1
|
Roh YH, Morales RTT, Huynh E, Chintapula U, Reynolds DE, Agosto-Nieves RJ, Oh D, Seiner AJ, Lim J, Rodell CB, Ko J. Squeezable Hydrogel Microparticles for Single Extracellular Vesicle Protein Profiling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407809. [PMID: 39468876 DOI: 10.1002/smll.202407809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Indexed: 10/30/2024]
Abstract
Extracellular vesicles (EVs) are promising for molecular diagnostics, but current analyses are limited by the rarity and compositional heterogeneity of EV protein expression. Therefore, single EV profiling methods require high sensitivity, multiplexing, and throughput to address these issues. Here a single EV analysis technique that utilizes squeezable methacrylated hyaluronic acid hydrogel microparticles (MHPs) is described as a scaffold to immobilize EVs and perform an integrated rolling circle amplification (RCA) assay for an ultra-sensitive and multiplex analysis of single EV proteins. EVs are prepared into MHPs in a high-throughput manner with droplet microfluidics and optimally labeled with antibody-oligonucleotide conjugates in MHPs without steric limitations. By designing MHPs with high compressibility, single EV protein signals are amplified as RCA products that can be aligned on the same plane by physically squeezing MHPs and visualized with low magnification. This method provides a simple and scalable single EV imaging analysis pipeline for identifying multiplex marker expression patterns from single EVs. For validation, the single EV heterogeneity of highly expressed cancer cell markers is profiled across different cancer cell lines. These findings exemplify squeezable MHPs as a robust platform with high sensitivity, multiplexing, and scalability for resolving single EV heterogeneity and advancing molecular assay technologies.
Collapse
Affiliation(s)
- Yoon Ho Roh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Renee-Tyler T Morales
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emily Huynh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Uday Chintapula
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David E Reynolds
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Renis J Agosto-Nieves
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel Oh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Akari J Seiner
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Jianhua Lim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Jina Ko
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Shrestha P, Ghanwatkar Y, Mahto S, Pramanik N, Mahato RI. Gemcitabine-Lipid Conjugate and ONC201 Combination Therapy Effectively Treats Orthotopic Pancreatic Tumor-Bearing Mice. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29686-29698. [PMID: 38813771 DOI: 10.1021/acsami.4c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Gemcitabine (GEM) is a nucleoside analogue approved as a first line of therapy for pancreatic ductal adenocarcinoma (PDAC). However, rapid metabolism by plasma cytidine deaminase leading to the short half-life, intricate intracellular metabolism, ineffective cell uptake, and swift development of chemoresistance downgrades the clinical efficacy of GEM. ONC201 is a small molecule that inhibits the Akt and ERK pathways and upregulates the TNF-related apoptosis-inducing ligand (TRAIL), which leads to the reversal of both intrinsic and acquired GEM resistance in PDAC treatment. Moreover, the pancreatic cancer cells that were able to bypass apoptosis after treatment of ONC201 get arrested in the G1-phase, which makes them highly sensitive to GEM. To enhance the in vivo stability of GEM, we first synthesized a disulfide bond containing stearate conjugated GEM (lipid-GEM), which makes it sensitive to the redox tumor microenvironment (TME) comprising high glutathione levels. In addition, with the help of colipids 1,2-dioleoyl-glycero-3-phosphocholine (DOPC), cholesterol, and 1,2-distearoyl-glycero-3-phosphoethanolamine-poly(ethylene glycol)-2000 (DSPE-PEG 2000), we were able to synthesize the lipid-GEM conjugate and ONC201 releasing liposomes. A cumulative drug release study confirmed that both ONC201 and GEM showed sustained release from the formulation. Since MUC1 is highly expressed in 70-90% PDAC, we conjugated a MUC1 binding peptide in the liposomes which showed higher cytotoxicity, apoptosis, and cellular internalization by MIA PaCa-2 cells. A biodistribution study further confirmed that the systemic delivery of the liposomes through the tail vein resulted in a higher accumulation of drugs in orthotopic PDAC tumors in NSG mice. The IHC of the excised tumor grafts further confirmed the higher apoptosis and lower metastasis and cell proliferation. Thus, our MUC1 targeting binary drug-releasing liposomal formulation showed higher drug payload, enhanced plasma stability, and accumulation of drugs in the pancreatic orthotopic tumor and thus is a promising therapeutic alternative for the treatment of PDAC.
Collapse
Affiliation(s)
- Prakash Shrestha
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Sohan Mahto
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Nilkamal Pramanik
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
3
|
Tansi FL, Schrepper A, Schwarzer M, Teichgräber U, Hilger I. Identifying the Morphological and Molecular Features of a Cell-Based Orthotopic Pancreatic Cancer Mouse Model during Growth over Time. Int J Mol Sci 2024; 25:5619. [PMID: 38891809 PMCID: PMC11171605 DOI: 10.3390/ijms25115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), characterized by hypovascularity, hypoxia, and desmoplastic stroma is one of the deadliest malignancies in humans, with a 5-year survival rate of only 7%. The anatomical location of the pancreas and lack of symptoms in patients with early onset of disease accounts for late diagnosis. Consequently, 85% of patients present with non-resectable, locally advanced, or advanced metastatic disease at diagnosis and rely on alternative therapies such as chemotherapy, immunotherapy, and others. The response to these therapies highly depends on the stage of disease at the start of therapy. It is, therefore, vital to consider the stages of PDAC models in preclinical studies when testing new therapeutics and treatment modalities. We report a standardized induction of cell-based orthotopic pancreatic cancer models in mice and the identification of vital features of their progression by ultrasound imaging and histological analysis of the level of pancreatic stellate cells, mature fibroblasts, and collagen. The results highlight that early-stage primary tumors are secluded in the pancreas and advance towards infiltrating the omentum at week 5-7 post implantation of the BxPC-3 and Panc-1 models investigated. Late stages show extensive growth, the infiltration of the omentum and/or stomach wall, metastases, augmented fibroblasts, and collagen levels. The findings can serve as suggestions for defining growth parameter-based stages of orthotopic pancreatic cancer models for the preclinical testing of drug efficacy in the future.
Collapse
Affiliation(s)
- Felista L. Tansi
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Andrea Schrepper
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.S.)
| | - Michael Schwarzer
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.S.)
| | - Ulf Teichgräber
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Ingrid Hilger
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
4
|
Husarova T, MacCuaig WM, Dennahy IS, Sanderson EJ, Edil BH, Jain A, Bonds MM, McNally MW, Menclova K, Pudil J, Zaruba P, Pohnan R, Henson CE, Grizzle WE, McNally LR. Intraoperative Imaging in Hepatopancreatobiliary Surgery. Cancers (Basel) 2023; 15:3694. [PMID: 37509355 PMCID: PMC10377919 DOI: 10.3390/cancers15143694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatopancreatobiliary surgery belongs to one of the most complex fields of general surgery. An intricate and vital anatomy is accompanied by difficult distinctions of tumors from fibrosis and inflammation; the identification of precise tumor margins; or small, even disappearing, lesions on currently available imaging. The routine implementation of ultrasound use shifted the possibilities in the operating room, yet more precision is necessary to achieve negative resection margins. Modalities utilizing fluorescent-compatible dyes have proven their role in hepatopancreatobiliary surgery, although this is not yet a routine practice, as there are many limitations. Modalities, such as photoacoustic imaging or 3D holograms, are emerging but are mostly limited to preclinical settings. There is a need to identify and develop an ideal contrast agent capable of differentiating between malignant and benign tissue and to report on the prognostic benefits of implemented intraoperative imaging in order to navigate clinical translation. This review focuses on existing and developing imaging modalities for intraoperative use, tailored to the needs of hepatopancreatobiliary cancers. We will also cover the application of these imaging techniques to theranostics to achieve combined diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Tereza Husarova
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - William M. MacCuaig
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Isabel S. Dennahy
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Emma J. Sanderson
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Barish H. Edil
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Morgan M. Bonds
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Molly W. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Katerina Menclova
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Jiri Pudil
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Pavel Zaruba
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Radek Pohnan
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Christina E. Henson
- Department of Radiation Oncology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lacey R. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Zhang L, Hou Y, Li C, Liu H, Wang Y. Comparative study on the antitumor effects of gemcitabine polybutylcyanoacrylate nanoparticles coupled with anti-human MUC1 and CA199 monoclonal antibodies on pancreatic cancer in vitro and in vivo. Arab J Gastroenterol 2022; 23:263-269. [PMID: 35922259 DOI: 10.1016/j.ajg.2022.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND STUDY AIMS This study was designed to compare the antitumor effects of anti-human MUC1 monoclonal antibody with those of anti-human CA199 monoclonal antibody coupled with drug-loaded polybutylcyanoacrylate nanoparticles on human pancreatic cancer cell lines and pancreatic cancer-bearing model animals and to screen more efficient targeting molecules. PATIENTS AND METHODS Gemcitabine-loaded nanospheres were prepared by emulsion polymerization (GEM-PBCA-NP), and then, anti-MUC1 monoclonal antibody was coupled with GEM-PBCA-NP (MUC1-GEM-PBCA-NP), and anti-human CA199 monoclonal antibody was coupled with GEM-PBCA-NP (CA199-GEM-PBCA-NP), using the chemical crosslinking method. The cell-killing rates were detected using MTT assay. The changes in the tumor cell cycle and apoptosis after treatment were detected using flow cytometry. Then, the subcutaneous planting method was adopted to establish an animal model of pancreatic cancer: two nanometer microspheres were injected into the body of nude mice via the tail vein; the tumor suppression effect was detected after treatment; then, the groups were compared. RESULTS In vitro, the cell-killing rate of each experimental group was significantly different from that of the control group (P < 05). The MUC1-GEM-PBCA-NP group had a significantly higher cell-killing rate than the other groups (P < 05). The apoptosis rate of the MUC1-GEM-PBCA-NP treatment group was significantly higher than that of other groups (P < 05). In vivo, the tumor inhibition rate of the MUC1-GEM-PBCA-NP treatment group was 72.69% ± 4.29%, which was significantly higher than those of other groups (P < 0.05). The tumor inhibition rate of the CA199-GEM-PBCA-NP treatment group was 56.58% ± 5.11%, which was significantly higher than those of other control groups (P < 0.05). At the end of treatment, the average tumor mass of the MUC1-GEM-PBCA-NP treatment group was 433.55 ± 12.49 mg, which was significantly lower than those of other groups (P < 0.05). CONCLUSION Compared with CA199-GEM-PBCA-NP, MUC1-GEM-PBCA-NP is more effective in vitro and in vivo. MUC1 could be a target molecule in treating pancreatic cancer.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Gastroenterology, The Eighth Medical Center, PLA General Hospital, Beijing 100091, China.
| | - Yanhong Hou
- Department of Gastroenterology, The Eighth Medical Center, PLA General Hospital, Beijing 100091, China.
| | - Chunmei Li
- Department of Gastroenterology, The Eighth Medical Center, PLA General Hospital, Beijing 100091, China
| | - Haorun Liu
- Department of Gastroenterology, The Eighth Medical Center, PLA General Hospital, Beijing 100091, China
| | - Yujing Wang
- Department of Gastroenterology, The Eighth Medical Center, PLA General Hospital, Beijing 100091, China
| |
Collapse
|
6
|
Riley NM, Wen RM, Bertozzi CR, Brooks JD, Pitteri SJ. Measuring the multifaceted roles of mucin-domain glycoproteins in cancer. Adv Cancer Res 2022; 157:83-121. [PMID: 36725114 PMCID: PMC10582998 DOI: 10.1016/bs.acr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mucin-domain glycoproteins are highly O-glycosylated cell surface and secreted proteins that serve as both biochemical and biophysical modulators. Aberrant expression and glycosylation of mucins are known hallmarks in numerous malignancies, yet mucin-domain glycoproteins remain enigmatic in the broad landscape of cancer glycobiology. Here we review the multifaceted roles of mucins in cancer through the lens of the analytical and biochemical methods used to study them. We also describe a collection of emerging tools that are specifically equipped to characterize mucin-domain glycoproteins in complex biological backgrounds. These approaches are poised to further elucidate how mucin biology can be understood and subsequently targeted for the next generation of cancer therapeutics.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States.
| | - Ru M Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States; Howard Hughes Medical Institute, Stanford, CA, United States
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States.
| |
Collapse
|
7
|
Fluorescence Molecular Targeting of Colon Cancer to Visualize the Invisible. Cells 2022; 11:cells11020249. [PMID: 35053365 PMCID: PMC8773892 DOI: 10.3390/cells11020249] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is a common cause of cancer and cancer-related death. Surgery is the only curative modality. Fluorescence-enhanced visualization of CRC with targeted fluorescent probes that can delineate boundaries and target tumor-specific biomarkers can increase rates of curative resection. Approaches to enhancing visualization of the tumor-to-normal tissue interface are active areas of investigation. Nonspecific dyes are the most-used approach, but tumor-specific targeting agents are progressing in clinical trials. The present narrative review describes the principles of fluorescence targeting of CRC for diagnosis and fluorescence-guided surgery with molecular biomarkers for preclinical or clinical evaluation.
Collapse
|
8
|
van Dam MA, Vuijk FA, Stibbe JA, Houvast RD, Luelmo SAC, Crobach S, Shahbazi Feshtali S, de Geus-Oei LF, Bonsing BA, Sier CFM, Kuppen PJK, Swijnenburg RJ, Windhorst AD, Burggraaf J, Vahrmeijer AL, Mieog JSD. Overview and Future Perspectives on Tumor-Targeted Positron Emission Tomography and Fluorescence Imaging of Pancreatic Cancer in the Era of Neoadjuvant Therapy. Cancers (Basel) 2021; 13:6088. [PMID: 34885196 PMCID: PMC8656821 DOI: 10.3390/cancers13236088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite recent advances in the multimodal treatment of pancreatic ductal adenocarcinoma (PDAC), overall survival remains poor with a 5-year cumulative survival of approximately 10%. Neoadjuvant (chemo- and/or radio-) therapy is increasingly incorporated in treatment strategies for patients with (borderline) resectable and locally advanced disease. Neoadjuvant therapy aims to improve radical resection rates by reducing tumor mass and (partial) encasement of important vascular structures, as well as eradicating occult micrometastases. Results from recent multicenter clinical trials evaluating this approach demonstrate prolonged survival and increased complete surgical resection rates (R0). Currently, tumor response to neoadjuvant therapy is monitored using computed tomography (CT) following the RECIST 1.1 criteria. Accurate assessment of neoadjuvant treatment response and tumor resectability is considered a major challenge, as current conventional imaging modalities provide limited accuracy and specificity for discrimination between necrosis, fibrosis, and remaining vital tumor tissue. As a consequence, resections with tumor-positive margins and subsequent early locoregional tumor recurrences are observed in a substantial number of patients following surgical resection with curative intent. Of these patients, up to 80% are diagnosed with recurrent disease after a median disease-free interval of merely 8 months. These numbers underline the urgent need to improve imaging modalities for more accurate assessment of therapy response and subsequent re-staging of disease, thereby aiming to optimize individual patient's treatment strategy. In cases of curative intent resection, additional intra-operative real-time guidance could aid surgeons during complex procedures and potentially reduce the rate of incomplete resections and early (locoregional) tumor recurrences. In recent years intraoperative imaging in cancer has made a shift towards tumor-specific molecular targeting. Several important molecular targets have been identified that show overexpression in PDAC, for example: CA19.9, CEA, EGFR, VEGFR/VEGF-A, uPA/uPAR, and various integrins. Tumor-targeted PET/CT combined with intraoperative fluorescence imaging, could provide valuable information for tumor detection and staging, therapy response evaluation with re-staging of disease and intraoperative guidance during surgical resection of PDAC. METHODS A literature search in the PubMed database and (inter)national trial registers was conducted, focusing on studies published over the last 15 years. Data and information of eligible articles regarding PET/CT as well as fluorescence imaging in PDAC were reviewed. Areas covered: This review covers the current strategies, obstacles, challenges, and developments in targeted tumor imaging, focusing on the feasibility and value of PET/CT and fluorescence imaging for integration in the work-up and treatment of PDAC. An overview is given of identified targets and their characteristics, as well as the available literature of conducted and ongoing clinical and preclinical trials evaluating PDAC-targeted nuclear and fluorescent tracers.
Collapse
Affiliation(s)
- Martijn A. van Dam
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Floris A. Vuijk
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Judith A. Stibbe
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Saskia A. C. Luelmo
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Stijn Crobach
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, University Medical Center Leiden, 2333 ZA Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | | | - Albert D. Windhorst
- Department of Radiology, Section of Nuclear Medicine, Amsterdam UMC, Location VUmc, 1081 HV Amsterdam, The Netherlands;
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - J. Sven D. Mieog
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| |
Collapse
|
9
|
Hull A, Li Y, Bartholomeusz D, Hsieh W, Escarbe S, Ruszkiewicz A, Bezak E. The Expression Profile and Textural Characteristics of C595-Reactive MUC1 in Pancreatic Ductal Adenocarcinoma for Targeted Radionuclide Therapy. Cancers (Basel) 2020; 13:cancers13010061. [PMID: 33379259 PMCID: PMC7796161 DOI: 10.3390/cancers13010061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a cancer of low survival needing novel treatment approaches such as targeted therapies. If a target is overexpressed on PDAC cells but has minimal expression on normal cells, it is considered a good candidate for targeted therapy. Identifying targets with this expression pattern can help to optimise targeted therapies to be therapeutically effective without compromising on tolerability. The aim of this study was to assess the expression of the MUC1 receptor using the C595 antibody. We performed a series of cell line and tissue studies to identify if the expression of the MUC1 receptor changes between different pancreatic pathologies, including PDAC and normal pancreatic tissue. We found that the MUC1 receptor is both overexpressed and more uniformly expressed in PDAC compared to the other tissue types assessed. This indicates that the MUC1 receptor is a feasible target for targeted therapies of PDAC. Abstract Improvements in the prognosis of pancreatic ductal adenocarcinoma (PDAC) rely on the development of effective treatments to target advanced disease. Mucin 1 (MUC1) is a transmembrane glycoprotein which is involved in the metastatic progression of PDAC and is a receptor-of-interest for targeted radionuclide therapy. The aim of this study was to determine the feasibility of MUC1-based targeted radionuclide therapy for PDAC, by evaluating the expression profile of MUC1 in different pancreatic cells and tissues using the C595 antibody. MUC1 expression was evaluated in four PDAC cell lines (PANC-1, BxPC-3, CAPAN-1 and AsPC-1) using flow cytometry and immunocytochemistry. Immunohistochemistry was performed on primary and metastatic PDAC, pancreatitis, pancreatic intra-epithelial neoplasia and normal pancreatic tissue samples to identify potential changes in C595-reactive MUC1 expression across different disease groups. C595-reactive MUC1 expression was found to varying degrees in the cell lines (11.5–93.1%). A pixel analysis of the immunohistochemical staining demonstrated highest MUC1 expression in primary PDAC tissue (mean pixel value of 205.4), followed by other pancreatic cancer types (204.9), pancreatic intra-epithelial neoplasia (203.8), metastatic PDAC (201.5), chronic pancreatitis (198.1) and normal pancreatic tissue (191.4). The increased expression in malignant tissues and reduced expression in benign tissues indicate that C595-reactive MUC1 is a potential target for targeted radionuclide therapy of PDAC.
Collapse
Affiliation(s)
- Ashleigh Hull
- Cancer Research Institute and Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide, SA 5000, Australia; (Y.L.); (W.H.); (E.B.)
- Correspondence:
| | - Yanrui Li
- Cancer Research Institute and Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide, SA 5000, Australia; (Y.L.); (W.H.); (E.B.)
| | - Dylan Bartholomeusz
- Department of PET, Nuclear Medicine & Bone Densitometry, SA Medical Imaging, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - William Hsieh
- Cancer Research Institute and Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide, SA 5000, Australia; (Y.L.); (W.H.); (E.B.)
- Department of PET, Nuclear Medicine & Bone Densitometry, SA Medical Imaging, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
| | - Samantha Escarbe
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (S.E.); (A.R.)
| | - Andrew Ruszkiewicz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (S.E.); (A.R.)
- Division of Anatomical Pathology, SA Pathology, Adelaide, SA 5000, Australia
| | - Eva Bezak
- Cancer Research Institute and Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide, SA 5000, Australia; (Y.L.); (W.H.); (E.B.)
- Department of Physics, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
10
|
Houvast RD, Vankemmelbeke M, Durrant LG, Wuhrer M, Baart VM, Kuppen PJK, de Geus-Oei LF, Vahrmeijer AL, Sier CFM. Targeting Glycans and Heavily Glycosylated Proteins for Tumor Imaging. Cancers (Basel) 2020; 12:cancers12123870. [PMID: 33371487 PMCID: PMC7767531 DOI: 10.3390/cancers12123870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Distinguishing malignancy from healthy tissue is essential for oncologic surgery. Targeted imaging during an operation aids the surgeon to operate better. The present tracers for detecting cancer are directed against proteins that are overexpressed on the membrane of tumor cells. This review evaluates the use of tumor-associated sugar molecules as an alternative for proteins to image cancer tissue. These sugar molecules are present as glycans on glycosylated membrane proteins and glycolipids. Due to their location and large numbers per cell, these sugar molecules might be better targets for tumor imaging than proteins. Abstract Real-time tumor imaging techniques are increasingly used in oncological surgery, but still need to be supplemented with novel targeted tracers, providing specific tumor tissue detection based on intra-tumoral processes or protein expression. To maximize tumor/non-tumor contrast, targets should be highly and homogenously expressed on tumor tissue only, preferably from the earliest developmental stage onward. Unfortunately, most evaluated tumor-associated proteins appear not to meet all of these criteria. Thus, the quest for ideal targets continues. Aberrant glycosylation of proteins and lipids is a fundamental hallmark of almost all cancer types and contributes to tumor progression. Additionally, overexpression of glycoproteins that carry aberrant glycans, such as mucins and proteoglycans, is observed. Selected tumor-associated glyco-antigens are abundantly expressed and could, thus, be ideal candidates for targeted tumor imaging. Nevertheless, glycan-based tumor imaging is still in its infancy. In this review, we highlight the potential of glycans, and heavily glycosylated proteoglycans and mucins as targets for multimodal tumor imaging by discussing the preclinical and clinical accomplishments within this field. Additionally, we describe the major advantages and limitations of targeting glycans compared to cancer-associated proteins. Lastly, by providing a brief overview of the most attractive tumor-associated glycans and glycosylated proteins in association with their respective tumor types, we set out the way for implementing glycan-based imaging in a clinical practice.
Collapse
Affiliation(s)
- Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Mireille Vankemmelbeke
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
| | - Lindy G. Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Victor M. Baart
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
- Percuros BV, 2333 ZA Leiden, The Netherlands
- Correspondence: ; Tel.: +31-752662610
| |
Collapse
|
11
|
Fucic A, Aghajanyan A, Culig Z, Le Novere N. Systems Oncology: Bridging Pancreatic and Castrate Resistant Prostate Cancer. Pathol Oncol Res 2018; 25:1269-1277. [PMID: 30220022 DOI: 10.1007/s12253-018-0467-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/03/2018] [Indexed: 12/31/2022]
Abstract
Large investments by pharmaceutical companies in the development of new antineoplastic drugs have not been resulting in adequate advances of new therapies. Despite the introduction of new methods, technologies, translational medicine and bioinformatics, the usage of collected knowledge is unsatisfactory. In this paper, using examples of pancreatic ductal adenocarcinoma (PaC) and castrate-resistant prostate cancer (CRPC), we proposed a concept showing that, in order to improve applicability of current knowledge in oncology, the re-clustering of clinical and scientific data is crucial. Such an approach, based on systems oncology, would include bridging of data on biomarkers and pathways between different cancer types. Proposed concept would introduce a new matrix, which enables combining of already approved therapies between cancer types. Paper provides a (a) detailed analysis of similarities in mechanisms of etiology and progression between PaC and CRPC, (b) diabetes as common hallmark of both cancer types and (c) knowledge gaps and directions of future investigations. Proposed horizontal and vertical matrix in cancer profiling has potency to improve current antineoplastic therapy efficacy. Systems biology map using Systems Biology Graphical Notation Language is used for summarizing complex interactions and similarities of mechanisms in biology of PaC and CRPC.
Collapse
Affiliation(s)
- A Fucic
- Institute for Medical Research and Occupational Health, Ksaverska c 2, 10000, Zagreb, Croatia.
| | - A Aghajanyan
- Institute of Medicine, Peoples' Friendship University of Russia, Moscow, Russian Federation
| | - Z Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
12
|
Lwin TM, Hoffman RM, Bouvet M. Advantages of patient-derived orthotopic mouse models and genetic reporters for developing fluorescence-guided surgery. J Surg Oncol 2018; 118:253-264. [PMID: 30080930 PMCID: PMC6146062 DOI: 10.1002/jso.25150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022]
Abstract
Fluorescence-guided surgery can enhance the surgeon's ability to achieve a complete oncologic resection. There are a number of tumor-specific probes being developed with many preclinical mouse models to evaluate their efficacy. The current review discusses the different preclinical mouse models in the setting of probe evaluation and highlights the advantages of patient-derived orthotopic xenografts (PDOX) mouse models and genetic reporters to develop fluorescence-guided surgery.
Collapse
Affiliation(s)
- Thinzar M. Lwin
- Department of Surgery, University of California San Diego, San Diego, CA
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA
- AntiCancer, Inc., San Diego, CA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA
- Department of Surgery, VA Medical Center, San Diego, CA
| |
Collapse
|
13
|
Lwin TM, Hoffman RM, Bouvet M. The development of fluorescence guided surgery for pancreatic cancer: from bench to clinic. Expert Rev Anticancer Ther 2018; 18:651-662. [PMID: 29768067 PMCID: PMC6298876 DOI: 10.1080/14737140.2018.1477593] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Surgeons face major challenges in achieving curative R0 resection for pancreatic cancers. When the lesion is localized, they must appropriately visualize the tumor, determine appropriate resection margins, and ensure complete tumor clearance. Real-time surgical navigation using fluorescence-guidance has enhanced the ability of surgeons to see the tumor and has the potential to assist in achieving more oncologically complete resections. When there is metastatic disease, fluorescence enhancement can help detect these lesions and prevent unnecessary and futile surgeries. Areas covered: This article reviews different approaches for delivery of a fluorescence signal, their pre-clinical and clinical developments for fluorescence guided surgery, the advantages/challenges of each, and their potential for advancements in the future. Expert commentary: A variety of molecular imaging techniques are available for delivering tumor-specific fluorescence signals. Significant advancements have been made in the past 10 years due to the large body of literature on targeted therapies and this has translated into rapid developments of tumor-specific probes.
Collapse
Affiliation(s)
- Thinzar M. Lwin
- Department of Surgery, University of California San Diego, San Diego, CA
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA
- AntiCancer, Inc., San Diego, CA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA
- VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
14
|
Wu ST, Williams CD, Grover PA, Moore LJ, Mukherjee P. Early detection of pancreatic cancer in mouse models using a novel antibody, TAB004. PLoS One 2018; 13:e0193260. [PMID: 29462213 PMCID: PMC5819830 DOI: 10.1371/journal.pone.0193260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/07/2018] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is the fourth-leading cause of cancer death in the United States with a 5-year overall survival rate of 8% for all stages combined. But this decreases to 3% for the majority of patients that present with stage IV PDA at time of diagnosis. The lack of distinct early symptoms for PDA is one of the primary reasons for the late diagnosis. Common symptoms like weight loss, abdominal and back pains, and jaundice are often mistaken for symptoms of other issues and do not appear until the cancer has progressed to a late stage. Thus the development of novel imaging platforms for PDA is crucial for the early detection of the disease. MUC1 is a tumor-associated antigen (tMUC1) expressed on 80% of PDA. The goal of this study was to determine the targeting and detection capabilities of a tMUC1 specific antibody, TAB004. TAB004 antibody conjugated to a near infrared fluorescent probe was injected intraperitoneally into immune competent orthotopic and spontaneous models of PDA. Results show that fluorophore conjugated TAB004 specifically targets a) 1 week old small tumor in the pancreas in an orthotopic PDA model and b) very early pre-neoplastic lesions (PanIN lesions) that develop in the spontaneous PDA model before progression to adenocarcinoma. Thus, TAB004 is a promising antibody to deliver imaging agents directly to the pancreatic tumor microenvironment, significantly affecting early detection of PDA.
Collapse
Affiliation(s)
- Shu-ta Wu
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Chandra D. Williams
- Department of Animal Laboratory Resources, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Priyanka A. Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Laura J. Moore
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
15
|
Liu G, Lv H, An Y, Wei X, Yi X, Yi H. Tracking of transplanted human umbilical cord-derived mesenchymal stem cells labeled with fluorescent probe in a mouse model of acute lung injury. Int J Mol Med 2018. [PMID: 29532861 PMCID: PMC5846645 DOI: 10.3892/ijmm.2018.3491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was topreliminarily visualize the distribution of humanumbilical cord-derived-mesenchymal stem cells (hUC-MSCs) in treating acute lung injury (ALI) using a targeted fluorescent technique. Anovel fluorescent molecule probe was first synthesized via the specific binding of antigen and antibody in vitro to label the hUC-MSCs. Two groups of mice, comprising a normal saline (NS)+MSC group and lipopolysaccharide (LPS)+MSC group, were subjected to optical imaging. At 4 h following ALI mouse model construction, the labeled hUC-MSCs were transplanted into the mice in the NS+MSC group and LPS+MSC group by tail vein injection. The mice were sacrificed 30 min, 1 day, 3 days and 7 days following injection of the labeled hUC-MSCs, and the lungs, heart, spleen, kidneys and liver were removed. The excised lungs, heart, spleen, kidneys and liver were then detected on asmall animal fluorescent imager. The fluorescent results showed that the signal intensity in the lungs of the LPS+MSC group was significantly higher, compared with that of the NS+MSC group at 30 min (3.53±0.06×10−4, vs. 1.95±0.05×10−4 scaled counts/sec), 1 day (36.20±0.77×10−4, vs. 23.45±0.43×10−4 scaled counts/sec), 3 days (11.83±0.26×10−4, vs. 5.39±0.10×10−4 scaled counts/sec), and 7 days (3.14±0.04×10−4, vs. 0.00±0.00×10−4 scaled counts/sec; all P<0.05). The fluorescence intensity in the liver of the LPS+MSC group, vs. NS+MSC group was measured at 30 min (0.00±0.00×10−4, vs. 0.00±0.00×10−4 scaled counts/sec); 1 day (5.53±0.08×10−4, vs. 5.44±0.16×10−4 scaled counts/sec); 3 days (0.00±0.00×10−4, vs. 8.67±0.05×10−4 scaled counts/sec); 7 days (0.00±0.00×10−4, vs. 0.00±0.00×10−4 scaled counts/sec). The signal intensity of the heart, spleen and kidneys was minimal. In conclusion, the novel targeted fluorescence molecular probe was suitable for tracking the distribution processes of hUC-MSCs in treating ALI.
Collapse
Affiliation(s)
- Genglong Liu
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Haijin Lv
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuling An
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xuxia Wei
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaomeng Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Huimin Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
16
|
Koller M, Hartmans E, de Groot DJA, Zhao XJ, van Dam GM, Nagengast WB, Fehrmann RS. Data-Driven Prioritization and Review of Targets for Molecular-Based Theranostic Approaches in Pancreatic Cancer. J Nucl Med 2017; 58:1899-1903. [DOI: 10.2967/jnumed.117.198440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
|
17
|
Park JY, Lee JY, Zhang Y, Hoffman RM, Bouvet M. Targeting the insulin growth factor-1 receptor with fluorescent antibodies enables high resolution imaging of human pancreatic cancer in orthotopic mouse models. Oncotarget 2017; 7:18262-8. [PMID: 26919100 PMCID: PMC4951286 DOI: 10.18632/oncotarget.7576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022] Open
Abstract
The goal of the present study was to determine whether insulin-like growth factor-1 receptor (IGF-1R) antibodies, conjugated with bright fluorophores, could enable visualization of pancreatic cancer in orthotopic nude mouse models. IGF-1R antibody (clone 24-31) was conjugated with 550 nm or 650 nm fluorophores. Western blotting confirmed the expression of IGF-1R in Panc-1, BxPC3, and MIAPaCa-2 human pancreatic cancer cell lines. Labeling with fluorophore-conjugated IGF-1R antibody demonstrated fluorescent foci on the membrane of the pancreatic cancer cells. Subcutaneous Panc-1, BxPC-3, and MIA PaCa-2 tumors became fluorescent after intravenous administration of fluorescent IGF-1R antibodies. Orthotopically-transplanted BxPC-3 tumors became fluorescent with the conjugated IGF-1R antibodies, and were easily visible with intravital imaging. Gross and microscopic ex vivo imaging of resected pancreatic tumor and normal pancreas confirmed that fluorescence indeed came from the membrane of cancer cells, and it was stronger from the tumor than the normal tissue. The present study demonstrates that fluorophore-conjugated IGF-1R antibodies can visualize pancreatic cancer and it can be used with various imaging devices such as endoscopy and laparoscopy for diagnosis and fluorescence-guided surgery.
Collapse
Affiliation(s)
- Jeong Youp Park
- Department of Surgery, University of California San Diego, San Diego, CA, USA.,AntiCancer, Inc., San Diego, CA, USA.,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Young Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | - Robert M Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA, USA.,AntiCancer, Inc., San Diego, CA, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA, USA.,Surgical Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
18
|
Seo SM, Kim SW, Park JN, Cho JH, Kim HS, Paek SH. A fluorescent immunosensor for high-sensitivity cardiac troponin I using a spatially-controlled polymeric, nano-scale tracer to prevent quenching. Biosens Bioelectron 2016; 83:19-26. [DOI: 10.1016/j.bios.2016.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/01/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022]
|
19
|
Liu F, Le W, Mei T, Wang T, Chen L, Lei Y, Cui S, Chen B, Cui Z, Shao C. In vitro and in vivo targeting imaging of pancreatic cancer using a Fe3O4@SiO2 nanoprobe modified with anti-mesothelin antibody. Int J Nanomedicine 2016; 11:2195-207. [PMID: 27274243 PMCID: PMC4876944 DOI: 10.2147/ijn.s104501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is a highly malignant disease with a 5-year survival rate <5% mainly due to lack of early diagnosis and effective therapy. In an effort to improve the early diagnostic rate of pancreatic cancer, a nanoprobe Fe3O4@SiO2 modified with anti-mesothelin antibody (A-MFS) was prepared to target cells and tumor tissues highly expressing mesothelin in vitro (human pancreatic cancer cell line SW1990) and in vivo (subcutaneously transplanted tumors) studies. The A-MFS probe was successfully prepared and was spherical and uniform with a hydrodynamic diameter between 110 and 130 nm. Cell Counting Kit-8 testing indicated that A-MFS was nontoxic in vitro and in vivo studies. The in vitro study showed that the A-MFS probe specifically targeted SW1990 cells with high mesothelin expression. The in vivo study was conducted in Siemens 3.0 T magnetic resonance imaging. The average T2-weighted signal values of the xenografts were 966.533±31.56 before injecting A-MFS and 691.133±56.84 before injecting saline solution. After injection of 0.1 mL A-MFS via nude mouse caudal vein for 2.5 hours, the average T2-weighted signal of the xenograft decreased by 342.533±42.6. The signal value decreased by −61.233±33.9 and −58.7±19.4 after injection of the saline and Fe3O4@SiO2. The decrease of tumor signal by A-MFS was much more significant than that by saline and Fe3O4@SiO2 (P<0.05). The results demonstrated the high stability and nontoxicity of A-MFS, which effectively targeted pancreatic cancer in vitro and in vivo. A-MFS is a promising agent for diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Fang Liu
- Radiology Department of Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Wenjun Le
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tianxiao Mei
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tiegong Wang
- Radiology Department of Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Luguang Chen
- Radiology Department of Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yi Lei
- Radiology Department of Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Shaobin Cui
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Bingdi Chen
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Zheng Cui
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Chengwei Shao
- Radiology Department of Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Park JY, Murakami T, Lee JY, Zhang Y, Hoffman RM, Bouvet M. Fluorescent-Antibody Targeting of Insulin-Like Growth Factor-1 Receptor Visualizes Metastatic Human Colon Cancer in Orthotopic Mouse Models. PLoS One 2016; 11:e0146504. [PMID: 26731105 PMCID: PMC4701661 DOI: 10.1371/journal.pone.0146504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022] Open
Abstract
Fluorescent-antibody targeting of metastatic cancer has been demonstrated by our laboratory to enable tumor visualization and effective fluorescence-guided surgery. The goal of the present study was to determine whether insulin-like growth factor-1 receptor (IGF-1R) antibodies, conjugated with bright fluorophores, could enable visualization of metastatic colon cancer in orthotopic nude mouse models. IGF-1R antibody (clone 24–31) was conjugated with 550 nm, 650 nm or PEGylated 650 nm fluorophores. Subcutaneous, orthotopic, and liver metastasis models of colon cancer in nude mice were targeted with the fluorescent IGF-1R antibodies. Western blotting confirmed the expression of IGF-1R in HT-29 and HCT 116 human colon cancer cell lines, both expressing green fluorescent protein (GFP). Labeling with fluorophore-conjugated IGF-1R antibody demonstrated fluorescent foci on the membrane of colon cancer cells. Subcutaneously- and orthotopically-transplanted HT-29-GFP and HCT 116-GFP tumors brightly fluoresced at the longer wavelengths after intravenous administration of fluorescent IGF-1R antibodies. Orthotopically-transplanted HCT 116-GFP tumors were brightly labeled by fluorescent IGF-1R antibodies such that they could be imaged non-invasively at the longer wavelengths. In an experimental liver metastasis model, IGF-1R antibodies conjugated with PEGylated 650 nm fluorophores selectively highlighted the liver metastases, which could then be non-invasively imaged. The IGF-1R fluorescent-antibody labeled liver metastases were very bright compared to the normal liver and the fluorescent-antibody label co-located with green fluorescent protein (GFP) expression of the colon cancer cells. The present study thus demonstrates that fluorophore-conjugated IGF-1R antibodies selectively visualize metastatic colon cancer and have clinical potential for improved diagnosis and fluorescence-guided surgery.
Collapse
Affiliation(s)
- Jeong Youp Park
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
- AntiCancer, Inc., San Diego, California, United States of America
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Takashi Murakami
- AntiCancer, Inc., San Diego, California, United States of America
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama City, Japan
| | - Jin Young Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Zhang
- AntiCancer, Inc., San Diego, California, United States of America
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
- AntiCancer, Inc., San Diego, California, United States of America
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
- Surgical Service, VA San Diego Healthcare System, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
![]()
Development
of novel imaging probes for cancer diagnostics remains
critical for early detection of disease, yet most imaging agents are
hindered by suboptimal tumor accumulation. To overcome these limitations,
researchers have adapted antibodies for imaging purposes. As cancerous
malignancies express atypical patterns of cell surface proteins in
comparison to noncancerous tissues, novel antibody-based imaging agents
can be constructed to target individual cancer cells or surrounding
vasculature. Using molecular imaging techniques, these agents may
be utilized for detection of malignancies and monitoring of therapeutic
response. Currently, there are several imaging modalities commonly
employed for molecular imaging. These imaging modalities include positron
emission tomography (PET), single-photon emission computed tomography
(SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence
and bioluminescence), and photoacoustic (PA) imaging. While antibody-based
imaging agents may be employed for a broad range of diseases, this
review focuses on the molecular imaging of pancreatic cancer, as there
are limited resources for imaging and treatment of pancreatic malignancies.
Additionally, pancreatic cancer remains the most lethal cancer with
an overall 5-year survival rate of approximately 7%, despite significant
advances in the imaging and treatment of many other cancers. In this
review, we discuss recent advances in molecular imaging of pancreatic
cancer using antibody-based imaging agents. This task is accomplished
by summarizing the current progress in each type of molecular imaging
modality described above. Also, several considerations for designing
and synthesizing novel antibody-based imaging agents are discussed.
Lastly, the future directions of antibody-based imaging agents are
discussed, emphasizing the potential applications for personalized
medicine.
Collapse
Affiliation(s)
- Christopher G England
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Savo Bou Zein Eddine
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53792, United States.,University of Wisconsin Carbone Cancer Center , Madison, Wisconsin 53792, United States
| |
Collapse
|
22
|
DeLong JC, Hoffman RM, Bouvet M. Current status and future perspectives of fluorescence-guided surgery for cancer. Expert Rev Anticancer Ther 2015; 16:71-81. [PMID: 26567611 DOI: 10.1586/14737140.2016.1121109] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Curative cancer surgery is dependent on the removal of all primary tumor and metastatic cancer cells. Preoperative imaging, intraoperative inspection and palpation, as well as pathological margin confirmation aid the surgeon, but these methods are lacking in sensitivity and can be highly subjective. Techniques in fluorescence-guided surgery (FGS) are emerging that selectively illuminate cancer cells, enhancing the distinction between tumors and surrounding tissues with the potential for single-cell sensitivity. FGS enhances tumor detection, surgical navigation, margin confirmation, and in some cases can be combined with therapeutic techniques to eliminate microscopic disease. In this review, we describe the preclinical developments and currently-used techniques for FGS.
Collapse
Affiliation(s)
- Jonathan C DeLong
- a Department of Surgery , University of California San Diego , San Diego , CA , USA
| | - Robert M Hoffman
- a Department of Surgery , University of California San Diego , San Diego , CA , USA.,b AntiCancer, Inc ., San Diego , CA , USA
| | - Michael Bouvet
- a Department of Surgery , University of California San Diego , San Diego , CA , USA
| |
Collapse
|
23
|
Chen C, Wu CQ, Chen TW, Tang MY, Zhang XM. Molecular Imaging with MRI: Potential Application in Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:624074. [PMID: 26579537 PMCID: PMC4633535 DOI: 10.1155/2015/624074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 12/11/2022]
Abstract
Despite the variety of approaches that have been improved to achieve a good understanding of pancreatic cancer (PC), the prognosis of PC remains poor, and the survival rates are dismal. The lack of early detection and effective interventions is the main reason. Therefore, considerable ongoing efforts aimed at identifying early PC are currently being pursued using a variety of methods. In recent years, the development of molecular imaging has made the specific targeting of PC in the early stage possible. Molecular imaging seeks to directly visualize, characterize, and measure biological processes at the molecular and cellular levels. Among different imaging technologies, the magnetic resonance (MR) molecular imaging has potential in this regard because it facilitates noninvasive, target-specific imaging of PC. This topic is reviewed in terms of the contrast agents for MR molecular imaging, the biomarkers related to PC, targeted molecular probes for MRI, and the application of MRI in the diagnosis of PC.
Collapse
Affiliation(s)
- Chen Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Chang Qiang Wu
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Tian Wu Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Meng Yue Tang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Xiao Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| |
Collapse
|
24
|
Li P, Xiao LY, Tan H. Muc-1 promotes migration and invasion of oral squamous cell carcinoma cells via PI3K-Akt signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10365-10374. [PMID: 26617744 PMCID: PMC4637559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/26/2015] [Indexed: 06/05/2023]
Abstract
Muc-1 is a member of the carbohydrate-binding protein family that contributes to neoplastic transformation, tumor survival, angiogenesis, and metastasis. The aim of this study is to investigate the role of muc-1 in human oral squamous cell carcinoma progression. In this study, we tested our hypothesis that muc-1 regulate oral squamous cell carcinoma cells (SCC-9) malignant biological behaviors, and silencing muc-1 reduced SCC-9 cellular colony forming ability, migration and invasion. Moreover, silenced cells present defects in phosphatidylinositol 3-kinase (PI3K)-serine/threonine kinase (Akt) signaling, and reduced expression/activity of matrix metallopeptidase (MMP)-2/9. Furthermore, in muc-1 siRNA-transfected cells, we detected a decrease in signal transducer and activator of transcription 3 (STAT3) phosphorylation and nuclear translocation. In vivo, muc-1 siRNA cells inoculated subcutaneously in nude mice demonstrated decreased tumor growth and PI3K-Akt signaling inhibition. These results indicate that muc-1 is a key factor in SCC-9 tumor migration, invasion, and suggesting that muc-1 can be a novel therapeutic target in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Ping Li
- Department of Stomatology, The Third Affiliated Hospital of Beijing University of Chinese MedicineBeijing, China
| | - Li Ying Xiao
- West China College of Stomatology, Sichuan UniversityChengdu, China
| | - Hong Tan
- West China College of Stomatology, Sichuan UniversityChengdu, China
| |
Collapse
|
25
|
Wang X, Lan H, Li J, Su Y, Xu L. Muc1 promotes migration and lung metastasis of melanoma cells. Am J Cancer Res 2015; 5:2590-2604. [PMID: 26609470 PMCID: PMC4633892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/11/2015] [Indexed: 06/05/2023] Open
Abstract
Early stages of melanoma can be successfully treated by surgical resection of the tumor, but there is still no effective treatment once it is progressed to metastatic phases. Although growing family of both melanoma metastasis promoting and metastasis suppressor genes have been reported be related to metastasis, the molecular mechanisms governing melanoma metastatic cascade are still not completely understood. Therefore, defining the molecules that govern melanoma metastasis may aid the development of more effective therapeutic strategies for combating melanoma. In the present study, we found that muc1 is involved in the metastasis of melanoma cells and demonstrated that muc1 disruption impairs melanoma cells migration and metastasis. The requirement of muc1 in the migration of melanoma cells was further confirmed by gene silencing in vitro. In corresponding to this result, over-expression of muc1 significantly promoted the migratory of melanoma cells. Moreover, down-regulation of muc1 expression strikingly inhibits melanoma cellular metastasis in vivo. Finally, we found that muc1 promotes melanoma migration through the protein kinase B (Akt) signaling pathway. To conclude, our findings suggest a novel mechanism underlying the metastasis of melanoma cells which might serve as a new intervention target for the treatment of melanoma.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Cardiothroracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo. 1095, Jiefang Avenue, Wuhan 430030, Hubei Province, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Hongwen Lan
- Department of Cardiothroracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo. 1095, Jiefang Avenue, Wuhan 430030, Hubei Province, China
| | - Jun Li
- Department of Cardiothroracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo. 1095, Jiefang Avenue, Wuhan 430030, Hubei Province, China
| | - Yushu Su
- Department of Cardiothroracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo. 1095, Jiefang Avenue, Wuhan 430030, Hubei Province, China
| | - Lijun Xu
- Department of Cardiothroracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo. 1095, Jiefang Avenue, Wuhan 430030, Hubei Province, China
| |
Collapse
|