1
|
Leach D, Kolokotroni Z, Wilson AD. Reduced learning rates but successful learning of a coordinated rhythmic movement by older adults. Q J Exp Psychol (Hove) 2024:17470218241240983. [PMID: 38459632 DOI: 10.1177/17470218241240983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Previous work has investigated the information-based mechanism for learning and transfer of learning in coordinated rhythmic movements. In those papers, we trained young adults to produce either 90° or 60° and showed in both cases that learning entailed learning to use relative position as information for the relative phase. This variable then supported transfer of learning to untrained coordinations +/30° on either side. In this article, we replicate the 90° study with younger adults and extend it by training older adults (aged between 55 and 65 years). Other work has revealed a steep decline in learning rate around this age, and no follow-up study has been able to successfully train older adults to perform a novel coordination. We used a more intensive training paradigm and showed that while older adult learning rates remain about half that of younger adults, given time they are able to acquire the new coordination. They also learn to use relative position, and consequently show the same pattern of transfer. We discuss implications for attempts to model the process of learning in this task.
Collapse
Affiliation(s)
- Daniel Leach
- Psychology, School of Humanities and Social Sciences, Leeds Beckett University, Leeds, UK
| | - Zoe Kolokotroni
- Psychology, School of Humanities and Social Sciences, Leeds Beckett University, Leeds, UK
| | - Andrew D Wilson
- Psychology, School of Humanities and Social Sciences, Leeds Beckett University, Leeds, UK
| |
Collapse
|
2
|
Huang S, Layer J, Smith D, Bingham GP, Zhu Q. The effect of movement frequency on perceptual-motor learning of a novel bimanual coordination pattern. Hum Mov Sci 2022; 83:102958. [PMID: 35561528 DOI: 10.1016/j.humov.2022.102958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/02/2022] [Accepted: 05/03/2022] [Indexed: 11/04/2022]
Abstract
The most widely known studies of rhythmic limb coordination showed that frequency strongly affects the stability of some coordinations (e.g. 180° relative phase) but not others (e.g. 0°). The coupling of such rhythmic limb movements was then shown to be perceptual. Frequency affected the stability of perceptual information. We now investigated whether frequency would impact the pickup of information for learning a novel bimanual coordination pattern (e.g. 90°) and the ability to sustain the coordination at various frequencies. Twenty participants were recruited and assessed on their performance of bimanual coordination at 0°, 180°, and 90° at five scanning frequencies before and after training at 90°, during which they were assigned to practice with either a high (2.5 Hz) or low (0.5 Hz) frequency until attaining proficiency. The results showed that learning was frequency specific. The best post-training performance occurred at the trained frequency. Although the coordination could be acquired through high frequency training, it was at the cost of a greater amount of training and most surprisingly, did not yield improved performance at lower frequencies that are normally thought to be easier. The findings suggest that movement frequency may determine whether visual or kinesthetic information is used for learning and control of bimanual coordination.
Collapse
Affiliation(s)
| | | | | | | | - Qin Zhu
- University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
3
|
Roman-Liu D, Mockałło Z. Effectiveness of bimanual coordination tasks performance in improving coordination skills and cognitive functions in elderly. PLoS One 2020; 15:e0228599. [PMID: 32130219 PMCID: PMC7055901 DOI: 10.1371/journal.pone.0228599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/18/2020] [Indexed: 11/18/2022] Open
Abstract
Background The purpose of the study was to determine the impact of the performance of bimanual coordination tasks with specific characteristics on the changes in quality of coordination, musculoskeletal load of the upper limbs and cognitive functions. Methods and findings A group of 26 people aged 60–67 years performed 6 sessions of bimanual coordination training. Each session included set of tasks that varied depending on the shape in which the cursor moved, the coordination mode (in-phase, anti-phase, complex) and the tracking mode (imposed or freely chosen speed). Performance was assessed by: Error, Variability and Execution. The load of upper limb muscles was expressed with the value of the normalized EMG amplitude. Cognitive functions were evaluated using the Vienna Test System. The Variability and Error values obtained during the sixth training session decreased by more than 50% of the initial values. Tasks with freely chosen speed showed changes from 15% to 34% for Error and from 45% to 50% for Variability. For tasks with imposed speed and coordination mode anti-phase or complex it was between 51% and 58% for Error and between 58% and 68% for Variability. Statistically significant differences between load during the sixth training session compared to the first session occurred in three out of four muscles and were between 9% to 39%. There were statistically significant differences in motor time and no differences in variables describing attention and working memory. Conclusions Coordination mode is meaningful for improving coordination skills; tasks in the anti-phase and complex are recommended. Tracking mode also plays a role, tasks with an imposed cursor movement speed have greater potential to improve coordination skills than tasks with freely chosen. Improved control skills resulted in the reduction of upper limb musculoskeletal load. It can be assumed that an increase in coordination skills with the use of appropriate training can help to reduce musculoskeletal load.
Collapse
Affiliation(s)
- Danuta Roman-Liu
- Department of Ergonomics, Central Institute for Labour Protection—National Research Institute (CIOP-PIB), Warsaw, Poland
- * E-mail:
| | - Zofia Mockałło
- Department of Ergonomics, Central Institute for Labour Protection—National Research Institute (CIOP-PIB), Warsaw, Poland
| |
Collapse
|
4
|
Using visual and/or kinesthetic information to stabilize intrinsic bimanual coordination patterns is a function of movement frequency. PSYCHOLOGICAL RESEARCH 2020; 85:865-878. [PMID: 31989241 DOI: 10.1007/s00426-020-01288-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
Abstract
Coordination dynamics suggest that both in-phase and anti-phase movements are intrinsic and can be readily performed without practice. As movement frequency increases, individuals performing anti-phase movement inevitably switch to perform in-phase movement. However, due to different frames of reference used to define intrinsic coordination patterns in visual and kinesthetic domains, the perception of intrinsic coordination patterns could be ambiguous, which leads to the question whether the visually or kinesthetically perceived information is used to maintain the intrinsic coordination patterns. The current study explored how the consistency between visual and kinesthetic information would impact the performance and the associated metabolic energy consumption of intrinsic bimanual coordination patterns as movement frequency increased. Thirty participants were recruited and randomly assigned to one of three groups ("Info + Spatial +", "Info + Spatial -", and "Info-Spatial +") to perform intrinsic bimanual coordination tasks using a computer-joystick system at low, high, and self-selected frequencies. The visual and kinesthetic information were manipulated to be either consistent or inconsistent by changing the spatial mapping between the motion of display and motion of joysticks. The results showed that the kinesthetic information was largely used to maintain the stability of intrinsic coordination patterns at high frequency, which could be an energy-conserving solution. However, spatial mapping alone seemed to be beneficial for keeping the visually perceived in-phase and anti-phase coordination patterns equally stable at low movement frequency, and spatially mapping the visual information to be consistent with kinesthetic information greatly enhanced the stability of anti-phase coordination. The dynamical use of visual and kinesthetic information for control of bimanual coordination is discussed.
Collapse
|
5
|
Abstract
In 2010, Bechtel and Abrahamsen defined and described what it means to be a dynamic causal mechanistic explanatory model. They discussed the development of a mechanistic explanation of circadian rhythms as an exemplar of the process and challenged cognitive science to follow this example. This article takes on that challenge. A mechanistic model is one that accurately represents the real parts and operations of the mechanism being studied. These real components must be identified by an empirical programme that decomposes the system at the correct scale and localises the components in space and time. Psychological behaviour emerges from the nature of our real-time interaction with our environments—here we show that the correct scale to guide decomposition is picked out by the ecological perceptual information that enables that interaction. As proof of concept, we show that a simple model of coordinated rhythmic movement, grounded in information, is a genuine dynamical mechanistic explanation of many key coordination phenomena.
Collapse
|
6
|
Bingham GP, Snapp-Childs W, Zhu Q. Information about relative phase in bimanual coordination is modality specific (not amodal), but kinesthesis and vision can teach one another. Hum Mov Sci 2018; 60:98-106. [DOI: 10.1016/j.humov.2018.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 10/14/2022]
|
7
|
Zivari Adab H, Chalavi S, Beets IAM, Gooijers J, Leunissen I, Cheval B, Collier Q, Sijbers J, Jeurissen B, Swinnen SP, Boisgontier MP. White matter microstructural organisation of interhemispheric pathways predicts different stages of bimanual coordination learning in young and older adults. Eur J Neurosci 2018; 47:446-459. [DOI: 10.1111/ejn.13841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/22/2017] [Accepted: 01/17/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Hamed Zivari Adab
- Movement Control and Neuroplasticity Research Group; Department of Movement Sciences; KU Leuven; Tervuurse Vest 101 Leuven Belgium
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group; Department of Movement Sciences; KU Leuven; Tervuurse Vest 101 Leuven Belgium
| | - Iseult A. M. Beets
- Movement Control and Neuroplasticity Research Group; Department of Movement Sciences; KU Leuven; Tervuurse Vest 101 Leuven Belgium
- BrainCTR; Lilid bvba; Diest Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group; Department of Movement Sciences; KU Leuven; Tervuurse Vest 101 Leuven Belgium
| | - Inge Leunissen
- Movement Control and Neuroplasticity Research Group; Department of Movement Sciences; KU Leuven; Tervuurse Vest 101 Leuven Belgium
| | - Boris Cheval
- Department of General Internal Medicine, Rehabilitation and Geriatrics; University of Geneva; Geneva Switzerland
- Swiss NCCR “LIVES - Overcoming Vulnerability: Life Course Perspectives”; University of Geneva; Geneva Switzerland
| | | | - Jan Sijbers
- iMinds Vision Lab; University of Antwerp; Antwerp Belgium
| | - Ben Jeurissen
- iMinds Vision Lab; University of Antwerp; Antwerp Belgium
| | - Stephan P. Swinnen
- Movement Control and Neuroplasticity Research Group; Department of Movement Sciences; KU Leuven; Tervuurse Vest 101 Leuven Belgium
| | - Matthieu P. Boisgontier
- Movement Control and Neuroplasticity Research Group; Department of Movement Sciences; KU Leuven; Tervuurse Vest 101 Leuven Belgium
- Brain Behavior Laboratory; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
8
|
When kinesthetic information is neglected in learning a Novel bimanual rhythmic coordination. Atten Percept Psychophys 2017; 79:1830-1840. [DOI: 10.3758/s13414-017-1336-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Maes C, Gooijers J, Orban de Xivry JJ, Swinnen SP, Boisgontier MP. Two hands, one brain, and aging. Neurosci Biobehav Rev 2017; 75:234-256. [PMID: 28188888 DOI: 10.1016/j.neubiorev.2017.01.052] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/18/2016] [Accepted: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Many activities of daily living require moving both hands in an organized manner in space and time. Therefore, understanding the impact of aging on bimanual coordination is essential for prolonging functional independence and well-being in older adults. Here we investigated the behavioral and neural determinants of bimanual coordination in aging. The studies surveyed in this review reveal that aging is associated with cortical hyper-activity (but also subcortical hypo-activity) during performance of bimanual tasks. In addition to changes in activation in local areas, the interaction between distributed brain areas also exhibits age-related effects, i.e., functional connectivity is increased in the resting brain as well as during task performance. The mechanisms and triggers underlying these functional activation and connectivity changes remain to be investigated. This requires further research investment into the detailed study of interactions between brain structure, function and connectivity. This will also provide the foundation for interventional research programs towards preservation of brain health and behavioral performance by maximizing neuroplasticity potential in older adults.
Collapse
Affiliation(s)
- Celine Maes
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Jean-Jacques Orban de Xivry
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium; KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), 3001 Leuven, Belgium
| | - Matthieu P Boisgontier
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium.
| |
Collapse
|
10
|
Brock O, Valero-Cuevas F. Transferring synergies from neuroscience to robotics: Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by M. Santello et al. Phys Life Rev 2016; 17:27-32. [PMID: 27212396 DOI: 10.1016/j.plrev.2016.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 11/20/2022]
Affiliation(s)
- Oliver Brock
- Robotics and Biology Laboratory, Technische Universität Berlin, 10587 Berlin, Germany.
| | - Francisco Valero-Cuevas
- Department of Biomedical Engineering & Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
11
|
Muraoka T, Nakagawa K, Kato K, Qi W, Kanosue K. Interlimb coordination from a psychological perspective. ACTA ACUST UNITED AC 2016. [DOI: 10.7600/jpfsm.5.349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Kento Nakagawa
- Graduate School of Arts and Sciences, The University of Tokyo
- Japan Society for the Promotion of Science
| | - Kouki Kato
- Laboratory of Sport Neuroscience, Faculty of Sport Sciences, Waseda University
| | - Weihuang Qi
- Graduate School of Sport Sciences, Waseda University
| | - Kazuyuki Kanosue
- Laboratory of Sport Neuroscience, Faculty of Sport Sciences, Waseda University
| |
Collapse
|
12
|
|