1
|
Gao Y, Zhang Y, Ge X, Gong Y, Chen H, Su J, Xi B, Tan W. Differential responses of the electron transfer capacities of soil humic acid and fulvic acid to long-term wastewater irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173114. [PMID: 38740205 DOI: 10.1016/j.scitotenv.2024.173114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Wastewater irrigation is used to supplement agricultural irrigation because of its benefits and freshwater resource scarcity. However, whether wastewater irrigation for many years affects the electron transfer capacity (ETC) of natural organic matter in soil remains unclear, and organic matter could influence the decomposition and mineralization of substances with redox characteristics in soil through electron transfer, ultimately affecting the soil environment. The composition of soil humic substances (HS) is highly complex, and the effects of soil humic acid (HA) and fulvic acid (FA) on ETC is poorly understood. In this study, we separately evaluated the responses of the electron-accepting capacity (EAC) and electron-donating capacity (EDC) of soil HA and FA in agricultural fields to various durations of wastewater irrigation. Results showed that the EAC of HA and FA increased significantly with increasing the duration of wastewater irrigation. When wastewater irrigation lasted for 56 years, the EAC of HA showed a higher increment (590 %) than that of FA (223 %). The EDC of soil HA and FA, conversely, decreased compared to the control, with the highest reduction of 35.6 % for HA and 65.9 % for FA. Specifically, the EDC of HA gradually decreased starting from 29 years of wastewater irrigation, whereas the decrease in the EDC of FA exhibited no clear pattern in relation to the duration of wastewater irrigation. Increased soil organic matter and total nitrogen content under long-term wastewater irrigation led to an increase in sucrase and phosphatase activities, along with an increase in EAC and a decrease in EDC of HS. This suggests that soil enzyme activities may ultimately lead to changes in ETC. The results of this research provide practical insights into the redox system in soil and its driving role in soil organic matter transformation and nutrient cycling under wastewater irrigation.
Collapse
Affiliation(s)
- Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuan Zhang
- Institute of Geographical Sciences, Hebei Academy of Sciences, Hebei Technology Innovation Center for Geographic Information Application, Shijiazhuang 050011, China
| | - Xiaoyuan Ge
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Lan Zhou Jiao Tong University, Lanzhou 730070, China
| | - Yi Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Beijing University of Chemical Technology, Beijing 100029, China
| | - Huiru Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; North China University of Water Resources and Electric Power, Zheng Zhou 450046, China
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Eliseev AA, Gurianov KE, Poyarkov AA, Komkova MA, Sadilov IS, Chumakov AP, Petukhov DI. Tunable Sieving of Ions Using Graphene Oxide: Swelling Peculiarities in Free-Standing and Confined States. NANO LETTERS 2023; 23:9719-9725. [PMID: 37889876 DOI: 10.1021/acs.nanolett.3c02247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The paper describes a comparative study of swelling processes in free-standing graphene oxide (GO) membranes and GO laminates encapsulated with epoxy glue. For free-standing graphene oxide membranes, a huge variation in d-spacing in the range of 8-12 Å depending on the ambient humidity and from 12 to >30 Å depending on the electrolyte type and its concentration was revealed using direct in situ and in operando XRD studies. Limited swelling at various humidity levels as well as in electrolyte solution with low constriction/expansion of epoxy-encapsulated GO is counterposed to that of free-standing graphene oxides. The swelling suppression was explained by both physical constriction and the intercalation of amines into GO laminates, which was proved by local EDX studies. This results in ion diffusivity variation for over 2 orders of magnitude in free-standing and constrained graphene oxide membranes and provides factual evidence for tunable sieving of ions with confined graphene oxides.
Collapse
Affiliation(s)
- Andrei A Eliseev
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Konstantin E Gurianov
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Andrei A Poyarkov
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Maria A Komkova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Ilia S Sadilov
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Andrei P Chumakov
- ESRF - The European Synchrotron, Avenue des Martyrs 71, Grenoble 38000, France
| | - Dmitrii I Petukhov
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| |
Collapse
|
3
|
Audette Y, Smith DS, Parsons CT, Chen W, Rezanezhad F, Van Cappellen P. Phosphorus binding to soil organic matter via ternary complexes with calcium. CHEMOSPHERE 2020; 260:127624. [PMID: 32683029 DOI: 10.1016/j.chemosphere.2020.127624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Soil organic matter (SOM) is known to exert a major control on the mobility and bioavailability of cationic nutrients. However, the role of SOM in the fate of anionic nutrients, especially phosphorus (P), is less well characterized. The objectives of this study were to (1) compare the formation of binary complexes of calcium (Ca) with humic acids (HA) extracted from two contrasting soils, and (2) determine if binary HA-Ca complexes could incorporate P by forming ternary HA-Ca-P complexes. The Ca binding capacities of the HA extracted from an agricultural organic soil (AOS) and a pristine riparian soil (RS) were measured via potentiometric titrations; the formation of ternary complexes was analyzed by size fractionation using MWCO tubes. Proton and Ca binding capacities of RS-HA were higher than AOS-HA, and pH had a weaker effect on Ca binding to RS-HA. These differences are consistent with lower proportions of aromatic groups, and a higher proportion of alkyl groups derived from 13C NMR spectroscopy. Together, the NMR, titration and MWCO data indicate that Ca binds to RS-HA through monodentate complexes and electrostatic attraction that are capable of binding P producing ternary complexes. In contrast, at pH 8.5 Ca forms bidentate complexes with AOS-HA, which do not provide bridging positions to incorporate P. Overall, our results imply that the formation of HA-Ca and HA-Ca-P complexes depend on the structure of the HA, and that complexation to HA may play an important role in the fate of P in terrestrial and aquatic environments.
Collapse
Affiliation(s)
- Yuki Audette
- Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, University of Waterloo, Waterloo, ON, N2L 2G1, Canada; School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - D Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Christopher T Parsons
- Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, University of Waterloo, Waterloo, ON, N2L 2G1, Canada
| | - Weibin Chen
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Fereidoun Rezanezhad
- Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, University of Waterloo, Waterloo, ON, N2L 2G1, Canada
| | - Philippe Van Cappellen
- Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, University of Waterloo, Waterloo, ON, N2L 2G1, Canada
| |
Collapse
|
4
|
Yu Z, Tian R, Liu D, Zhang Y, Li H. Aggregation kinetics of binary systems containing kaolinite and Pseudomonas putida induced by different 1:1 electrolytes: specific ion effects. PEERJ PHYSICAL CHEMISTRY 2020. [DOI: 10.7717/peerj-pchem.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background
The interactions between colloidal particles in the binary systems or mixture colloids containing clay minerals and bacteria have important influences on formations and stabilities of soil aggregates, transportations of soil water, as well as biological activities of microorganisms. How the interfacial reaction of metal ions affects their interaction therefore becomes an important scientific issue.
Methods
Dynamic light scattering studies on the aggregation kinetics of mixture colloids containing kaolinite and Pseudomonas putida (P. putida) were conducted in this study.
Results
Aggregation could be observed between kaolinite and kaolinite, between kaolinite and P. putida when P. putida content was less than 33.3%. Additionally, aggregation rates decreased with increasing P. putida content. The critical coagulation concentrations and activation energies indicated that there were strong specific ion effects on the aggregation of mixture colloids. Most importantly, the activation energy increased sharply with increasing P. putida content, which might result from the lower Hamaker constant of P. putida compared with that of kaolinite.
Contributions
(1) Strong specific ion effects on mixture colloids aggregation of kaolinite-P. putida were observed; (2) the aggregation behavior of mixture colloids was determined by the average effects of mixture colloids, rather than the specific component. This finding provides an important methodological guide for further studies on the colloidal aggregation behavior of mixture systems with organic and inorganic materials.
Collapse
Affiliation(s)
- Zhaoxuan Yu
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| | - Rui Tian
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| | - Dian Liu
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| | - Yekun Zhang
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| | - Hang Li
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Xu Q, Ye B, Mou X, Ye J, Liu W, Luo Y, Shi J. Lead was mobilized in acid silty clay loam paddy soil with potassium dihydrogen phosphate (KDP) amendment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113179. [PMID: 31542670 DOI: 10.1016/j.envpol.2019.113179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The immobilization effectiveness between Pb and phosphorus in soil varies with soil types. To clarify the effect of phosphate on the availability of Pb in agricultural soil, a culture experiment with three types of paddy soil was performed with potassium dihydrogen phosphate (KDP) added. EDTA, DGT and in-situ solution extraction methods were used to represent different available Pb content. Results showed that the concentration of EDTA-Pb in HN soil was slightly elevated after exogenous KDP added. The supplement of 300 mg/kg KDP significantly increased the content of soluble Pb in both acid silty clay loam soil and neutral silty loam soil (increased by 104.65% and 65.12%, respectively). However, there was no significant influence of KDP on the concentration of DGT extracted Pb. XANES results showed that Pb(OH)2, PbHPO4, humic acid-Pb and GSH-Pb were the major speciation of Pb in soil colloids. The proportion of Pb(OH)2 and humic acid-bounded Pb in soil colloids were elevated after exogenous KDP added. Our results indicated that there was a mobilization effect of KDP on Pb by increasing the amount of colloidal Pb in soil solution, especially in acid silty clay loam paddy soil. Such colloid-facilitated transport might promote the uptake of Pb in rice and pose a potential threat to human health.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Binhui Ye
- Chengbang Eco-Environment Co., Ltd., Hangzhou, 310002, China
| | - Xiaoyu Mou
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jien Ye
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Wenyu Liu
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Luo Y, Li H, Gao X, Tian R. Description of colloidal particles aggregation in the presence of Hofmeister effects: on the relationship between ion adsorption energy and particle aggregation activation energy. Phys Chem Chem Phys 2018; 20:22831-22840. [PMID: 30151534 DOI: 10.1039/c8cp04002h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Particle aggregation is acutely affected by Hofmeister effects. Results for aggregation behavior in the presence of Hofmeister effects predicted by the classic DLVO model were not satisfactory. In this study, description of colloidal clay particles aggregation in the presence of Hofmeister effects based on a theoretical relationship between ion adsorption energy and aggregation activation energy was established. Moreover, the validity of the suggested theory was confirmed with the published experimental data on montmorillonite particles aggregation in solutions of LiNO3, KNO3, CsNO3, Mg(NO3)2 and Ca(NO3)2. In the presence of Hofmeister effects, the differences in adsorption ability of the involved five cations were quantitatively characterized by defining an additional Hofmeister energy. We found that the additional Hofmeister energy for Li+, K+, Cs+, Mg2+ and Ca2+ on montmorillonite surface were 0.063, 0.942, 1.864, 0.850 and 2.010-times larger, respectively, than the classic Coulomb interaction energy. Taking these additional Hofmeister energies into account, CCC values for the presence of different cations were theoretically calculated by the suggested theory, and the predicted CCC values matched well with the experimental results. The theoretically predicted CCC values in montmorillonite aggregation for KNO3, CsNO3, Mg(NO3)2 and Ca(NO3)2 were 78.8, 29.9, 6.48, and 3.12 mM, respectively, and the corresponding measured CCC values were 80.3, 27.2, 7.99, and 2.38 mM. Our findings are helpful for further understanding the interactions of nanoparticles with cations and quantitatively answer how ion-surface interactions affect particle interaction processes.
Collapse
Affiliation(s)
- Yaxue Luo
- College of Resources and Environment & Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, Southwest University, Chongqing 400715, China.
| | | | | | | |
Collapse
|
7
|
Liu X, Hu F, Ding W, Tian R, Li R, Li H. A how-to approach for estimation of surface/Stern potentials considering ionic size and polarization. Analyst 2015; 140:7217-24. [DOI: 10.1039/c5an01053e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Based on the effects of ionic volume in Stern layer and polarization in diffuse layer, the relationship between surface potential and Stern potential is quantified.
Collapse
Affiliation(s)
- Xinmin Liu
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process
- College of Resources and Environment
- Southwest University
- Chongqing 400715
- China
| | - Feinan Hu
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process
- College of Resources and Environment
- Southwest University
- Chongqing 400715
- China
| | - Wuquan Ding
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process
- College of Resources and Environment
- Southwest University
- Chongqing 400715
- China
| | - Rui Tian
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process
- College of Resources and Environment
- Southwest University
- Chongqing 400715
- China
| | - Rui Li
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process
- College of Resources and Environment
- Southwest University
- Chongqing 400715
- China
| | - Hang Li
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process
- College of Resources and Environment
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|