1
|
Zhu J, Guo S, Cao J, Zhao H, Ma Y, Zou H, Ju H, Liu Z, Li J. Epigenetic Modifications Are Involved in Transgenerational Inheritance of Cadmium Reproductive Toxicity in Mouse Oocytes. Int J Mol Sci 2024; 25:10996. [PMID: 39456778 PMCID: PMC11507422 DOI: 10.3390/ijms252010996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Maternal cadmium exposure during pregnancy has been demonstrated to have detrimental effects on offspring development. However, the impact of maternal cadmium exposure on offspring oocytes remains largely unknown, and the underlying mechanisms are not fully understood. In this study, we found that maternal cadmium exposure during pregnancy resulted in selective alteration in epigenetic modifications of mouse oocytes in offspring, including a decrease in H3K4me2 and H4K12ac, as well as an increase in DNA methylation of H19. Although ROS levels and mitochondrial activity remain at normal levels, the DNA damage marker γH2AX was significantly increased and the DNA repair marker DNA-PKcs was remarkably decreased in offspring oocytes from maternal cadmium exposure. These alterations are responsible for the decrease in the quality of mouse oocytes in offspring induced by maternal cadmium exposure. As a result, the meiotic maturation of oocytes and subsequent early embryonic development are influenced by maternal cadmium exposure. RNA-seq results showed that maternal cadmium exposure elicits modifications in the expression of genes associated with metabolism, signal transduction, and endocrine regulation in offspring ovaries, which also contribute to the disorders of oocyte maturation and failures in early embryonic development. Our research provides direct evidence of transgenerational epigenetic inheritance of cadmium reproductive toxicity in mouse germ cells.
Collapse
Affiliation(s)
- Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Guangling College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shuai Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
| | - Jiangqin Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
| | - Hangbin Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Huiming Ju
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Guangling College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Junwei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.G.); (J.C.); (H.Z.); (Y.M.); (H.Z.); (H.J.); (Z.L.)
- Guangling College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Wahlang B. RISING STARS: Sex differences in toxicant-associated fatty liver disease. J Endocrinol 2023; 258:e220247. [PMID: 37074385 PMCID: PMC10330380 DOI: 10.1530/joe-22-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Based on biological sex, the consequential health outcomes from exposures to environmental chemicals or toxicants can differ in disease pathophysiology, progression, and severity. Due to basal differences in cellular and molecular processes resulting from sexual dimorphism of organs including the liver and additional factors influencing 'gene-environment' interactions, males and females can exhibit different responses to toxicant exposures. Associations between environmental/occupational chemical exposures and fatty liver disease (FLD) have been well-acknowledged in human epidemiologic studies and their causal relationships demonstrated in experimental models. However, studies related to sex differences in liver toxicology are still limited to draw any inferences on sex-dependent chemical toxicity. The purpose of this review is to highlight the present state of knowledge on the existence of sex differences in toxicant-associated FLD (TAFLD), discuss potential underlying mechanisms driving these differences, implications of said differences on disease susceptibility, and emerging concepts. Chemicals of interest include various categories of pollutants that have been investigated in TAFLD, namely persistent organic pollutants, volatile organic compounds, and metals. Insight into research areas requiring further development is also discussed, with the objective of narrowing the knowledge gap on sex differences in environmental liver diseases. Major conclusions from this review exercise are that biological sex influences TAFLD risks, in part due to (i) toxicant disruption of growth hormone and estrogen receptor signaling, (ii) basal sex differences in energy mobilization and storage, and (iii) differences in chemical metabolism and subsequent body burden. Finally, further sex-dependent toxicological assessments are warranted for the development of sex-specific intervention strategies.
Collapse
Affiliation(s)
- Banrida Wahlang
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
3
|
Liu S, Yu D, Wei P, Cai J, Xu M, He H, Tang X, Nong C, Wei Y, Xu X, Mo X, Zhang Z, Qin J. JAK2/STAT3 Signaling Pathway and Klotho Gene in Cadmium-induced Neurotoxicity In Vitro and In Vivo. Biol Trace Elem Res 2023; 201:2854-2863. [PMID: 36166115 DOI: 10.1007/s12011-022-03370-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Cadmium (Cd), a common heavy metal in the environment, is associated with cognitive impairment. In the present study, we carried out a preliminary inquiry to explore whether Cd causes neurotoxicity by regulating the JAK2/STAT3 signaling pathway and affecting the expression of klotho genes in vivo and in vitro, providing clues for the mechanism of Cd-induced cognitive dysfunction. The rat samples were injected with Cd chloride solution for 14 weeks, and the memory function of the rats was detected. Different concentrations of Cd and JAK2/STAT3 signaling pathway inhibitors were used to treat PC12 cells and thus detect the apoptosis rate. The protein expression levels of JAK2, p-JAK2, STAT3, p-STAT3, and klotho in rat and PC12 cell were detected by ELISA and Western blot, respectively. With the increase in exposure dose, the memory function of rats was severely impaired. The expression of p-JAK2 and p-STAT3 proteins was significantly up-regulated, whereas that of klotho was significantly down-regulated both in vivo and in vitro (p < 0.05). In comparison with the high-dose Cd exposure group, after adding tyrphostin AG490 (AG490), the apoptosis rate of PC12 cells increased, whereas the phosphorylation levels of JAK2 and STAT3 in the cells decreased significantly (p < 0.05). Cd exposure may cause neurotoxicity by regulating the JAK2/STAT3 signaling pathway and down-regulating klotho protein expression, leading to cognitive dysfunction.
Collapse
Affiliation(s)
- Shuzhen Liu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Dongmei Yu
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Peng Wei
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiansheng Cai
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Min Xu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Haoyu He
- College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xu Tang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chuntao Nong
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yi Wei
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xia Xu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaoting Mo
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhiyong Zhang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.
- School of Public Health, Guilin Medical University, 20 Lequn Road, Guilin, Guangxi Zhuang Autonomous Region, China.
| | - Jian Qin
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
4
|
Qu J, Wang Q, Niu H, Sun X, Ji D, Li Y. Melatonin protects oocytes from cadmium exposure-induced meiosis defects by changing epigenetic modification and enhancing mitochondrial morphology in the mouse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114311. [PMID: 36410142 DOI: 10.1016/j.ecoenv.2022.114311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is one major environmental pollutant that can cause detrimental impacts on human as well as animal reproductive systems as a result of oxidative stress. It is widely acknowledged that melatonin secreted principally by the pineal gland is not only a natural potent antioxidant but also a free radical scavenger, whereas concerning how to alleviate the toxic effects of Cd on oocyte maturation remains elusive. In this investigation, it was the first time to explore the protective effects and potential mechanism of melatonin on meiotic maturation of mouse oocytes exposed to Cd in vitro medium. We found that Cd exerts adverse effects on meiotic maturation progression by disrupting the normal function of mitochondrion combined with the aberrant mitochondrial distribution and decreased membrane potential and altering epigenetic modification, including H3K9me2 and H3K4me2. Additionally, it was observed that Cd exposure disrupted the morphology of spindle organization and caused chromosome misalignment, which might be through changing the level of acetylated tubulin, whereas melatonin administration alleviated the toxic impacts of Cd on oocytes. Furthermore, the mitochondrial morphology-related genes mRNA expression and protein expression of autophagy-related genes was also investigated. The results suggested that melatonin supplementation significantly altered the mRNA expression of mitochondrial dynamics-related genes, rather than the expression of mitophagy-related proteins. Taken together, our results validated that melatonin administration has a certain protective impact against oocytes meiosis maturation defects induced by cadmium through changing epigenetic modification and enhancing mitochondrial morphology rather than mitophagy.
Collapse
Affiliation(s)
- Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; The department of Animal and Veterinary Science, University of Vermont, Burlington, VT 05405, USA.
| | - Qiang Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Haoyuan Niu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Dejun Ji
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Zhu J, Huang Z, Yang F, Zhu M, Cao J, Chen J, Lin Y, Guo S, Li J, Liu Z. Cadmium disturbs epigenetic modification and induces DNA damage in mouse preimplantation embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112306. [PMID: 33984557 DOI: 10.1016/j.ecoenv.2021.112306] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Cadmium is an environmental pollutant that has extensive deleterious effects on the reproductive system. However, the mechanisms underlying the effects of cadmium on preimplantation embryos are unclear. Here, we used a mouse model to investigate the effects of maternal cadmium (32 mg/l) exposure in drinking water for 2 days on early embryonic development, and studied the mechanisms associated with epigenetic modifications and DNA damage induced by oxidative stress. We observed that maternal cadmium exposure impaired preimplantation embryo development by inducing embryo death, fragmentation, or developmental blockade. After cadmium exposure, the most survived embryos were at the 8-cell stage, which were used for all measurements. Histone acetylation, not methylation, was disturbed by increasing histone deacetylase 1 (HDAC1) levels after cadmium exposure. Cadmium also disrupted DNA methylation of H19; however genomic DNA methylation can be normally reprogrammed in embryos. Furthermore, cadmium increased reactive oxygen species (ROS) levels and DNA damage, and partly inhibited gene expression related to DNA repair. The distribution and activity of mitochondria was increased; therefore, embryos maintain intracellular homeostasis for survival. Collectively, our findings revealed that maternal cadmium exposure impairs preimplantation embryo development by disturbing the epigenetic modification and inducing DNA damage.
Collapse
Affiliation(s)
- Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China.
| | - Zhutao Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Laboratory Animal Center, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Fan Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Shen Zhen Heng Sheng Hospital, Southern Medical University, Shen Zhen, Guangdong, PR China
| | - Min Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Jiangqin Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Jiali Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Yan Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shuai Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Junwei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
6
|
Chen Z, Shi K, Kuang W, Huang L. Exploration of the optimal strategy for dietary calcium intervention against the toxicity of liver and kidney induced by cadmium in mice: An in vivo diet intervention study. PLoS One 2021; 16:e0250885. [PMID: 33974642 PMCID: PMC8112675 DOI: 10.1371/journal.pone.0250885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
Cadmium (Cd) is a toxic non-essential element, while calcium (Ca) is an essential element with high chemical similarity to Cd. Dietary intake is the major Cd exposure pathway for non-smokers. A multi-concentration dietary intervention experiment was designed to explore the optimum concentration of Ca in diet with obvious protective effects against the toxicity of livers and kidneys induced by Cd in mice. The mice were divided into six groups with different concentrations of Cd and Ca in their food: control-group (no Cd or Ca), Ca-group (100 g/kg Ca, without Cd), Cd-group (2 mg/kg Cd, without Ca), CaL+Cd-group (2 mg/kg Cd, 2 g/kg Ca), CaM+Cd-group (2 mg/kg Cd, 20 g/kg Ca) and CaH+Cd-group (2 mg/kg Cd, 100 g/kg Ca). The organ indexes, oxidative stress biomarkers, lesions and Cd concentrations were detected after a 30-day exposure period. Results showed that serum Aspartate Aminotransferase (AST) level in CaH+Cd-group was significantly lower than that in Cd-group, while close to that in control-group. The contents of Serum Blood Urea Nitrogen (BUN) in different groups showed the same trend. Concentrations of all oxidative stress biomarkers (GSH-Px, SOD, CAT, GSH and MDA) in CaH+Cd-group were close to the normal levels of control-group while significantly different from those in Cd-group. The only exception was the Malondialdehyde (MDA) levels in kidneys. This study suggests that Ca plays a protective role in relieving the Cd-induced toxicity of livers and kidneys and a concentration of 100 g/kg for Ca in diet showed the best protective effects. These findings could provide a clue for further studies concerning human diet intervention for Cd control.
Collapse
Affiliation(s)
- Zhaofang Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Kexin Shi
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Wenjie Kuang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Lei Huang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States of America
- * E-mail:
| |
Collapse
|
7
|
Aung MT, M Bakulski K, Feinberg JI, F Dou J, D Meeker J, Mukherjee B, Loch-Caruso R, Ladd-Acosta C, Volk HE, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Fallin MD. Maternal blood metal concentrations and whole blood DNA methylation during pregnancy in the Early Autism Risk Longitudinal Investigation (EARLI). Epigenetics 2021; 17:253-268. [PMID: 33794742 DOI: 10.1080/15592294.2021.1897059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The maternal epigenome may be responsive to prenatal metals exposures. We tested whether metals are associated with concurrent differential maternal whole blood DNA methylation. In the Early Autism Risk Longitudinal Investigation cohort, we measured first or second trimester maternal blood metals concentrations (cadmium, lead, mercury, manganese, and selenium) using inductively coupled plasma mass spectrometry. DNA methylation in maternal whole blood was measured on the Illumina 450 K array. A subset sample of 97 women had both measures available for analysis, all of whom did not report smoking during pregnancy. Linear regression was used to test for site-specific associations between individual metals and DNA methylation, adjusting for cell type composition and confounding variables. Discovery gene ontology analysis was conducted on the top 1,000 sites associated with each metal. We observed hypermethylation at 11 DNA methylation sites associated with lead (FDR False Discovery Rate q-value <0.1), near the genes CYP24A1, ASCL2, FAT1, SNX31, NKX6-2, LRC4C, BMP7, HOXC11, PCDH7, ZSCAN18, and VIPR2. Lead-associated sites were enriched (FDR q-value <0.1) for the pathways cell adhesion, nervous system development, and calcium ion binding. Manganese was associated with hypermethylation at four DNA methylation sites (FDR q-value <0.1), one of which was near the gene ARID2. Manganese-associated sites were enriched for cellular metabolism pathways (FDR q-value<0.1). Effect estimates for DNA methylation sites associated (p < 0.05) with cadmium, lead, and manganese were highly correlated (Pearson ρ > 0.86). DNA methylation sites associated with lead and manganese may be potential biomarkers of exposure or implicate downstream gene pathways.
Collapse
Affiliation(s)
- Max T Aung
- Department of Biostatistics, University of Michigan, Ann Arbor, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, USA.,Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA.,Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - John D Meeker
- Department of Environmental Health, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, USA.,Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Rita Loch-Caruso
- Department of Environmental Health, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, USA.,Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, USA.,Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente, Oakland, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, USA
| | - Craig J Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Penn State University, USA
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, USA.,Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
8
|
Matsukura T, Inaba C, Weygant EA, Kitamura D, Janknecht R, Matsumoto H, Hyink DP, Kashiwada S, Obara T. Extracellular vesicles from human bone marrow mesenchymal stem cells repair organ damage caused by cadmium poisoning in a medaka model. Physiol Rep 2020; 7:e14172. [PMID: 31325249 PMCID: PMC6642321 DOI: 10.14814/phy2.14172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Treatment modalities for kidney disease caused by long-term exposure to heavy metals, such as cadmium (Cd), are limited. Often, chronic, long-term environmental exposure to heavy metal is not recognized in the early stages; therefore, chelation therapy is not an effective option. Extracellular vesicles (EVs) derived from stem cells have been demonstrated to reduce disease pathology in both acute and chronic kidney disease models. To test the ability of EVs derived from human bone marrow mesenchymal stem cells (hBM-MSCs) to treat Cd damage, we generated a Cd-exposed medaka model. This model develops heavy metal-induced cell damage in various organs and tissues, and shows decreased overall survival. Intravenous injection of highly purified EVs from hBM-MSCs repaired the damage to apical and basolateral membranes and mitochondria of kidney proximal tubules, glomerular podocytes, bone deformation, and improved survival. Our system also serves as a model with which to study age- and sex-dependent cell injuries of organs caused by various agents and diseases. The beneficial effects of EVs on the tissue repair process, as shown in our novel Cd-exposed medaka model, may open new broad avenues for interventional strategies.
Collapse
Affiliation(s)
- Tomomi Matsukura
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Life Sciences, Toyo University, Gunma, Japan
| | - Chisako Inaba
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Esther A Weygant
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Daiki Kitamura
- Department of Life Sciences, Toyo University, Gunma, Japan
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hiroyuki Matsumoto
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Clinical Proteomics and Gene Therapy Laboratory, Kurume University Graduate School of Medicine, Kurume, Japan
| | - Deborah P Hyink
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | - Tomoko Obara
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
9
|
Young JL, Yan X, Xu J, Yin X, Zhang X, Arteel GE, Barnes GN, States JC, Watson WH, Kong M, Cai L, Freedman JH. Cadmium and High-Fat Diet Disrupt Renal, Cardiac and Hepatic Essential Metals. Sci Rep 2019; 9:14675. [PMID: 31604971 PMCID: PMC6789035 DOI: 10.1038/s41598-019-50771-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/14/2019] [Indexed: 01/07/2023] Open
Abstract
Exposure to the environmental toxicant cadmium (Cd) contributes to the development of obesity-associated diseases. Obesity is a risk factor for a spectrum of unhealthy conditions including systemic metabolic dyshomeostasis. In the present study, the effects of whole-life exposure to environmentally-relevant concentrations of Cd on systemic essential metal distribution in adult mice fed a high-fat diet (HFD) were examined. For these studies, male and female mice were exposed to Cd-containing drinking water for >2 weeks before breeding. Pregnant mice and dams with offspring were exposed to Cd-containing drinking water. After weaning, offspring were continuously exposed to the same Cd concentration as their parents, and divided into HFD and normal (low) fat diet (LFD) groups. At 10 and 24 weeks, mice were sacrificed and blood, liver, kidney and heart harvested for metal analyses. There were significant concentration dependent increases in Cd levels in offspring with kidney > liver > heart. Sex significantly affected Cd levels in kidney and liver, with female animals accumulating more metal than males. Mice fed the HFD showed > 2-fold increase in Cd levels in the three organs compared to similarly treated LFD mice. Cadmium significantly affected essential metals levels in blood, kidney and liver. Additionally, HFD affected essential metal levels in these three organs. These findings suggest that Cd interacts with HFD to affect essential metal homeostasis, a phenomenon that may contribute to the underlying mechanism responsible for the development of obesity-associated pathologies.
Collapse
Affiliation(s)
- Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Xiaofang Yan
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, USA
| | - Jianxiang Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Gavin E Arteel
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory N Barnes
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Walter H Watson
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, USA
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Jonathan H Freedman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
10
|
Zhu JQ, Liu Y, Zhang JH, Liu YF, Cao JQ, Huang ZT, Yuan Y, Bian JC, Liu ZP. Cadmium Exposure of Female Mice Impairs the Meiotic Maturation of Oocytes and Subsequent Embryonic Development. Toxicol Sci 2019; 164:289-299. [PMID: 29684212 DOI: 10.1093/toxsci/kfy089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cadmium is one major pollutant that is highly toxic to animals and humans. The mechanism of cadmium toxicity on the female reproductive system, particularly oocyte maturation and fertility, remains to be clarified. In this study, we used a mouse model to investigate the effects of cadmium in the drinking water on the meiotic maturation of oocytes and subsequent embryonic development, and the underlying mechanisms associated with the impairment of oocyte maturation such as mitochondrial distribution and histone modifications. Our results show that cadmium exposure decreased the number of ovulated oocytes and impaired oocyte meiotic maturation rate both in vivo and in vitro. The embryonic development after fertilization was also impaired even when the potential hazards of cadmium on the spermatozoa or the genital tract have been excluded by fertilization and embryonic development in culture. Cadmium exposure disrupted meiotic spindle morphology and actin filament, which are responsible for successful chromosome segregation and the polar body extrusion during oocyte maturation and fertilization. ATP contents, which are required for proper meiotic spindle assembly in the oocyte, were decreased, consistent with altered mitochondrial distribution after cadmium exposure. Finally, cadmium exposure affected the levels of H3K9me2 and H4K12ac in the oocyte, which are closely associated with the acquisition of oocyte developmental competence and subsequent embryonic development. In conclusion, cadmium exposure in female mice impaired meiotic maturation of oocytes and subsequent embryonic development by affecting the cytoskeletal organization, mitochondrial function, and histone modifications.
Collapse
Affiliation(s)
- Jia-Qiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jiang-Hong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yan-Fang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jiang-Qin Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Zhu-Tao Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yan Yuan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Jian-Chun Bian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Zong-Ping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Rietjens IMCM, Vervoort J, Maslowska-Górnicz A, Van den Brink N, Beekmann K. Use of proteomics to detect sex-related differences in effects of toxicants: implications for using proteomics in toxicology. Crit Rev Toxicol 2018; 48:666-681. [PMID: 30257127 DOI: 10.1080/10408444.2018.1509941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review provides an overview of results obtained when using proteome analysis for detecting sex-based differences in response to toxicants. It reveals implications to be taken into account when considering the use of proteomics in toxicological studies. It appears that results may differ when studying the same chemical in the same species in different target tissues. Another result of interest is the limited dose-response behavior of differential abundance patterns observed in studies where more than one dose level is tested. It is concluded that use of proteomics to study differences in modes of action of toxic compounds is an active area of research. The examples from use of proteomics to study sex-dependent differences also reveal that further studies are needed to provide reliable insight in modes of action, novel biomarkers or even novel therapies. To eventually reach this aim for this and other toxicological endpoints, it is essential to consider background variability, consequences of timing of toxicant administration, dose-response behavior, relevant species and target organ, species and organ variability and the presence of proteoforms.
Collapse
Affiliation(s)
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | | | - Nico Van den Brink
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| | - Karsten Beekmann
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
12
|
Sarma SN, Saleem A, Lee JY, Tokumoto M, Hwang GW, Man Chan H, Satoh M. Effects of long-term cadmium exposure on urinary metabolite profiles in mice. J Toxicol Sci 2018; 43:89-100. [PMID: 29479038 DOI: 10.2131/jts.43.89] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cadmium (Cd) is a common environmental pollutant with known toxic effects on the kidney. Urinary metabolomics is a promising approach to study mechanism by which Cd-induced nephrotoxicity. The aim of this study was to elucidate the mechanism of Cd toxicity and to develop specific biomarkers by identifying urinary metabolic changes after a long-term of Cd exposure and with the critical concentration of Cd in the kidney. Urine samples were collected from wild-type 129/Sv mice after 67 weeks of 300 ppm Cd exposure and analyzed by ultra performance liquid chromatography connected with quadrupole time of flight mass spectrometer (UPLC-QTOF-MS) based metabolomics approach. A total of 40 most differentiated metabolites (9 down-regulated and 31 up-regulated) between the control and Cd-exposed group were identified. The majority of the regulated metabolites are amino acids (glutamine, L-aspartic acid, phenylalanine, tryptophan, and D-proline) indicating that amino acid metabolism pathways are affected by long-term exposure of Cd. However, there are also some nucleotides (guanosine, guanosine monophosphate, cyclic AMP, uridine), amino acid derivatives (homoserine, N-acetyl-L-aspartate, N-acetylglutamine, acetyl-phenylalanine, carboxymethyllysine), and peptides. Results of pathway analysis showed that the arginine and proline metabolism, purine metabolism, alanine, aspartate and glutamate metabolism, and aminoacyl-tRNA biosynthesis were affected compared to the control. This study demonstrates that metabolomics is useful to elucidate the metabolic responses and biological effects induced by Cd-exposure.
Collapse
Affiliation(s)
| | - Ammar Saleem
- Department of Biology, University of Ottawa, Canada
| | - Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Maki Tokumoto
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Gi-Wook Hwang
- Laboratory of Molecular Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | | | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| |
Collapse
|
13
|
Liang X, Feswick A, Simmons D, Martyniuk CJ. Reprint of: Environmental toxicology and omics: A question of sex. J Proteomics 2018:S1874-3919(18)30113-1. [PMID: 29650353 DOI: 10.1016/j.jprot.2018.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular initiating events and downstream transcriptional/proteomic responses provide valuable information for adverse outcome pathways, which can be used predict the effects of chemicals on physiological systems. There has been a paucity of research that addresses sex-specific expression profiling in toxicology and due to cost, time, and logistic considerations, sex as a variable has not been widely considered. In response to this deficiency, federal agencies in the United States, Canada, and Europe have highlighted the importance of including sex as a variable in scientific investigations. Using case studies from both aquatic and mammalian toxicology, we report that there can be less than ~20-25% consensus in how the transcriptome and proteome of each sex responds to chemicals. Chemicals that have been shown to elicit sex-specific responses in the transcriptome or proteome include pharmaceuticals, anti-fouling agents, anticorrosive agents, and fungicides, among others. Sex-specific responses in the transcriptome and proteome are not isolated to whole animals, as investigations demonstrate that primary cell cultures isolated from each sex responds differently to toxicants. This signifies that sex is important, even in cell lines. Sex has significant implications for predictive toxicology, and both male and female data are required to improve robustness of adverse outcome pathways. BIOLOGICAL SIGNIFICANCE Clinical toxicology recognizes that sex is an important variable, as pharmacokinetics (ADME; absorption, distribution, metabolism, and excretion) can differ between females and males. However, few studies in toxicology have explored the implication of sex in relation to the transcriptome and proteome of whole organisms. High-throughput molecular approaches are becoming more frequently applied in toxicity screens (e.g. pre-clinical experiments, fish embryos, cell lines, synthetic tissues) and such data are expected to build upon reporter-based cell assays (e.g. receptor activation, enzyme inhibition) used in toxicant screening programs (i.e. Tox21, ToxCast, REACH). Thus, computational models can more accurately predict the diversity of adverse effects that can occur from chemical exposure within the biological system. Our studies and those synthesized from the literature suggest that the transcriptome and proteome of females and males respond quite differentially to chemicals. This has significant implications for predicting adverse effects in one sex when using molecular data generated in the other sex. While molecular initiating events are not expected to differ dramatically between females and males (i.e. an estrogen binds estrogen receptors in both sexes), it is important to acknowledge that the downstream transcriptomic and proteomic responses can differ based upon the presence/absence of co-regulators and inherent sex-specific variability in regulation of transcriptional and translational machinery. Transcriptomic and proteomic studies also reveal that cell processes affected by chemicals can differ due to sex, and this can undoubtedly lead to sex-specific physiological responses.
Collapse
Affiliation(s)
- Xuefang Liang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - April Feswick
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Denina Simmons
- Department of Chemistry, McMaster University, Hamilton, Ontario, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
14
|
Liang X, Feswick A, Simmons D, Martyniuk CJ. Environmental toxicology and omics: A question of sex. J Proteomics 2018; 172:152-164. [DOI: 10.1016/j.jprot.2017.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022]
|
15
|
Dumkova J, Vrlikova L, Vecera Z, Putnova B, Docekal B, Mikuska P, Fictum P, Hampl A, Buchtova M. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs. Int J Mol Sci 2016; 17:ijms17060874. [PMID: 27271611 PMCID: PMC4926408 DOI: 10.3390/ijms17060874] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO) nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level.
Collapse
Affiliation(s)
- Jana Dumkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic.
| | - Lucie Vrlikova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.
| | - Zbynek Vecera
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic.
| | - Barbora Putnova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.
| | - Bohumil Docekal
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic.
| | - Pavel Mikuska
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic.
| | - Petr Fictum
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno 612 42, Czech Republic.
| | - Ales Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic.
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.
- Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic.
| |
Collapse
|