1
|
Buacheen P, Karinchai J, Inthachat W, Butkinaree C, Jankam C, Wongnoppavich A, Imsumran A, Chewonarin T, Pimpha N, Temviriyanukul P, Pitchakarn P. The Toxicological Assessment of Anoectochilus burmannicus Ethanolic-Extract-Synthesized Selenium Nanoparticles Using Cell Culture, Bacteria, and Drosophila melanogaster as Suitable Models. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2804. [PMID: 37887954 PMCID: PMC10609996 DOI: 10.3390/nano13202804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Selenium nanoparticles (SeNPs) are worthy of attention and development for nutritional supplementation due to their health benefits in both animals and humans with low toxicity, improved bioavailability, and controlled release, being greater than the Se inorganic and organic forms. Our previous study reported that Anoectochilus burmannicus extract (ABE)-synthesized SeNPs (ABE-SeNPs) exerted antioxidant and anti-inflammatory activities. Furthermore, ABE could stabilize and preserve the biological activities of SeNPs. To promote the ABE-SeNPs as supplementary and functional foods, it was necessary to carry out a safety assessment. Cytotoxicity testing showed that SeNPs and ABE-SeNPs were harmless with no killing effect on Caco2 (intestinal epithelial cells), MRC-5 (lung fibroblasts), HEK293 (kidney cells), LX-2 (hepatic stellate cells), and 3T3-L1 (adipocytes), and were not toxic to isolated human PBMCs and RBCs. Genotoxicity assessments found that SeNPs and ABE-SeNPs did not induce mutations in Salmonella typhimurium TA98 and TA100 (Ames test) as well as in Drosophila melanogaster (somatic mutation and recombination test). Noticeably, ABE-SeNPs inhibited mutation in TA98 and TA100 induced by AF-2, and in Drosophila induced by urethane, ethyl methanesulfonate, and mitomycin c, suggesting their anti-mutagenicity ability. This study provides data that support the safety and anti-genotoxicity properties of ABE-SeNPs for the further development of SeNPs-based food supplements.
Collapse
Affiliation(s)
- Pensiri Buacheen
- PhD Program in Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chutikarn Butkinaree
- National Omics Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chonchawan Jankam
- National Omics Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arisa Imsumran
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuttaporn Pimpha
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Assessment of the genotoxic potential of three novel composite nanomaterials using human lymphocytes and the fruit fly Drosophila melanogaster as model systems. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
3
|
Pitchakarn P, Inthachat W, Karinchai J, Temviriyanukul P. Human Hazard Assessment Using Drosophila Wing Spot Test as an Alternative In Vivo Model for Genotoxicity Testing-A Review. Int J Mol Sci 2021; 22:9932. [PMID: 34576092 PMCID: PMC8472225 DOI: 10.3390/ijms22189932] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Genomic instability, one of cancer's hallmarks, is induced by genotoxins from endogenous and exogenous sources, including reactive oxygen species (ROS), diet, and environmental pollutants. A sensitive in vivo genotoxicity test is required for the identification of human hazards to reduce the potential health risk. The somatic mutation and recombination test (SMART) or wing spot test is a genotoxicity assay involving Drosophila melanogaster (fruit fly) as a classical, alternative human model. This review describes the principle of the SMART assay in conjunction with its advantages and disadvantages and discusses applications of the assay covering all segments of health-related industries, including food, dietary supplements, drug industries, pesticides, and herbicides, as well as nanoparticles. Chemopreventive strategies are outlined as a global health trend for the anti-genotoxicity of interesting herbal extract compounds determined by SMART assay. The successful application of Drosophila for high-throughput screening of mutagens is also discussed as a future perspective.
Collapse
Affiliation(s)
- Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand;
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand;
| |
Collapse
|
4
|
Gonçalves S, Gaivão I. Natural Ingredients Common in the Trás-os-Montes Region (Portugal) for Use in the Cosmetic Industry: A Review about Chemical Composition and Antigenotoxic Properties. Molecules 2021; 26:5255. [PMID: 34500687 PMCID: PMC8433906 DOI: 10.3390/molecules26175255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023] Open
Abstract
The natural cosmetics market has grown since consumers became aware of the concept of natural-based ingredients. A significant number of cosmetics have an ecological impact on the environment and carry noxious and chemically potent substances. Thus, the use of natural and organic cosmetics becomes increasingly important since it is clear that topical treatment with cosmeceuticals can help improve skin rejuvenation. A substantial investigation into the benefits that fruits and plants can bring to health is required. Studies have shown that antigenotoxic properties are linked to anti-aging properties. Several studies have shown potential antigenotoxicity in natural ingredients such as Almonds (Prunus dulcis), Elderberry (Sambucus nigra), Olives (Olea europaea), and Grapes (Vitis vinifera). This review presents an overview of research conducted on these natural ingredients, the most common in the Northeast of Portugal. This region of Portugal possesses the most organic farmers, and ingredients are easily obtained. The Northeast of Portugal also has climatic, topographic, and pedological differences that contribute to agricultural diversity.
Collapse
Affiliation(s)
| | - Isabel Gaivão
- Department of Genetics and Biotechnology and CECAV, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| |
Collapse
|
5
|
Naves MPC, de Morais CR, de Freitas V, Ribeiro DL, Lopes DS, Antunes LMG, de Melo Rodrigues V, de Rezende AAA, Spanó MA. Mutagenic and genotoxic activities of Phospholipase A 2 Bothropstoxin-I from Bothrops jararacussu in Drosophila melanogaster and human cell lines. Int J Biol Macromol 2021; 182:1602-1610. [PMID: 34033823 DOI: 10.1016/j.ijbiomac.2021.05.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 11/29/2022]
Abstract
Phospholipase A2 Bothropstoxin-I (PLA2 BthTX-I) is a myotoxic Lys49-PLA2 from Bothrops jararacussu snake venom. In order to evaluate the DNA damage caused by BthTX-I, we used the Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster and Comet assay in HUVEC and DU-145 cells. For SMART, different concentrations of BthTX-I (6.72 to 430 μg/mL) were used and no significant changes in the survival rate were observed. Significant frequency of mutant spots was observed for the ST cross at the highest concentration of BthTX-I due to recombinogenic activity. In the HB cross, BthTX-I increased the number of mutant spots at intermediate concentrations, being 53.75 μg/mL highly mutagenic and 107.5 μg/mL predominantly recombinogenic. The highest concentrations were neither mutagenic nor recombinogenic, which could indicate cytotoxicity in the wing cells of D. melanogaster. In vitro, all BthTX-I concentrations (1 to 50 μg/mL) induced decrease in HUVEC cell viability, as well as in DU-145 cells at concentrations of 10, 25, and 50 μg/mL. The comet assay showed that in HUVEC and DU-145 cells, all BthTX-I concentrations promoted increase of DNA damage. Further studies should be performed to elucidate the mechanism of action of PLA2 BthTX-I and its possible use in therapeutic strategies against cancer.
Collapse
Affiliation(s)
| | - Cássio Resende de Morais
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Vitor de Freitas
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute in Health, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Mário Antônio Spanó
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil.
| |
Collapse
|
6
|
Oliveira VC, Naves MPC, de Morais CR, Constante SAR, Orsolin PC, Alves BS, Rinaldi Neto F, da Silva LHD, de Oliveira LTS, Ferreira NH, Esperandim TR, Cunha WR, Tavares DC, Spanó MA. Betulinic acid modulates urethane-induced genotoxicity and mutagenicity in mice and Drosophila melanogaster. Food Chem Toxicol 2020; 138:111228. [DOI: 10.1016/j.fct.2020.111228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/30/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
|
7
|
Villas Boas GR, Rodrigues Lemos JM, de Oliveira MW, Dos Santos RC, Stefanello da Silveira AP, Bacha FB, Aguero Ito CN, Cornelius EB, Lima FB, Sachilarid Rodrigues AM, Costa NB, Bittencourt FF, Freitas de Lima F, Paes MM, Gubert P, Oesterreich SA. Preclinical safety evaluation of the aqueous extract from Mangifera indica Linn. (Anacardiaceae): genotoxic, clastogenic and cytotoxic assessment in experimental models of genotoxicity in rats to predict potential human risks. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112086. [PMID: 31310830 DOI: 10.1016/j.jep.2019.112086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/22/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants widely used by the population contain significant concentrations of biologically active compounds and, although they have proven pharmacological properties, can cause DNA damage and develop fatal diseases. AIM OF THE STUDY The present study aimed to evaluate the genotoxic, cytotoxic potential and clastogenic effects of the aqueous extract from Mangifera indica leaves (EAMI) on rats submitted to experimental genotoxicity models and through the SMART test performed in Drosophila melanogaster. MATERIAL AND METHODS The comet assay and the micronucleus test were performed on peripheral and bone marrow blood, respectively, of Wistar rats, orally treated with EAMI at doses of 125, 250, 500 and 1000 mg/kg/bw for 28 days. In the SMART test, the standard cross between three mutant D. melanogaster strains was used. Larvae were treated with EAMI at different concentrations, and the wings of adult flies were evaluated for the presence/frequency of mutant spots and compared to the negative control group. RESULTS Phytochemical analysis of EAMI indicated high levels of flavonoids. The tests performed in rats showed that EAMI did not present significant genotoxic or clastogenic effects. The results showed a critical dose-dependent cytoprotective effect exerted by EAMI. This result was attributed to the high content of polyphenols and flavonoids. The biotransformation metabolites of EAMI did not present genotoxic activity, as demonstrated by the SMART test. CONCLUSIONS These results are relevant since they provide safety information about a plant species of great therapeutic, economical, nutritious and ethnopharmacological value for the population.
Collapse
Affiliation(s)
- Gustavo Roberto Villas Boas
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil.
| | | | | | - Rafael Claudino Dos Santos
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | | | - Flávia Barbieri Bacha
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | - Caren Naomi Aguero Ito
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | | | - Fernanda Brioli Lima
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | | | - Nathália Belmal Costa
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | | | - Fernando Freitas de Lima
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| | - Marina Meirelles Paes
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil.
| | - Priscila Gubert
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil.
| | | |
Collapse
|
8
|
Villas Boas GR, Souza de Araújo FH, Moreira Marcelino J, Almeida Castro LH, Stefanello da Silveira AP, Silva Nacer R, Rodrigues de Souza F, Cardoso CAL, Boerngen de Lacerda R, Guterres ZDR, Oesterreich SA. Preclinical safety evaluation of the ethanolic extract fromCampomanesia pubescens(Mart. ex DC.) O.BERG (guavira) fruits: analysis of genotoxicity and clastogenic effects. Food Funct 2018; 9:3707-3717. [DOI: 10.1039/c8fo01017j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genotoxicity studies of medicinal plants are recommended by international regulatory agencies as part of the risk assessment.
Collapse
Affiliation(s)
| | | | | | | | | | - Renato Silva Nacer
- Faculty of Health Sciences
- University Center of Grande Dourados
- Dourados
- Brazil
| | | | | | | | - Zaira da Rosa Guterres
- Cytogenetic and Mutagenesis Laboratory
- State University of Mato Grosso do Sul
- Dourados
- Brazil
| | | |
Collapse
|
9
|
Turkez H, Arslan ME, Ozdemir O. Genotoxicity testing: progress and prospects for the next decade. Expert Opin Drug Metab Toxicol 2017; 13:1089-1098. [DOI: 10.1080/17425255.2017.1375097] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hasan Turkez
- Faculty of Science, Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Department of Pharmacy, University ‘G. d’Annunzio’, Chieti, Italy
| | - Mehmet E. Arslan
- Faculty of Science, Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Ozlem Ozdemir
- Faculty of Science, Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
10
|
Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:242-262. [DOI: 10.1016/j.mrrev.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
|
11
|
Reis ÉDM, Rezende AAAD, Oliveira PFD, Nicolella HD, Tavares DC, Silva ACA, Dantas NO, Spanó MA. Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the Drosophila wing spot test. Food Chem Toxicol 2016; 96:309-19. [PMID: 27562929 DOI: 10.1016/j.fct.2016.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
Titanium dioxide nanocrystals (TiO2 NCs) crystalline structures include anatase, rutile and brookite. This study evaluated the genotoxic effects of 3.4 and 6.2 nm anatase TiO2 NCs and 78.0 nm predominantly rutile TiO2 NCs through an in vitro micronucleus (MN) assay using V79 cells and an in vivo somatic mutation and recombination test in Drosophila wings. The MN assay was performed with nontoxic concentrations of TiO2 NCs. Only anatase (3.4 nm) at the highest concentration (120 μM) induced genotoxicity in V79 cells. In the in vivo test, Drosophila melanogaster larvae obtained from standard (ST) or high bioactivation (HB) crosses were treated with TiO2 NCs. In the ST cross, no mutagenic effects were observed. However, in the HB cross, TiO2 NCs (3.4 nm) were mutagenic at 1.5625 and 3.125 mM, while 78.0 nm NCs increased mutant spots at all concentrations tested except 3.125 mM. Only the smallest anatase TiO2 NCs induced mutagenic effects in vitro and in vivo. For rutile TiO2 NCs, no clastogenic/aneugenic effects were observed in the MN assay. However, they were mutagenic in Drosophila. Therefore, both anatase and rutile TiO2 NCs induced mutagenicity. Further research is necessary to clarify the TiO2 NCs genotoxic/mutagenic action mechanisms.
Collapse
Affiliation(s)
- Érica de Melo Reis
- Laboratório de Mutagênese, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Alexandre Azenha Alves de Rezende
- Laboratório de Mutagênese, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | | | | | | | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Noelio Oliveira Dantas
- Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Mário Antônio Spanó
- Laboratório de Mutagênese, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil.
| |
Collapse
|
12
|
Assessment of the genotoxic potential of two zinc oxide sources (amorphous and nanoparticles) using the in vitro micronucleus test and the in vivo wing somatic mutation and recombination test. Food Chem Toxicol 2015; 84:55-63. [DOI: 10.1016/j.fct.2015.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/24/2015] [Accepted: 07/14/2015] [Indexed: 11/18/2022]
|