in vivo radio-adaptive response due to priming effect of chronic low dose radiation prevailing in this area.
Collapse
|
44
|
Li J, Dou D, Li P, Luo W, Lv W, Zhang C, Song X, Yang Y, Zhang Y, Xu Y, Xiao F, Wei Y, Qin J, Li H, Yang X. PARP-1 serves as a novel molecular marker for hepatocellular carcinoma in a Southern Chinese Zhuang population. Tumour Biol 2017; 39:1010428317706914. [PMID: 28714367 DOI: 10.1177/1010428317706914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PARP-1 (poly(ADP-ribose) polymerase-1) plays an important role in tumorigenesis. Since its effects on different populations are varied, this study investigated the impact of PARP-1 on primary hepatocellular carcinoma in a Southern Chinese Zhuang population. We assessed the global PARP-1 messenger RNA expression in patients with hepatocellular carcinoma using The Cancer Genome Atlas dataset. Increased PARP-1 expression, related to alpha-fetoprotein level, was observed. The area under the receiver operating characteristic curve value was 0.833. Kaplan-Meier survival curves indicated that higher PARP-1 expression was not correlated with poorer overall survival and recurrence-free survival. In a Zhuang population, PARP-1 messenger RNA and protein levels were increased in the hepatocellular carcinoma tissue and its adjacent liver tissues as assessed by quantitative polymerase chain reaction, immunohistochemistry, and western blotting. Higher PARP-1 level was associated with a higher tumor stage (p < 0.05), without correlation with age, gender, smoking, drinking, tumor size, serum alpha-fetoprotein level, hepatitis B virus infection, metastasis, and invasion (p > 0.05). Further analysis suggested that H2AX, a PARP-1 protein interaction partner, was coordinated with PARP-1 in hepatocellular carcinoma tumorigenesis. Overall, some new characteristics of PARP-1 expression were noted in the Zhuang population. PARP-1 is a novel promising diagnostic marker for hepatocellular carcinoma in the Southern Chinese Zhuang population.
Collapse
Affiliation(s)
- Jiatong Li
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China
| | - Dongwei Dou
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China.,2 Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Ping Li
- 3 Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Wenqi Luo
- 3 Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Wenxin Lv
- 4 Department of Urology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, P.R. China
| | - Chengdong Zhang
- 5 School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Xiaowei Song
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China
| | - Yuan Yang
- 5 School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Yuening Zhang
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China
| | - Yanzhen Xu
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China
| | - Feifan Xiao
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China
| | - Yan Wei
- 3 Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Jian Qin
- 6 School of Public Health, Guangxi Medical University, Nanning, P.R. China
| | - Hongtao Li
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China
| | - Xiaoli Yang
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China
| |
Collapse
|
45
|
Hsieh JH, Huang R, Lin JA, Sedykh A, Zhao J, Tice RR, Paules RS, Xia M, Auerbach SS. Real-time cell toxicity profiling of Tox21 10K compounds reveals cytotoxicity dependent toxicity pathway linkage. PLoS One 2017; 12:e0177902. [PMID: 28531190 PMCID: PMC5439695 DOI: 10.1371/journal.pone.0177902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/04/2017] [Indexed: 01/01/2023] Open
Abstract
Cytotoxicity is a commonly used in vitro endpoint for evaluating chemical toxicity. In support of the U.S. Tox21 screening program, the cytotoxicity of ~10K chemicals was interrogated at 0, 8, 16, 24, 32, & 40 hours of exposure in a concentration dependent fashion in two cell lines (HEK293, HepG2) using two multiplexed, real-time assay technologies. One technology measures the metabolic activity of cells (i.e., cell viability, glo) while the other evaluates cell membrane integrity (i.e., cell death, flor). Using glo technology, more actives and greater temporal variations were seen in HEK293 cells, while results for the flor technology were more similar across the two cell types. Chemicals were grouped into classes based on their cytotoxicity kinetics profiles and these classes were evaluated for their associations with activity in the Tox21 nuclear receptor and stress response pathway assays. Some pathways, such as the activation of H2AX, were associated with the fast-responding cytotoxicity classes, while others, such as activation of TP53, were associated with the slow-responding cytotoxicity classes. By clustering pathways based on their degree of association to the different cytotoxicity kinetics labels, we identified clusters of pathways where active chemicals presented similar kinetics of cytotoxicity. Such linkages could be due to shared underlying biological processes between pathways, for example, activation of H2AX and heat shock factor. Others involving nuclear receptor activity are likely due to shared chemical structures rather than pathway level interactions. Based on the linkage between androgen receptor antagonism and Nrf2 activity, we surmise that a subclass of androgen receptor antagonists cause cytotoxicity via oxidative stress that is associated with Nrf2 activation. In summary, the real-time cytotoxicity screen provides informative chemical cytotoxicity kinetics data related to their cytotoxicity mechanisms, and with our analysis, it is possible to formulate mechanism-based hypotheses on the cytotoxic properties of the tested chemicals.
Collapse
Affiliation(s)
- Jui-Hua Hsieh
- Kelly Government Solutions, Durham, North Carolina, United States of America
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ja-An Lin
- US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | | | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Raymond R. Tice
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Richard S. Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Scott S. Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| |
Collapse
|
46
|
Towards precision prevention: Technologies for identifying healthy individuals with high risk of disease. Mutat Res 2017; 800-802:14-28. [PMID: 28458064 DOI: 10.1016/j.mrfmmm.2017.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Abstract
The rise of advanced technologies for characterizing human populations at the molecular level, from sequence to function, is shifting disease prevention paradigms toward personalized strategies. Because minimization of adverse outcomes is a key driver for treatment decisions for diseased populations, developing personalized therapy strategies represent an important dimension of both precision medicine and personalized prevention. In this commentary, we highlight recently developed enabling technologies in the field of DNA damage, DNA repair, and mutagenesis. We propose that omics approaches and functional assays can be integrated into population studies that fuse basic, translational and clinical research with commercial expertise in order to accelerate personalized prevention and treatment of cancer and other diseases linked to aberrant responses to DNA damage. This collaborative approach is generally applicable to efforts to develop data-driven, individualized prevention and treatment strategies for other diseases. We also recommend strategies for maximizing the use of biological samples for epidemiological studies, and for applying emerging technologies to clinical applications.
Collapse
|
47
|
Zeegers D, Venkatesan S, Koh SW, Low GKM, Srivastava P, Sundaram N, Sethu S, Banerjee B, Jayapal M, Belyakov O, Baskar R, Balajee AS, Hande MP. Biomarkers of Ionizing Radiation Exposure: A Multiparametric Approach. Genome Integr 2017; 8:6. [PMID: 28250913 PMCID: PMC5320786 DOI: 10.4103/2041-9414.198911] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Humans are exposed to ionizing radiation not only through background radiation but also through the ubiquitous presence of devices and sources that generate radiation. With the expanded use of radiation in day-to-day life, the chances of accidents or misuse only increase. Therefore, a thorough understanding of the dynamic effects of radiation exposure on biological entities is necessary. The biological effects of radiation exposure on human cells depend on much variability such as level of exposure, dose rate, and the physiological state of the cells. During potential scenarios of a large-scale radiological event which results in mass casualties, dose estimates are essential to assign medical attention according to individual needs. Many attempts have been made to identify biomarkers which can be used for high throughput biodosimetry screening. In this study, we compare the results of different biodosimetry methods on the same irradiated cells to assess the suitability of current biomarkers and push forward the idea of employing a multiparametric approach to achieve an accurate dose and risk estimation.
Collapse
Affiliation(s)
- Dimphy Zeegers
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shriram Venkatesan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shu Wen Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Grace Kah Mun Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pallavee Srivastava
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Neisha Sundaram
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Swaminathan Sethu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Birendranath Banerjee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Manikandan Jayapal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NanoString Technologies, Seattle, WA, USA
| | - Oleg Belyakov
- Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | | | - Adayabalam S Balajee
- REAC/TS, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge TN, USA
| | - M Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Human Health, International Atomic Energy Agency, Vienna, Austria; Tembusu College, National University of Singapore, Singapore
| |
Collapse
|
48
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
49
|
γ-H2AX/53BP1/pKAP-1 foci and their linear tracks induced by in vitro exposure to radon and its progeny in human peripheral blood lymphocytes. Sci Rep 2016; 6:38295. [PMID: 27922110 PMCID: PMC5138821 DOI: 10.1038/srep38295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
The biodosimetric information is critical for evaluating the human health hazards caused by radon and its progeny. Here, we demonstrated that the formation of phosphorylated histone variant H2AX (γ-H2AX), p53-binding protein 1 (53BP1) and phosphorylated KRAB-associated protein 1 (pKAP-1) foci and their linear tracks in human peripheral blood lymphocytes (HPBLs) in vitro exposed to radon and its progeny were dependent on the cumulative absorbed dose of radon exposure but was unrelated to the concentration of radon. Among them, γ-H2AX foci and its linear tracks were the most sensitive indicators with the lowest estimable cumulative absorbed dose of 1.74 mGy from their linear dose-response curves and sustained for 12 h after termination of radon exposure. In addition, three types of foci showed an overdispersed non-Poisson distribution in HPBLs. The ratios of pKAP-1/γ-H2AX foci co-localization, 53BP1/γ-H2AX foci co-localization and 53BP1/pKAP-1 foci co-localization were significantly increased in HPBLs exposed to radon while they were unrelated to the cumulative dose of radon exposure, suggesting that γ-H2AX, pKAP-1 and 53BP1 play an important role in the repair of heterochromatic double-strand breaks. Altogether, our findings provide an experimental basis for estimating the biological dose of internal α-particle irradiation from radon and its progeny exposure in humans.
Collapse
|
50
|
Garty G, Turner HC, Salerno A, Bertucci A, Zhang J, Chen Y, Dutta A, Sharma P, Bian D, Taveras M, Wang H, Bhatla A, Balajee A, Bigelow AW, Repin M, Lyulko OV, Simaan N, Yao YL, Brenner DJ. THE DECADE OF THE RABiT (2005-15). RADIATION PROTECTION DOSIMETRY 2016; 172:201-206. [PMID: 27412510 PMCID: PMC5225976 DOI: 10.1093/rpd/ncw172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The RABiT (Rapid Automated Biodosimetry Tool) is a dedicated Robotic platform for the automation of cytogenetics-based biodosimetry assays. The RABiT was developed to fulfill the critical requirement for triage following a mass radiological or nuclear event. Starting from well-characterized and accepted assays we developed a custom robotic platform to automate them. We present here a brief historical overview of the RABiT program at Columbia University from its inception in 2005 until the RABiT was dismantled at the end of 2015. The main focus of this paper is to demonstrate how the biological assays drove development of the custom robotic systems and in turn new advances in commercial robotic platforms inspired small modifications in the assays to allow replacing customized robotics with 'off the shelf' systems. Currently, a second-generation, RABiT II, system at Columbia University, consisting of a PerkinElmer cell::explorer, was programmed to perform the RABiT assays and is undergoing testing and optimization studies.
Collapse
Affiliation(s)
- G Garty
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - H C Turner
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - A Salerno
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Pratt & Whitney Canada Corp., 1000 Marie-Victorin, Longueil, QC, Canada J4G 1A1
| | - A Bertucci
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - J Zhang
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Auris Surgical Robotics Inc., 125 Shoreway Rd, San Carlos, CA 94070, USA
| | - Y Chen
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - A Dutta
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
- Present address: BioReliance Corp., 9630 Medical Center Dr, Rockville, MD 20850, USA
| | - P Sharma
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - D Bian
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - M Taveras
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - H Wang
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: General Motors Co., 30500 Mound Road, Warren, MI 48090, USA
| | - A Bhatla
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Curiosity Lab Inc., 54 Mallard Pl. Secaucus, NJ, 07094, USA
| | - A Balajee
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
- Present address: Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center and Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Building SC-10, 1299, Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - A W Bigelow
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - M Repin
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - O V Lyulko
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - N Simaan
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Department of Mechanical Engineering, Vanderbuilt University, PMB 351592, Nashville, TN, 37235, USA
| | - Y L Yao
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - D J Brenner
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|