1
|
Sun Y, Chen Y, Du Q, Zhang J, Xu M, Zheng G, Zhou W, Zhou X, Qiu L, Pan Y, Zhang K. Fluoride-resistant Streptococcus mutans within cross-kingdom biofilms support Candida albicans growth under fluoride and attenuate the in vitro anti-caries effect of fluorine. Front Microbiol 2024; 15:1399525. [PMID: 39035442 PMCID: PMC11257928 DOI: 10.3389/fmicb.2024.1399525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Fluoride-resistant Streptococcus mutans (S. mutans) might affect the ecological balance of biofilms in the presence of fluoride. We used a S. mutans and Candida albicans (C. albicans) cross-kingdom biofilm model to investigate whether fluoride-resistant S. mutans in biofilms would support C. albicans growth under fluoride stress and attenuate the in vitro anti-caries effect of fluorine. The impact of fluoride-resistant S. mutans on formation of cross-kingdom biofilms by S. mutans and C. albicans in the presence of fluoride was investigated in vitro using the crystal violet staining assay. Biofilm constitution was determined using colony-forming unit (CFU) counts and fluorescent in situ hybridization (FISH). Extracellular polysaccharide (EPS) generation in biofilms was determined by EPS/bacterial dying and water-insoluble polysaccharide detection. Acid production and demineralization were monitored using pH, lactic acid content, and transversal microradiography (TMR). The gene expression of microorganisms in the cross-kingdom biofilm was measured using qRT-PCR. Our results showed that both C. albicans and fluoride-resistant S. mutans grew vigorously, forming robust cross-kingdom biofilms, even in the presence of sodium fluoride (NaF). Moreover, fluoride-resistant S. mutans-containing cross-kingdom biofilms had considerable cariogenic potential for EPS synthesis, acid production, and demineralization ability in the presence of NaF than fluoride-sensitive S. mutans-containing biofilms. Furthermore, the gene expression of microorganisms in the two cross-kingdom biofilms changed dissimilarly in the presence of NaF. In summary, fluoride-resistant S. mutans in cross-kingdom biofilms supported C. albicans growth under fluoride and might attenuate the anti-caries potential of fluorine by maintaining robust cross-kingdom biofilm formation and cariogenic virulence expression in vitro in the presence of NaF.
Collapse
Affiliation(s)
- Yan Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanhan Chen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Qian Du
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Muxin Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Gaozhe Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lili Qiu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yihuai Pan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Stockbridge RB, Wackett LP. The link between ancient microbial fluoride resistance mechanisms and bioengineering organofluorine degradation or synthesis. Nat Commun 2024; 15:4593. [PMID: 38816380 PMCID: PMC11139923 DOI: 10.1038/s41467-024-49018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Fluorinated organic chemicals, such as per- and polyfluorinated alkyl substances (PFAS) and fluorinated pesticides, are both broadly useful and unusually long-lived. To combat problems related to the accumulation of these compounds, microbial PFAS and organofluorine degradation and biosynthesis of less-fluorinated replacement chemicals are under intense study. Both efforts are undermined by the substantial toxicity of fluoride, an anion that powerfully inhibits metabolism. Microorganisms have contended with environmental mineral fluoride over evolutionary time, evolving a suite of detoxification mechanisms. In this perspective, we synthesize emerging ideas on microbial defluorination/fluorination and fluoride resistance mechanisms and identify best approaches for bioengineering new approaches for degrading and making organofluorine compounds.
Collapse
Affiliation(s)
- Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Lawrence P Wackett
- Department of Biochemistry, Biophysics & Molecular Biology and Biotechnology Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Banerjee A, Kang CY, An M, Koff BB, Sunder S, Kumar A, Tenuta LMA, Stockbridge RB. Fluoride export is required for the competitive fitness of pathogenic microorganisms in dental biofilm models. mBio 2024; 15:e0018424. [PMID: 38624207 PMCID: PMC11077948 DOI: 10.1128/mbio.00184-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLCF F-/H+ antiporter and FEX fluoride channel, respectively, whereas oral commensal eubacteria, such as Streptococcus gordonii, export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with the genetic knockout of the CLCF transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans, increased the relative proportion of oral commensal S. gordonii, and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time. Biochemical purification of the S. mutans CLCF transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms and that S. mutans is especially susceptible to fluoride toxicity. IMPORTANCE Dental caries is a globally prevalent condition that occurs when pathogenic species, including Streptococcus mutans and Candida albicans, outcompete beneficial species, such as Streptococcus gordonii, in the dental biofilm. Fluoride is routinely used in oral hygiene to prevent dental caries. Fluoride also has antimicrobial properties, although most microbes possess fluoride exporters to resist its toxicity. This work shows that sensitization of cariogenic species S. mutans and C. albicans to fluoride by genetic knockout of fluoride exporters alters the microbial composition and pathogenic properties of dental biofilms. These results suggest that the development of drugs that inhibit fluoride exporters could potentiate the anticaries effect of fluoride in over-the-counter products like toothpaste and mouth rinses. This is a novel strategy to treat dental caries.
Collapse
Affiliation(s)
- Aditya Banerjee
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chia-Yu Kang
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Minjun An
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - B. Ben Koff
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sham Sunder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Randy B. Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Li X, Yang J, Shi S, Lan H, Zhao W, Hung W, He J, Wang R. The Genome of Bifidobacterium longum subsp. infantis YLGB-1496 Provides Insights into Its Carbohydrate Utilization and Genetic Stability. Genes (Basel) 2024; 15:466. [PMID: 38674400 PMCID: PMC11154571 DOI: 10.3390/genes15040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Bifidobacterium longum subsp. infantis YLGB-1496 (YLGB-1496) is a probiotic strain isolated from human breast milk. The application of YLGB-1496 is influenced by carbohydrate utilization and genetic stability. This study used genome sequencing and morphology during continuous subculture to determine the carbohydrate utilization characteristics and genetic stability of YLGB-1496. The complete genome sequence of YLGB-1496 consists of 2,758,242 base pairs, 2442 coding sequences, and a GC content of 59.87%. A comparison of carbohydrate transport and metabolism genes of Bifidobacterium longum subsp. infantis (B. infantis) showed that YLGB-1496 was rich in glycosyl hydrolase 13, 20, 25, and 109 gene families. During continuous subculture, the growth characteristics and fermentation activity of the strain were highly stable. The bacterial cell surface and edges of the 1000th-generation strains were progressively smoother and well-defined, with no perforations or breaks in the cell wall. There were 20 SNP loci at the 1000th generation, fulfilling the requirement of belonging to the same strain. The presence of genes associated with cell adhesion and the absence of resistance genes supported the probiotic characteristics of the strain. The data obtained in this study provide insights into broad-spectrum carbohydrate utilization, genomic stability, and probiotic properties of YLGB-1496, which provide theoretical support to promote the use of YLGB-1496.
Collapse
Affiliation(s)
- Xiaoxia Li
- Research Center for Probiotics, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (X.L.); (J.Y.); (S.S.); (W.Z.)
| | - Jianjun Yang
- Research Center for Probiotics, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (X.L.); (J.Y.); (S.S.); (W.Z.)
| | - Shaoqi Shi
- Research Center for Probiotics, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (X.L.); (J.Y.); (S.S.); (W.Z.)
| | - Hanglian Lan
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (H.L.); (W.H.); (J.H.)
| | - Wen Zhao
- Research Center for Probiotics, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (X.L.); (J.Y.); (S.S.); (W.Z.)
| | - Weilian Hung
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (H.L.); (W.H.); (J.H.)
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (H.L.); (W.H.); (J.H.)
| | - Ran Wang
- Research Center for Probiotics, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (X.L.); (J.Y.); (S.S.); (W.Z.)
| |
Collapse
|
5
|
Banerjee A, Kang CY, An M, Koff BB, Sunder S, Kumar A, Tenuta LMA, Stockbridge RB. Fluoride export is required for competitive fitness of pathogenic microorganisms in dental biofilm models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576223. [PMID: 38293214 PMCID: PMC10827179 DOI: 10.1101/2024.01.18.576223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLCF F-/H+ antiporter and FEX fluoride channel, respectively, whereas commensal eubacteria, such as Streptococcus gordonii, export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with genetic knockout of the CLCF transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans, increased the relative proportion of commensal S. gordonii, and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride, but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time, and biochemical purification the S. mutans CLCF transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms, and that S. mutans is especially susceptible to fluoride toxicity.
Collapse
Affiliation(s)
- Aditya Banerjee
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chia-Yu Kang
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minjun An
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - B. Ben Koff
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sham Sunder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Randy B. Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
St. Pierre J, Roberts J, Alam MA, Shields RC. Construction of an arrayed CRISPRi library as a resource for essential gene function studies in Streptococcus mutans. Microbiol Spectr 2024; 12:e0314923. [PMID: 38054713 PMCID: PMC10783072 DOI: 10.1128/spectrum.03149-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE The construction of arrayed mutant libraries has advanced the field of bacterial genetics by allowing researchers to more efficiently study the exact function and importance of encoded genes. In this study, we constructed an arrayed clustered regularly interspaced short palindromic repeats interference (CRISPRi) library, known as S treptococcus mutans arrayed CRISPRi (SNAP), as a resource to study >250 essential and growth-supporting genes in Streptococcus mutans. SNAP will be made available to the research community, and we anticipate that its distribution will lead to high-quality, high-throughput, and reproducible studies of essential genes.
Collapse
Affiliation(s)
- Jackson St. Pierre
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
- New York Institute of Technology College of Osteopathic Medicine, Jonesboro, Arkansas, USA
| | - Justin Roberts
- Department of Chemistry & Physics, Arkansas State University, Jonesboro, Arkansas, USA
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mohammad A. Alam
- Department of Chemistry & Physics, Arkansas State University, Jonesboro, Arkansas, USA
| | - Robert C. Shields
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
7
|
Singh A, Patani A, Patel M, Vyas S, Verma RK, Amari A, Osman H, Rathod L, Elboughdiri N, Yadav VK, Sahoo DK, Chundawat RS, Patel A. Tomato seed bio-priming with Pseudomonas aeruginosa strain PAR: a study on plant growth parameters under sodium fluoride stress. Front Microbiol 2024; 14:1330071. [PMID: 38239735 PMCID: PMC10794310 DOI: 10.3389/fmicb.2023.1330071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
The primary goal of this experiment is to examine the effectiveness of Pseudomonas aeruginosa strain PAR as a rhizobacterium that promotes plant growth in mitigating the negative effects of fluoride-induced stress in tomato (Lycopersicon esculentum Mill.) plants. A total of 16 rhizobacterial strains were tested for plant growth-promoting (PGP) attributes, with isolates S1, S2, and S3 exhibiting different characteristics. Furthermore, growth kinetics studies revealed that these isolates were resilient to fluoride stress (10, 20, 40, and 80 ppm), with isolate S2 exhibiting notable resilience compared to the other two strains. Phylogenetic analysis revealed isolate S2 as P. aeruginosa strain PAR. Physiological analyses demonstrated that P. aeruginosa strain PAR had a beneficial impact on plant properties under fluoride stress, comprising seed germination, root length, shoot height, relative water content, and leaf area, the strain also impacted the buildup of glycine betaine, soluble sugar, and proline, demonstrating its significance in enhancing plant stress tolerance. In P. aeruginosa strain PAR-treated plants, chlorophyll content increased while malondialdehyde (MDA) levels decreased, indicating enhanced photosynthetic efficiency and less oxidative stress. The strain modified antioxidant enzyme action (catalase, ascorbate, glutathione reductase, peroxidase, and superoxide dismutase), which contributed to improved stress resilience. Mineral analysis revealed a decrease in sodium and fluoride concentrations while increasing magnesium, potassium, phosphorus, and iron levels, emphasizing the strain's significance in nutrient management. Correlation and principal component analysis revealed extensive correlations between physiological and biochemical parameters, underscoring P. aeruginosa strain PAR's multifaceted impact on plant growth and stress response. This study offers valuable information on effectively utilizing PGPR, particularly P. aeruginosa strain PAR, in fluoride-contaminated soils for sustainable agriculture. It presents a promising biological strategy to enhance crop resilience and productivity.
Collapse
Affiliation(s)
- Anamika Singh
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, India
| | - Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, India
| | - Margi Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Suhas Vyas
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Junagadh, Gujarat, India
| | - Rakesh Kumar Verma
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, India
| | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Haitham Osman
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Lokendra Rathod
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il, Saudi Arabia
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes, Tunisia
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | | | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| |
Collapse
|
8
|
Kortam YG, Abd El-Rahim WM, Khattab AENA, Rebouh NY, Gurina RR, Barakat OS, Zakaria M, Moawad H. Enhancing the Antibiotic Production by Thermophilic Bacteria Isolated from Hot Spring Waters via Ethyl Methanesulfonate Mutagenesis. Antibiotics (Basel) 2023; 12:1095. [PMID: 37508191 PMCID: PMC10376502 DOI: 10.3390/antibiotics12071095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Antibiotic-resistant bacteria represent a serious public health threat. For that reason, the development of new and effective antibiotics to control pathogens has become necessary. The current study aims to search for new microorganisms expressing antibiotic production capacity. Fifteen sites covering a wide range of harsh environmental conditions in Egypt were investigated. Two hundred and eighty bacterial isolates were obtained and then tested against pathogenic bacteria using the agar disk diffusion technique. Fifty-two (18.6% of the total) of the isolates exhibited antagonistic properties, which affected one or more of the tested pathogens. The isolate 113 was identified as Bacillus licheniformis and isolate 10 was identified as Brevibacillus borstelensis using the 16S rRNA technique. The B. licheniformis strain was stronger in antibiotic production against S. typhi, M. luteus, and P. ariginosa, whereas the strain Br. borstelensis was more efficient against B. cereus, E. coli, and Klebs. sp. The sensitivity of the strains to commercial antibiotics showed that B. licheniformis was highly sensitive to seven commercial antibiotics, whereas Br. borstelensis was sensitive to nine antibiotics. The two strains were subjected to ethyl methanesulfonate (EMS) mutagenesis to obtain mutants with a higher antibiotic production. The total bacterial count was measured after treatment with EMS mutagen and showed a significant gradual increase in the antimicrobial activity, which was achieved via shaking in the presence of EMS for 60 min. High antimicrobial activities were noted with 17 and 14 mutants from the B. licheniformis and Br. borstelensis strains, respectively. The mutant B. licheniformis (M15/Amo) was more active than the parent strain against S. aureus (212.5%), while the mutant Br. borstelensis (B7/Neo) was more effective against S. typhi (83.3%). The present study demonstrates the possibility of obtaining potent antibiotic-producing bacteria in hot spring waters and further improving the indigenous bacterial capacity to produce antibiotics by using EMS mutagenesis.
Collapse
Affiliation(s)
- Yasmin G Kortam
- Department of Agricultural Microbiology, National Research Centre, Giza 12622, Egypt
| | - Wafaa M Abd El-Rahim
- Department of Agricultural Microbiology, National Research Centre, Giza 12622, Egypt
| | | | - Nazih Y Rebouh
- Department of Environmental Management, Institute of Environmental Engineering, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Regina R Gurina
- Technosphere Security Department, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Olfat S Barakat
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo 12613, Egypt
| | - Mohamed Zakaria
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo 12613, Egypt
| | - Hassan Moawad
- Department of Agricultural Microbiology, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
9
|
Lin X, Hu T, Chen J, Liang H, Zhou J, Wu Z, Ye C, Jin X, Xu X, Zhang W, Jing X, Yang T, Wang J, Yang H, Kristiansen K, Xiao L, Zou Y. The genomic landscape of reference genomes of cultivated human gut bacteria. Nat Commun 2023; 14:1663. [PMID: 36966151 PMCID: PMC10039858 DOI: 10.1038/s41467-023-37396-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
Culture-independent metagenomic studies have revolutionized our understanding of the gut microbiota. However, the lack of full genomes from cultured species is still a limitation for in-depth studies of the gut microbiota. Here we present a substantially expanded version of our Cultivated Genome Reference (CGR), termed CGR2, providing 3324 high-quality draft genomes from isolates selected from a large-scale cultivation of bacterial isolates from fecal samples of healthy Chinese individuals. The CGR2 classifies 527 species (179 previously unidentified species) from 8 phyla, and uncovers a genomic and functional diversity of Collinsella aerofaciens. The CGR2 genomes match 126 metagenome-assembled genomes without cultured representatives in the Unified Human Gastrointestinal Genome (UHGG) collection and harbor 3767 unidentified secondary metabolite biosynthetic gene clusters, providing a source of natural compounds with pharmaceutical potentials. We uncover accurate phage-bacterium linkages providing information on the evolutionary characteristics of interaction between bacteriophages and bacteria at the strain level.
Collapse
Affiliation(s)
- Xiaoqian Lin
- BGI-Shenzhen, Shenzhen, 518083, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | | | - Jianwei Chen
- BGI-Shenzhen, Shenzhen, 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | | | - Jianwei Zhou
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China
| | - Zhinan Wu
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Ye
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xiaohuan Jing
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Tao Yang
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, 518083, China.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- PREDICT, Center for Molecular Prediction of Inflammatory Bowel Disease, Faculty of Medicine, Aalborg University, 2450, Copenhagen, Denmark.
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, 518083, China.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China.
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen, 518083, China.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
10
|
Shen Y, Yu F, Qiu L, Gao M, Xu P, Zhang L, Liao X, Wang M, Hu X, Sun Y, Pan Y. Ecological influence by colonization of fluoride-resistant Streptococcus mutans in oral biofilm. Front Cell Infect Microbiol 2023; 12:1106392. [PMID: 36699726 PMCID: PMC9868560 DOI: 10.3389/fcimb.2022.1106392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023] Open
Abstract
Background Dental caries is one of the oldest and most common infections in humans. Improved oral hygiene practices and the presence of fluoride in dentifrices and mouth rinses have greatly reduced the prevalence of dental caries. However, increased fluoride resistance in microbial communities is concerning. Here, we studied the effect of fluoride-resistant Streptococcus mutans (S. mutans) on oral microbial ecology and compare it with wild-type S. mutans in vitro. Methods Biofilm was evaluated for its polysaccharide content, scanning electron microscopy (SEM) imaging, acid-producing ability, and related lactic dehydrogenase (LDH), arginine deiminase (ADS), and urease enzymatic activity determination. Fluorescence in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (qRT-PCR) were used to evaluate the S. mutans ratio within the biofilm. It was followed by 16S rRNA sequencing to define the oral microbial community. Results Fluoride-resistant S. mutans produced increased polysaccharides in presence of NaF (P < 0.05). The enzymatic activities related to both acid and base generation were less affected by the fluoride. In presence of 275 ppm NaF, the pH in the fluoride-resistant strain sample was lower than the wild type. We observed that with the biofilm development and accumulative fluoride concentration, the fluoride-resistant strain had positive relationships with other bacteria within the oral microbial community, which enhanced its colonization and survival. Compared to the wild type, fluoride-resistant strain significantly increased the diversity and difference of oral microbial community at the initial stage of biofilm formation (4 and 24 h) and at a low fluoride environment (0 and 275 ppm NaF) (P < 0.05). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that fluoride-resistant strain enhanced the metabolic pathways and glucose transfer. Conclusions Fluoride-resistant S. mutans affected the microecological balance of oral biofilm and its cariogenic properties in vitro, indicating its negative impact on fluoride's caries prevention effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Sun
- *Correspondence: Yihuai Pan, ; Yan Sun,
| | | |
Collapse
|
11
|
Spencer P, Ye Q, Misra A, Chandler JR, Cobb CM, Tamerler C. Engineering peptide-polymer hybrids for targeted repair and protection of cervical lesions. FRONTIERS IN DENTAL MEDICINE 2022; 3. [PMID: 37153688 PMCID: PMC10162700 DOI: 10.3389/fdmed.2022.1007753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
By 2060, nearly 100 million people in the U.S. will be over age 65 years. One-third of these older adults will have root caries, and nearly 80% will have dental erosion. These conditions can cause pain and loss of tooth structure that interfere with eating, speaking, sleeping, and quality of life. Current treatments for root caries and dental erosion have produced unreliable results. For example, the glass-ionomer-cement or composite-resin restorations used to treat these lesions have annual failure rates of 44% and 17%, respectively. These limitations and the pressing need to treat these conditions in the aging population are driving a focus on microinvasive strategies, such as sealants and varnishes. Sealants can inhibit caries on coronal surfaces, but they are ineffective for root caries. For healthy, functionally independent elders, chlorhexidine varnish applied every 3 months inhibits root caries, but this bitter-tasting varnish stains the teeth. Fluoride gel inhibits root caries, but requires prescriptions and daily use, which may not be feasible for some older patients. Silver diamine fluoride can both arrest and inhibit root caries but stains the treated tooth surface black. The limitations of current approaches and high prevalence of root caries and dental erosion in the aging population create an urgent need for microinvasive therapies that can: (a) remineralize damaged dentin; (b) inhibit bacterial activity; and (c) provide durable protection for the root surface. Since cavitated and non-cavitated root lesions are difficult to distinguish, optimal approaches will treat both. This review will explore the multi-factorial elements that contribute to root surface lesions and discuss a multi-pronged strategy to both repair and protect root surfaces. The strategy integrates engineered peptides, novel polymer chemistry, multi-scale structure/property characterization and predictive modeling to develop a durable, microinvasive treatment for root surface lesions.
Collapse
|
12
|
Thirumala M, Sai Krishna E, Sindhu Priya P, Vishnuvardhan Reddy S. Characterization of a novel Fluoride resistant bacterial isolate and its capability of Fluoride bioremediation. AIMS Microbiol 2022; 8:470-483. [PMID: 36694586 PMCID: PMC9834081 DOI: 10.3934/microbiol.2022031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
A Gram positive rod shaped bacterium designated as isolate H1 with Fluoride resistance up to 4 g/L sodium fluoride (NaF) in LB (Luria-Bertani) agar was isolated from a ground water sample of Narketpally area, Nalgonda district, Telangana, India. The colonies of isolate H1 were off white in color. Growth patterns of isolate H1 were observed at two different concentrations, 100 and 250 ppm, of NaF and also without NaF in the medium. In cases where NaF was present in the media, the lag phases of the growth curves were extended when compared to the absence of NaF. Optimum pH required for the organism's growth was 8. Isolate H1 required a temperature of 37 °C with 150 rpm and 2% NaCl for its optimal growth in the medium without NaF. Meanwhile, isolate H1 could thrive in a diverse pH range, i.e., pH 5-10, and at an NaCl concentration of up to 11% in the medium with NaF. Based on morphological, biochemical and molecular characterization, isolate H1 was identified as belonging to the genus Bacillus. It showed 98.47% 16S rDNA gene sequence similarity with Bacillus australimaris NH71_1T. Isolate H1 showed high fluoride removals of 22.5% and 38.2% with 100 and 250 mg/L of NaF in the LB broth when incubated at pH 8 and a temperature of 37 °C with 150 rpm for 3 day. Hence, this organism could be a promising isolate to apply for defluoridation of ground water in fluoride contaminthe ated areas.
Collapse
Affiliation(s)
- M Thirumala
- Microbial Ecology Laboratory, Department of Biochemistry, UCS, Mahatma Gandhi University, Anneparthy, Yellareddygudem (PO), Nalgonda-508254, Telangana, India,* Correspondence:
| | - E Sai Krishna
- Microbial Ecology Laboratory, Department of Biochemistry, UCS, Mahatma Gandhi University, Anneparthy, Yellareddygudem (PO), Nalgonda-508254, Telangana, India,Microbztech Labs Pvt. Ltd., Cherlapally, Nalgonda-508001, Telangana, India
| | - P Sindhu Priya
- Microbial Ecology Laboratory, Department of Biochemistry, UCS, Mahatma Gandhi University, Anneparthy, Yellareddygudem (PO), Nalgonda-508254, Telangana, India,Microbztech Labs Pvt. Ltd., Cherlapally, Nalgonda-508001, Telangana, India
| | - S Vishnuvardhan Reddy
- Microbial Ecology Laboratory, Department of Biochemistry, UCS, Mahatma Gandhi University, Anneparthy, Yellareddygudem (PO), Nalgonda-508254, Telangana, India,Microbztech Labs Pvt. Ltd., Cherlapally, Nalgonda-508001, Telangana, India,* Correspondence:
| |
Collapse
|
13
|
Johnston N, Cline G, Strobel SA. Cells Adapt to Resist Fluoride through Metabolic Deactivation and Intracellular Acidification. Chem Res Toxicol 2022; 35:2085-2096. [PMID: 36282204 PMCID: PMC9683101 DOI: 10.1021/acs.chemrestox.2c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 01/09/2023]
Abstract
Fluoride is highly abundant in the environment. Many organisms have adapted specific defense mechanisms against high concentrations of fluoride, including the expression of proteins capable of removing fluoride from cells. However, these fluoride transporters have not been identified in all organisms, and even organisms that express fluoride transporters vary in tolerance capabilities across species, individuals, and even tissue types. This suggests that alternative factors influence fluoride tolerance. We screened for adaptation against fluoride toxicity through an unbiased mutagenesis assay conducted on Saccharomyces cerevisiae lacking the fluoride exporter FEX, the primary mechanism of fluoride resistance. Over 80 independent fluoride-hardened strains were generated, with anywhere from 100- to 1200-fold increased fluoride tolerance compared to the original strain. The whole genome of each mutant strain was sequenced and compared to the wild type. The fluoride-hardened strains utilized a combination of phenotypes that individually conferred fluoride tolerance. These included intracellular acidification, cellular dormancy, nutrient storage, and a communal behavior reminiscent of flocculation. Of particular importance to fluoride resistance was intracellular acidification, which served to reverse the accumulation of fluoride and lead to its excretion from the cell as HF without the activity of a fluoride-specific protein transporter. This transport mechanism was also observed in wild-type yeast through a manual mutation to lower their cytoplasmic pH. The results demonstrate that the yeast developed a protein-free adaptation for removing an intracellular toxicant.
Collapse
Affiliation(s)
- Nichole
R. Johnston
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven 06477, Connecticut, United States
| | - Gary Cline
- Department
of Internal Medicine, Yale School of Medicine, New Haven 06510, Connecticut, United States
| | - Scott A. Strobel
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven 06477, Connecticut, United States
- Department
of Chemistry, Yale University, New Haven 06477, Connecticut, United States
| |
Collapse
|
14
|
Luong AD, Buzid A, Luong JHT. Important Roles and Potential Uses of Natural and Synthetic Antimicrobial Peptides (AMPs) in Oral Diseases: Cavity, Periodontal Disease, and Thrush. J Funct Biomater 2022; 13:jfb13040175. [PMID: 36278644 PMCID: PMC9589978 DOI: 10.3390/jfb13040175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Numerous epithelial cells and sometimes leukocytes release AMPs as their first line of defense. AMPs encompass cationic histatins, defensins, and cathelicidin to encounter oral pathogens with minimal resistance. However, their concentrations are significantly below the effective levels and AMPs are unstable under physiological conditions due to proteolysis, acid hydrolysis, and salt effects. In parallel to a search for more effective AMPs from natural sources, considerable efforts have focused on synthetic stable and low-cytotoxicy AMPs with significant activities against microorganisms. Using natural AMP templates, various attempts have been used to synthesize sAMPs with different charges, hydrophobicity, chain length, amino acid sequence, and amphipathicity. Thus far, sAMPs have been designed to target Streptococcus mutans and other common oral pathogens. Apart from sAMPs with antifungal activities against Candida albicans, future endeavors should focus on sAMPs with capabilities to promote remineralization and antibacterial adhesion. Delivery systems using nanomaterials and biomolecules are promising to stabilize, reduce cytotoxicity, and improve the antimicrobial activities of AMPs against oral pathogens. Nanostructured AMPs will soon become a viable alternative to antibiotics due to their antimicrobial mechanisms, broad-spectrum antimicrobial activity, low drug residue, and ease of synthesis and modification.
Collapse
Affiliation(s)
- Albert Donald Luong
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University of Buffalo, Buffalo, NY 14215, USA
| | - Alyah Buzid
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - John H. T. Luong
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, T12 YN60 Cork, Ireland
- Correspondence: or
| |
Collapse
|
15
|
Kade KK, Chaudhary S, Shah R, Patil S, Patel A, Kamble A. Comparative Evaluation of the Remineralization Potential of Fluoride-containing Toothpaste, Honey Ginger Paste and Ozone. An In Vitro Study. Int J Clin Pediatr Dent 2022; 15:541-548. [PMID: 36865712 PMCID: PMC9973117 DOI: 10.5005/jp-journals-10005-2445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Introduction A drop in pH of the oral cavity results in demineralization, which, if continued, leads to loss of minerals from tooth structure, resulting in dental caries. A goal of modern dentistry is to manage noncavitated caries lesions noninvasively through remineralization in an attempt to prevent disease progression. Materials and methods A total of 40 extracted premolar teeth were selected for the study. The specimens were divided into four groups, group I, the control group; group II, remineralizing agent as fluoride toothpaste; group III, the treatment material as ginger and honey paste; and group IV, the treatment material as ozone oil. An initial reading of surface roughness and hardness was recorded for the group (control group). Repeated treatment has continued lasting 21 days. This saliva was changed each day. Following the lesion formation procedure, the surface microhardness was measured for all specimens. The parameters were 200 gm force for 15 seconds with a Vickers indenter and the roughness of the demineralized area of each specimen was obtained by using the surface roughness tester. Results Surface roughness was checked by using a surface roughness tester. Before starting the pH cycle, the baseline value for the control group was calculated. The baseline value for the control group was calculated. The surface roughness average value for 10 samples is 0.555 µm and the average surface microhardness is 304 HV; the average surface roughness value for fluoride is 0.244 µm and the microhardness is 256 HV, 0.241 µm, and 271 HV value for honey-ginger paste. For ozone surface roughness average value is 0.238 µm and the surface microhardness average mean value is 253 HV. Conclusion The future of dentistry will rely on the regeneration of tooth structure. There is no significant difference seen between each treatment group. Considering the adverse effect of fluoride, we can consider honey-ginger and ozone as good remineralizing agents for fluoride. How to cite this article Kade KK, Chaudhary S, Shah R, et al. Comparative Evaluation of the Remineralization Potential of Fluoride-containing Toothpaste, Honey Ginger Paste and Ozone. An In Vitro Study. Int J Clin Pediatr Dent 2022;15(5):541-548.
Collapse
Affiliation(s)
- Kimaya K Kade
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth Dental College and Hospital (Deemed to be University), Pune, Maharashtra, India
| | - Shweta Chaudhary
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth Dental College and Hospital (Deemed to be University), Pune, Maharashtra, India
| | - Rohan Shah
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth Dental College and Hospital (Deemed to be University), Pune, Maharashtra, India
| | - Smita Patil
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth Dental College and Hospital (Deemed to be University), Pune, Maharashtra, India
| | - Alok Patel
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth Dental College and Hospital (Deemed to be University), Pune, Maharashtra, India
| | - Amol Kamble
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth Dental College and Hospital (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
16
|
Wackett LP. Nothing lasts forever: understanding microbial biodegradation of polyfluorinated compounds and perfluorinated alkyl substances. Microb Biotechnol 2022; 15:773-792. [PMID: 34570953 PMCID: PMC8913905 DOI: 10.1111/1751-7915.13928] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Poly- and perfluorinated chemicals, including perfluorinated alkyl substances (PFAS), are pervasive in today's society, with a negative impact on human and ecosystem health continually emerging. These chemicals are now subject to strict government regulations, leading to costly environmental remediation efforts. Commercial polyfluorinated compounds have been called 'forever chemicals' due to their strong resistance to biological and chemical degradation. Environmental cleanup by bioremediation is not considered practical currently. Implementation of bioremediation will require uncovering and understanding the rare microbial successes in degrading these compounds. This review discusses the underlying reasons why microbial degradation of heavily fluorinated compounds is rare. Fluorinated and chlorinated compounds are very different with respect to chemistry and microbial physiology. Moreover, the end product of biodegradation, fluoride, is much more toxic than chloride. It is imperative to understand these limitations, and elucidate physiological mechanisms of defluorination, in order to better discover, study, and engineer bacteria that can efficiently degrade polyfluorinated compounds.
Collapse
Affiliation(s)
- Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMN55108USA
| |
Collapse
|
17
|
Zhang K, Xiang Y, Peng Y, Tang F, Cao Y, Xing Z, Li Y, Liao X, Sun Y, He Y, Ye Q. Influence of Fluoride-Resistant Streptococcus mutans Within Antagonistic Dual-Species Biofilms Under Fluoride In Vitro. Front Cell Infect Microbiol 2022; 12:801569. [PMID: 35295758 PMCID: PMC8918626 DOI: 10.3389/fcimb.2022.801569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The widespread application of fluoride, an extremely effective caries prevention agent, induces the generation of fluoride-resistant strains of opportunistic cariogenic bacteria such as fluoride-resistant Streptococcus mutans (S. mutans). However, the influence of this fluoride-resistant strain on oral microecological homeostasis under fluoride remains unknown. In this study, an antagonistic dual-species biofilm model composed of S. mutans and Streptococcus sanguinis (S. sanguinis) was used to investigate the influence of fluoride-resistant S. mutans on dual-species biofilm formation and pre-formed biofilms under fluoride to further elucidate whether fluoride-resistant strains would influence the anti-caries effect of fluoride from the point of biofilm control. The ratio of bacteria within dual-species biofilms was investigated using quantitative real-time PCR and fluorescence in situ hybridization. Cristal violet staining, scanning electron microscopy imaging, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay were used to evaluate biofilm biomass, biofilm structure, and metabolic activity, respectively. Biofilm acidogenicity was determined using lactic acid and pH measurements. The anthrone method and exopolysaccharide (EPS) staining were used to study the EPS production of biofilms. We found that, in biofilm formation, fluoride-resistant S. mutans occupied an overwhelming advantage in dual-species biofilms under fluoride, thus showing more biofilm biomass, more robust biofilm structure, and stronger metabolic activity (except for 0.275 g/L sodium fluoride [NaF]), EPS production, and acidogenicity within dual-species biofilms. However, in pre-formed biofilms, the advantage of fluoride-resistant S. mutans could not be fully highlighted for biofilm formation. Therefore, fluoride-resistant S. mutans could influence the anti-caries effect of fluoride on antagonistic dual-species biofilm formation while being heavily discounted in pre-formed biofilms from the perspective of biofilm control.
Collapse
Affiliation(s)
- Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yangfan Xiang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Youjian Peng
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fengyu Tang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanfan Cao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yejian Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiangyan Liao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yan Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yan He
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| |
Collapse
|
18
|
Li C, Qi C, Yang S, Li Z, Ren B, Li J, Zhou X, Cai H, Xu X, Peng X. F0F1-ATPase Contributes to the Fluoride Tolerance and Cariogenicity of Streptococcus mutans. Front Microbiol 2022; 12:777504. [PMID: 35173687 PMCID: PMC8841791 DOI: 10.3389/fmicb.2021.777504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
The phenotypic traits of Streptococcus mutans, such as fluoride tolerance, are usually associated with genotypic alterations. The aim of this study was to identify adaptive mutations of S. mutans to gradient fluoride concentrations and possible relationships between the mutations and fluoride tolerance. We identified a highly resistant S. mutans strain (FR1000) with a novel single nucleotide polymorphism (SNP, −36G→T) in the promoter region of F0F1-ATPase gene cluster (SMU_1527-SMU_1534) resistant to 1,000 ppm fluoride using the whole-genome Illumina PE250 sequencing. Thus, a −36G→T F0F1-ATPase promoter mutation from the parental strain S. mutans UA159 was constructed and named UA159-T. qRT-PCR showed that the F0F1-ATPase gene expression of both FR1000 and UA159-T was up-regulated, and fluoride tolerance of UA159-T was significantly improved. Complementation of Dicyclohexylcarbodiimide (DCCD), a specific inhibitor of F0F1-ATPase, increased fluoride susceptibility of FR1000 and UA159-T. Intracellular fluoride concentrations of fluoride tolerance strains were higher compared to UA159 strain as demonstrated by 18F analysis. Further validation with rat caries models showed that UA159-T caused more severe caries lesions under fluoride exposure compared with its parental UA159 strain. Overall, the identified −36G→T mutation in the promoter region of F0F1-ATPase gene drastically contributed to the fluoride tolerance and enhanced cariogenicity of S. mutans. These findings provided new insights into the mechanism of microbial fluoride tolerance, and suggested F0F1-ATPase as a potential target for suppressing fluoride resistant strains.
Collapse
Affiliation(s)
- Cheng Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cai Qi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sirui Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huawei Cai
- Laboratory of Nuclear Medicine, Department of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Xin Xu,
| | - Xian Peng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Xian Peng,
| |
Collapse
|
19
|
Zhang M, Liao Y, Tong X, Yan F. Novel urea derivative-loaded PLGA nanoparticles to inhibit caries-associated Streptococcus mutans. RSC Adv 2022; 12:4072-4080. [PMID: 35425421 PMCID: PMC8981093 DOI: 10.1039/d1ra09314b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Caries is the most common chronic infectious disease in the human oral cavity and the existing anti-caries agents may lead to drug resistance and microecological imbalance. A novel urea derivative, 1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea, has a potentially prominent antibacterial effect on cariogenic bacterial strain Streptococcus mutans UA159. In this study, we encapsulated the water-insoluble urea derivative in poly(lactic-co-glycolic acid) (PLGA) nanoparticles, performed physicochemical characterizations and explored its potential as a caries-preventive agent. The results showed that the drug-loaded PLGA nanoparticles exhibited satisfying surface morphology, particle size, size distribution and stability. With an optimized theoretical drug loading (10%), the drug-loaded PLGA nanoparticles exhibited negligible cytotoxicity against human oral squamous cell carcinoma cells. We noticed a biphasic drug release in vitro and the rate and cumulative release was higher in an acidic environment (pH 4.5) compared to a neutral environment (pH 7.4). The drug-loaded PLGA nanoparticles significantly inhibited the growth and lactic acid production of planktonic S. mutans as well as S. mutans biofilms. Our results indicate that the novel urea derivative-loaded PLGA nanoparticles serve as a promising anti-caries agent with remarkable pharmaceutical characteristics, low cytotoxicity, and satisfying antimicrobial effect.
Collapse
Affiliation(s)
- Mengyun Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University Nanjing Jiangsu 210008 China
| | - Ying Liao
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University Nanjing Jiangsu 210008 China
| | - Xin Tong
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University Nanjing Jiangsu 210008 China
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University Nanjing Jiangsu 210008 China
| |
Collapse
|
20
|
Tang S, Dong Z, Ke X, Luo J, Li J. Advances in biomineralization-inspired materials for hard tissue repair. Int J Oral Sci 2021; 13:42. [PMID: 34876550 PMCID: PMC8651686 DOI: 10.1038/s41368-021-00147-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Biomineralization is the process by which organisms form mineralized tissues with hierarchical structures and excellent properties, including the bones and teeth in vertebrates. The underlying mechanisms and pathways of biomineralization provide inspiration for designing and constructing materials to repair hard tissues. In particular, the formation processes of minerals can be partly replicated by utilizing bioinspired artificial materials to mimic the functions of biomolecules or stabilize intermediate mineral phases involved in biomineralization. Here, we review recent advances in biomineralization-inspired materials developed for hard tissue repair. Biomineralization-inspired materials are categorized into different types based on their specific applications, which include bone repair, dentin remineralization, and enamel remineralization. Finally, the advantages and limitations of these materials are summarized, and several perspectives on future directions are discussed.
Collapse
Affiliation(s)
- Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
- Med-X Center for Materials, Sichuan University, Chengdu, PR China.
| |
Collapse
|
21
|
Silkin YA, Silkina EN, Silkin MY. The Effect of Azide, Fluoride, Orthovanadate and EDTA Sodium Salts on Ecto-ATPase Activity in Erythrocytes of a Scorpionfish (Scorpaena porcus L.) and Thornback Ray (Raja clavata L.). J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021050033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Zhang L, Yin W, Wang C, Zhang A, Zhang H, Zhang T, Ju F. Untangling Microbiota Diversity and Assembly Patterns in the World's Largest Water Diversion Canal. WATER RESEARCH 2021; 204:117617. [PMID: 34555587 DOI: 10.1016/j.watres.2021.117617] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Large water diversion projects are important constructions for reallocation of human-essential water resources. Deciphering microbiota dynamics and assembly mechanisms underlying canal water ecosystem services especially during long-distance diversion is a prerequisite for water quality monitoring, biohazard warning and sustainable management. Using a 1432-km canal of the South-to-North Water Diversion Projects as a model system, we answer three central questions: how bacterial and micro-eukaryotic communities spatio-temporally develop, how much ecological stochasticity contributes to microbiota assembly, and which immigrating populations better survive and navigate across the canal. We applied quantitative ribosomal RNA gene sequence analyses to investigate canal water microbial communities sampled over a year, as well as null model- and neutral model-based approaches to disentangle the microbiota assembly processes. Our results showed clear microbiota dynamics in community composition driven by seasonality more than geographic location, and seasonally dependent influence of environmental parameters. Overall, bacterial community was largely shaped by deterministic processes, whereas stochasticity dominated micro-eukaryotic community assembly. We defined a local growth factor (LGF) and demonstrated its innovative use to quantitatively infer microbial proliferation, unraveling taxonomically dependent population response to local environmental selection across canal sections. Using LGF as a quantitative indicator of immigrating capacities, we also found that most micro-eukaryotic populations (82%) from the source water sustained growth in the canal and better acclimated to the hydrodynamical water environment than bacteria (67%). Taxa inferred to largely propagate include Limnohabitans sp. and Cryptophyceae, potentially contributing to water auto-purification. Combined, our work poses first and unique insights into the microbiota assembly patterns and dynamics in the world's largest water diversion canal, providing important ecological knowledge for long-term sustainable water quality maintenance in such a giant engineered system.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Wei Yin
- Changjiang Water Resources Protection Institute, 515 Qintai Street, Wuhan 430051, Hubei Province, China
| | - Chao Wang
- Changjiang Water Resources Protection Institute, 515 Qintai Street, Wuhan 430051, Hubei Province, China
| | - Aijing Zhang
- Construction and Administration Bureau of South-to-North Water Diversion Middle Route Project, 1 Yuyuantan South Road, Beijing 100038, China
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, Pokfulam Road, The University of Hong Kong, Hong Kong 999077, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
23
|
Lee HJ, Song J, Kim JN. Genetic Mutations That Confer Fluoride Resistance Modify Gene Expression and Virulence Traits of Streptococcus mutans. Microorganisms 2021; 9:microorganisms9040849. [PMID: 33921039 PMCID: PMC8071458 DOI: 10.3390/microorganisms9040849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/28/2022] Open
Abstract
Fluoride is an inorganic monatomic anion that is widely used as an anti-cariogenic agent for the control of caries development. The aims of this study were to identify the mutated genes that give rise to fluoride-resistant (FR) strains of the cariogenic pathogen Streptococcus mutans and explore how genetic alterations in the genome of an S. mutans FR strain optimize the metabolism(s) implicated in the expression of virulence-associated traits. Here, we derived an S. mutans FR strain from a wild-type UA159 strain by continuous shifts to a medium supplemented with increasing concentrations of fluoride. The FR strain exhibited a slow growth rate and low yield under aerobic and oxidative stress conditions and was highly sensitive to acid stress. Notably, microscopy observation displayed morphological changes in which the FR strain had a slightly shorter cell length. Next, using the sequencing analyses, we found six mutations in the FR genome, which decreased the gene expression of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). Indeed, the ability to intake carbohydrates was relatively reduced in the FR strain. Collectively, our results provide evidence that the genetic mutations in the genome of the FR strain modulate the expression of gene(s) for carbon metabolism(s) and cellular processes, leading to diminished fitness with respect to virulence and persistence.
Collapse
Affiliation(s)
- Hyeon-Jeong Lee
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Korea;
| | - Jihee Song
- Department of Family, Youth, and Community Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Jeong Nam Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Korea;
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2269
| |
Collapse
|
24
|
Park S, Wang X, Wang B, Xu HHK, Zhang N, Bai Y. The long observation in vitro of prevention effect of novel self-etching orthodontic adhesive modified with 2-methacryloxyethyl phosphorylcholine in enamel demineralization. Dent Mater J 2021; 40:631-640. [PMID: 33518689 DOI: 10.4012/dmj.2019-193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The enamel demineralization is common in fixed orthodontics. Plaque accumulation around the bracket plays a critical role and could cause various degrees of white spot lesions (WSLs) on the surface of teeth. The 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer is a biological polymer with protein repellent and an anti-bacterial adhesion effects. In this study, the enamel shear bond strength (SBS) and protein repellent property in vitro of self-etching orthodontic adhesive with MPC were evaluated. It was found that the self-etching adhesive with 0-7.5%MPC met the orthodontic clinical requirement on the SBS values at three different points of time. The incorporation of 7.5%MPC significantly reduced the bacterial adhesion and total microorganism of the yield biofilm. Moreover, the MTT assay showed that the amount of plaque metabolism in 7.5%MPC was the lowest among the groups. To conclude, the novel protein repellent self-etching adhesive was able to inhibit biofilm formation efficiently and minimize enamel demineralization.
Collapse
Affiliation(s)
- SooRo Park
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Xiaomeng Wang
- Department of Orthodontics, School of Stomatology, Capital Medical University.,Department of Stomatology, Children's Hospital of Shanghai
| | - Bo Wang
- Department of Orthodontics, School of Stomatology, Capital Medical University.,Department of Orthodontics, The First Affiliated Hospital of Dalian Medical University
| | - Hockin H K Xu
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University
| |
Collapse
|
25
|
Abstract
Microorganisms contend with numerous and unusual chemical threats and have evolved a catalog of resistance mechanisms in response. One particularly ancient, pernicious threat is posed by fluoride ion (F-), a common xenobiotic in natural environments that causes broad-spectrum harm to metabolic pathways. This review focuses on advances in the last ten years toward understanding the microbial response to cytoplasmic accumulation of F-, with a special emphasis on the structure and mechanisms of the proteins that microbes use to export fluoride: the CLCF family of F-/H+ antiporters and the Fluc/FEX family of F- channels.
Collapse
Affiliation(s)
- Benjamin C McIlwain
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Michal T Ruprecht
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
26
|
Yu J, Wang Y, Han D, Cao W, Zheng L, Xie Z, Liu H. Identification of Streptococcus mutans genes involved in fluoride resistance by screening of a transposon mutant library. Mol Oral Microbiol 2020; 35:260-270. [PMID: 33000897 DOI: 10.1111/omi.12316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 11/28/2022]
Abstract
Fluoride has been used as an effective anticaries agent for more than 70 years, which might result in the emergence of fluoride-resistant strains. However, the fluoride resistance mechanism and the cariogenic properties of fluoride-resistant mutant for cariogenic bacterial species Streptococcus mutans remain largely unknown. We describe here the construction and characterization of a mariner-based transposon system designed to be used in S. mutans, which is also potentially applicable to other streptococci. To identify genetic determinants of fluoride resistance in S. mutans, we constructed a library of S. mutans transposon insertion mutants and screened this library to identify mutants exhibiting fluoride resistance phenotype. Two mutants were found to carry transposon insertion in two different genetic loci (smu.396 and smu.1291c), respectively. Our subsequent genetic study indicates the fluoride-resistant phenotype for the mutant with the insertion in smu.1291c is resulting from the constitutive overexpression of downstream operon smu.1290c-89c, which is consistent with the previous reports. We also demonstrate for the first time that the deletion of smu.396 is responsible for the fluoride-resistant phenotype and that the combining of smu1290c-89c overexpression and smu.396 deletion in one strain could attribute an additive effect on the fluoride resistance. In addition, our results suggest that the biological fitness of those fluoride-resistant mutants is reduced compared to that of wild-type strain. Overall, our identification and characterization of genetic determinants responsible for fluoride resistance in S. mutans expand our understanding of the fluoride resistance mechanism and the biological consequence of the fluoride resistance strains.
Collapse
Affiliation(s)
- Jie Yu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yaqi Wang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Dongmei Han
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanyan Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
27
|
Loimaranta V, Mazurel D, Deng D, Söderling E. Xylitol and erythritol inhibit real-time biofilm formation of Streptococcus mutans. BMC Microbiol 2020; 20:184. [PMID: 32600259 PMCID: PMC7325245 DOI: 10.1186/s12866-020-01867-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background Regular consumption of xylitol decreases the number of cariogenic streptococci in dental plaque. In vitro biofilm models to study the mechanism of xylitol action have been set-up, but the obtained results are contradictory. Biofilm growth is a dynamic process with time-specific characteristics that may remain undetected in conventional end-point biofilm tests. In this study we used an impedance spectroscopy instrument, xCELLigence Real Time Cell Analyzer (RTCA), that allows label-free, non-invasive real-time monitoring of biofilm formation, to explore effects of xylitol on biofilm formation by Streptococcus mutans. Based on the obtained information of biofilm dynamics, we assessed the number of viable bacteria, the polysaccharide content, and the expression levels of selected genes involved in glucan-mediated biofilm formation in different biofilm stages. Xylitol inhibition was compared with that of erythritol; another polyol suggested to have a positive impact on oral health. Results Our results showed that real-time monitoring provided new information of polyol-induced changes in S. mutans biofilm formation dynamics. The inhibitory effect of polyols was more pronounced in the early stages of biofilm formation but affected also the measured total amount of formed biofilm. Effects seen in the real-time biofilm assay were only partially explained by changes in CFU values and polysaccharide amounts in the biofilms. Both xylitol and erythritol inhibited real-time biofilm formation by all the nine tested S. mutans strains. Sensitivity of the strains to inhibition varied: some were more sensitive to xylitol and some to erythritol. Xylitol also modified the expression levels of gbpB, gtfB, gtfC and gtfD genes that are important in polysaccharide-mediated adherence of S. mutans. Conclusion The erythritol- and xylitol- induced inhibition of biofilm formation was only partly explained by decrease in the number of viable S. mutans cells or the amount of polysaccharides in the biofilm matrix, suggesting that in addition to reduced proliferation also the matrix composition and thereby the surface attachment quality of biofilm matrix may be altered by the polyols.
Collapse
Affiliation(s)
- Vuokko Loimaranta
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.
| | - Danuta Mazurel
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| | - Eva Söderling
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| |
Collapse
|
28
|
Lu M, Xiang Z, Gong T, Zhou X, Zhang Z, Tang B, Zeng J, Wang L, Cui T, Li Y. Intrinsic Fluoride Tolerance Regulated by a Transcription Factor. J Dent Res 2020; 99:1270-1278. [PMID: 32485128 DOI: 10.1177/0022034520927385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fluoride facilitates the remineralization of dental hard tissues and affects bacterial activities. Therefore, it is extensively used as an anti-caries agent in clinical practice and daily life. Although some studies focused on understanding Streptococcus mutans' response to fluoride, the mechanism regulating intrinsic fluoride tolerance is not yet clear. Since the TetR family of transcription factors is associated with multidrug resistance, our aim was to evaluate whether they are related to fluoride tolerance in S. mutans. A mutant library including each S. mutans TetR gene was constructed and the transcription factor fluoride related transcriptional regulator (FrtR) was identified. The in-frame deletion of the S. mutans frtR gene resulted in decreased cell viability under fluoride in both the planktonic state and single-/dual-species biofilms. This in-frame frtR mutant was used for RNA-sequencing and the fluoride related permease gene (frtP) was found as 1 of the downstream genes directly regulated by FrtR. The recombinant FrtR protein was purified, and conserved DNA binding motifs were determined using electrophoretic mobility shift and DNase I footprinting assays. Finally, a series of mutant and complement strains were constructed to perform the minimum inhibitory concentration (MIC) assays, which indicated that frtP upregulation led to the increase of fluoride sensitivity. Collectively, our results indicate that FrtR is an important transcription factor regulating the frtP expression in S. mutans, thus affecting the intrinsic fluoride tolerance. Therefore, this study provides novel insights into a potential target to increase the S. mutans sensitivity to fluoride for a better prevention of dental caries.
Collapse
Affiliation(s)
- M Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Z Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - T Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - X Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Z Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - B Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - L Wang
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - T Cui
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, China
| | - Y Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Johnston NR, Strobel SA. Principles of fluoride toxicity and the cellular response: a review. Arch Toxicol 2020; 94:1051-1069. [PMID: 32152649 PMCID: PMC7230026 DOI: 10.1007/s00204-020-02687-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/21/2020] [Indexed: 02/04/2023]
Abstract
Fluoride is ubiquitously present throughout the world. It is released from minerals, magmatic gas, and industrial processing, and travels in the atmosphere and water. Exposure to low concentrations of fluoride increases overall oral health. Consequently, many countries add fluoride to their public water supply at 0.7-1.5 ppm. Exposure to high concentrations of fluoride, such as in a laboratory setting often exceeding 100 ppm, results in a wide array of toxicity phenotypes. This includes oxidative stress, organelle damage, and apoptosis in single cells, and skeletal and soft tissue damage in multicellular organisms. The mechanism of fluoride toxicity can be broadly attributed to four mechanisms: inhibition of proteins, organelle disruption, altered pH, and electrolyte imbalance. Recently, there has been renewed concern in the public sector as to whether fluoride is safe at the current exposure levels. In this review, we will focus on the impact of fluoride at the chemical, cellular, and multisystem level, as well as how organisms defend against fluoride. We also address public concerns about fluoride toxicity, including whether fluoride has a significant effect on neurodegeneration, diabetes, and the endocrine system.
Collapse
Affiliation(s)
- Nichole R Johnston
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
30
|
Wang HW, Miao CY, Liu J, Zhang Y, Zhu SQ, Zhou BH. Fluoride-induced rectal barrier damage and microflora disorder in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7596-7607. [PMID: 31885060 DOI: 10.1007/s11356-019-07201-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Intestinal microflora plays a key role in maintaining the homeostasis between immune and host health. Here, we reported the fluoride-induced changes of rectal structure and microflora in mice. The morphology of rectal tissue was observed by hematoxylin and eosin staining. The rectal development parameters (the thickness of mucosa, intestinal gland and muscle layer) were evaluated. The proliferation of rectal epithelial cells was evaluated via BrdU labeling. The distribution of goblet, glycoprotein and mast cell were evaluated by specific staining. Rectal microflora was detected using 16S rRNA high-throughput sequencing. The results showed that the rectal structure was seriously damaged and the proliferation of rectal epithelial cells was significantly inhibited by fluoride. The distribution of goblet cells, glycoprotein and mast cells decreased significantly after fluoride exposure. The relative richness of microfloras was changed after fluoride treatment, such as increased Bacteroidetes and decreased Firmicutes. In summary, this study indicated that excessive fluoride damages the intestinal structure, disturbs the intestinal micro-ecology and causes intestinal microflora disorder in mice. Findings mentioned in the present study enrich a new scope for elucidating fluoride toxicity from intestinal homeostasis.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Cheng-Yi Miao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Jing Liu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Yan Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Shi-Quan Zhu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
31
|
Application of Antibiotics/Antimicrobial Agents on Dental Caries. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5658212. [PMID: 32076608 PMCID: PMC7013294 DOI: 10.1155/2020/5658212] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023]
Abstract
Dental caries is the most common oral disease. The bacteriological aetiology of dental caries promotes the use of antibiotics or antimicrobial agents to prevent this type of oral infectious disease. Antibiotics have been developed for more than 80 years since Fleming discovered penicillin in 1928, and systemic antibiotics have been used to treat dental caries for a long time. However, new types of antimicrobial agents have been developed to fight against dental caries. The purpose of this review is to focus on the application of systemic antibiotics and other antimicrobial agents with respect to their clinical use to date, including the history of their development, and their side effects, uses, structure types, and molecular mechanisms to promote a better understanding of the importance of microbial interactions in dental plaque and combinational treatments.
Collapse
|
32
|
Liao Y, Yang J, Brandt BW, Li J, Crielaard W, van Loveren C, Deng DM. Genetic Loci Associated With Fluoride Resistance in Streptococcus mutans. Front Microbiol 2018; 9:3093. [PMID: 30619172 PMCID: PMC6297193 DOI: 10.3389/fmicb.2018.03093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/29/2018] [Indexed: 12/03/2022] Open
Abstract
The prolonged exposure of the cariogenic bacterial species Streptococcus mutans to high concentrations of fluoride leads to the development of fluoride resistance in this species. Previous studies confirmed the involvement of a mutation in a single chromosomal region in the occurrence of fluoride resistance. The involvement of multiple genomic mutations has not been verified. The aim of this study is to identify multiple genetic loci associated with fluoride resistance in S. mutans. The previously published whole genome sequences of two fluoride-resistant S. mutans strains (UA159-FR and C180-2FR) and their corresponding wild-type strains (UA159 and C180-2) were analyzed to locate shared chromosomal mutations in fluoride-resistant strains. Both fluoride-resistant strains were isolated in laboratory by culturing their mother strains in media with high concentrations of fluoride. The corresponding gene expression and enzyme activities were accordingly validated. Mutations were identified in two glycolytic enzymes, namely pyruvate kinase and enolase. Pyruvate kinase was deactivated in fluoride-resistant strain C180-2FR. Enolase was less inhibited by fluoride in fluoride-resistant strain UA159-FR than in its wild-type strain. Mutations in the promoter mutp constitutively increased the promoter activity and up-regulated the expression of the downstream fluoride antiporters in fluoride-resistant strains. Mutations in the intergenic region glpFp led to lower expression of glpF, encoding a glycerol uptake facilitator protein, in fluoride-resistant strains than in wild-type strains. Our results revealed that there is overlap of chromosomal regions with mutations among different fluoride-resistant S. mutans strains. They provide novel candidates for the study of the mechanisms of fluoride resistance.
Collapse
Affiliation(s)
- Ying Liao
- West China College of Stomatology, Sichuan University, Chengdu, China.,Nanjing Stomatological Hospital, Nanjing University Medical School, Nanjing, China.,Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam - University of Amsterdam, Amsterdam, Netherlands
| | - Jingmei Yang
- West China College of Stomatology, Sichuan University, Chengdu, China.,Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam - University of Amsterdam, Amsterdam, Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam - University of Amsterdam, Amsterdam, Netherlands
| | - Jiyao Li
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam - University of Amsterdam, Amsterdam, Netherlands
| | - Cor van Loveren
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam - University of Amsterdam, Amsterdam, Netherlands
| | - Dong Mei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam - University of Amsterdam, Amsterdam, Netherlands.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Loyola-Rodriguez JP, Ponce-Diaz ME, Loyola-Leyva A, Garcia-Cortes JO, Medina-Solis CE, Contreras-Ramire AA, Serena-Gomez E. Determination and identification of antibiotic-resistant oral streptococci isolated from active dental infections in adults. Acta Odontol Scand 2018; 76:229-235. [PMID: 29160117 DOI: 10.1080/00016357.2017.1405463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To determine and identify antibiotic-resistant bacteria (ARB) of oral streptococci from active dental infections in adults and its association with age and gender. MATERIAL AND METHODS This cross-sectional study included 59 subjects from 18 to 62 years old. Ninety-eighth samples obtained from the subjects were cultivated in agar plates containing antibiotics amoxicillin/clavulanic acid (A-CA), clindamycin, and moxifloxacin (concentrations of 16, 32 or 64 µg/ml). PCR assay was performed to identify bacterial species. RESULTS The bacterial species that showed more antibiotic-resistance (AR) was S. mutans (45.9%), followed by S. gordonii (21.6%), S. oralis (17.6%), S. sanguinis (9.5%), S. salivarius (5.4%) and S. sobrinus (0%). Moreover, clindamycin (59.4%) showed the highest frequency of AR. Moxifloxacin and A-CA showed an susceptibility >99.1%, while clindamycin showed the lowest efficacy (93.3%); there was a significant statistically difference (p < .01). The age group between 26 and 50 years old (32.2%) and females (28.8%) showed more multiresistance. Clindamycin showed a statistical difference (p < .05) when comparing groups by gender. CONCLUSIONS Clindamycin was the antibiotic with the highest frequency of ARB and lower bactericidal effect. Moxifloxacin and A-CA showed the highest efficacy and the lowest ARB frequency. Streptococcus mutans was the bacterial specie that showed an increased frequency of AR.
Collapse
Affiliation(s)
| | - Maria Elena Ponce-Diaz
- Area of Dentistry of the Institute of Health´s Sciences, Autonomous University of the State of Hidalgo, Pachuca, Mexico
| | - Alejandra Loyola-Leyva
- Doctorado en Ciencias Biomédicas Básicas, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Jose O. Garcia-Cortes
- Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Carlo E. Medina-Solis
- Area of Dentistry of the Institute of Health´s Sciences, Autonomous University of the State of Hidalgo, Pachuca, Mexico
| | - Azael A. Contreras-Ramire
- Area of Dentistry of the Institute of Health´s Sciences, Autonomous University of the State of Hidalgo, Pachuca, Mexico
| | - Eduardo Serena-Gomez
- CISALUD Valle de las Palmas, Universidad Autónoma de Baja California, Tijuana, México
| |
Collapse
|
34
|
Cai Y, Liao Y, Brandt BW, Wei X, Liu H, Crielaard W, Van Loveren C, Deng DM. The Fitness Cost of Fluoride Resistance for Different Streptococcus mutans Strains in Biofilms. Front Microbiol 2017; 8:1630. [PMID: 28894441 PMCID: PMC5581503 DOI: 10.3389/fmicb.2017.01630] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/11/2017] [Indexed: 02/05/2023] Open
Abstract
The cariogenic bacterium Streptococcus mutans can develop stable resistance to fluoride through chromosomal mutations in vitro. Fluoride-resistant S. mutans has seldom been isolated in clinical settings, despite the wide application of fluoride in oral-care products. One explanation is that the fluoride-resistant S. mutans strains have decreased fitness. However, so far, there has been no conclusive evidence to support this idea. The aim of this study was to investigate the fitness cost of 48-h biofilms of two fluoride-resistant S. mutans strains, UF35 and UA159-FR (UAFR), using the wild-type fluoride-sensitive strain UA159 as a reference. The engineered UF35 strain contains one point mutation, whereas UAFR, selected from NaF-containing agar plates, has multiple chromosomal mutations. All biofilms were formed for 48 h under a constantly neutral pH or a pH-cycling (8 h of neutral pH and 16 h of pH 5.5) condition in the absence of fluoride. The biomass of the biofilms was quantified with a crystal violet assay. The biofilms were also treated with chlorhexidine or solutions at pH 3.0, after which their lactic acid production was quantified. Compared to the UF35 and UA159 biofilms, the biomass of UAFR biofilms was two–four fold higher, and the UAFR biofilms were more resistant to chlorhexidine and low pH in terms of lactic acid production. No difference in biomass and lactic acid production was detected between UF35 and UA159 biofilms. The fluoride resistance of UAFR and UF35 strains in biofilms was further confirmed by treating the biofilms with NaF solutions. The level of NaF resistance of the three biofilms is generally ranked as follows: UAFR > UF35 > UA159. In conclusion, there is indeed a fitness consequence in UAFR, but surprisingly, this fluoride-resistant strain performs better than UF35 and UA159 under the described conditions. In addition, UF35 did not display a reduced fitness; it performed as well as the wild-type fluoride-sensitive strain.
Collapse
Affiliation(s)
- Yanling Cai
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of StomatologyGuangzhou, China.,Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Ying Liao
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of StomatologyGuangzhou, China
| | - Hongyan Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of StomatologyGuangzhou, China
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Cor Van Loveren
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Dong Mei Deng
- Guangdong Province Key Laboratory of StomatologyGuangzhou, China.,Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam, Netherlands
| |
Collapse
|
35
|
Liu X, Tian J, Liu L, Zhu T, Yu X, Chu X, Yao B, Wu N, Fan Y. Identification of an operon involved in fluoride resistance in Enterobacter cloacae FRM. Sci Rep 2017; 7:6786. [PMID: 28754999 PMCID: PMC5533749 DOI: 10.1038/s41598-017-06988-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023] Open
Abstract
Fluorine is ubiquitous and the most active non-metal element in nature. While many microorganisms have developed fluoride resistance as a result of the widespread and prolonged application of oral hygiene products, the mechanisms used by these organisms to overcome fluoride toxicity are incompletely understood. In this study, a fluoride-resistant strain, Enterobacter cloacae FRM, was identified which could grow well at a fluoride concentration of 4,000 mg/L. According to comparative genomics, transcriptome under fluoride stress, and sequence analyses of two fluoride-resistant fosmid clones, the genomic island GI3 was found to be important for fluoride resistance. The result of quantitative RT-PCR indicated that six genes on GI3, ppaC, uspA, eno, gpmA, crcB, and orf5249, which encode a fluoride transporter, fluoride-inhibited enzymes, and a universal stress protein, reside in an operon and are transcribed into two mRNAs activated by fluoride with a fluoride riboswitch. The results of knockout and complementation experiments indicated that these genes work together to provide high fluoride resistance to E. cloacae FRM. This study clarified the resistance mechanism of this high fluoride-resistant organism and has expanded our understanding of the biological effects of fluoride.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihui Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoxia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoyu Chu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
36
|
Exploring the Genomic Diversity and Cariogenic Differences of Streptococcus mutans Strains Through Pan-Genome and Comparative Genome Analysis. Curr Microbiol 2017; 74:1200-1209. [PMID: 28717847 DOI: 10.1007/s00284-017-1305-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
Pan-genome refers to the sum of genes that can be found in a given bacterial species, including the core-genome and the dispensable genome. In this study, the genomes from 183 Streptococcus mutans (S. mutans) isolates were analyzed from the pan-genome perspective. This analysis revealed that S. mutans has an "open" pan-genome, implying that there are plenty of new genes to be found as more genomes are sequenced. Additionally, S. mutans has a limited core-genome, which is composed of genes related to vital activities within the bacterium, such as metabolism and hereditary information storage or processing, occupying 35.6 and 26.6% of the core genes, respectively. We estimate the theoretical core-genome size to be about 1083 genes, which are fewer than other Streptococcus species. In addition, core genes suffer larger selection pressures in comparison to those that are less widely distributed. Not surprisingly, the distribution of putative virulence genes in S. mutans strains does not correlate with caries status, indicating that other factors are also responsible for cariogenesis. These results contribute to a more understanding of the evolutionary characteristics and dynamic changes within the genome components of the species. This also helps to form a new theoretical foundation for preventing dental caries. Furthermore, this study sets an example for analyzing large genomic datasets of pathogens from the pan-genome perspective.
Collapse
|
37
|
Liao Y, Brandt BW, Li J, Crielaard W, Van Loveren C, Deng DM. Fluoride resistance in Streptococcus mutans: a mini review. J Oral Microbiol 2017; 9:1344509. [PMID: 28748043 PMCID: PMC5508371 DOI: 10.1080/20002297.2017.1344509] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/14/2017] [Indexed: 12/16/2022] Open
Abstract
For decades, fluoride has been used extensively as an anti-caries agent. It not only protects dental hard tissue, but also inhibits bacterial growth and metabolism. The antimicrobial action of fluoride is shown in three main aspects: the acidogenicity, acidurance, and adherence to the tooth surface. To counteract the toxic effect of fluoride, oral bacteria are able to develop resistance to fluoride through either phenotypic adaptation or genotypic changes. Strains that acquire fluoride resistance through the latter route show stable resistance and can usually resist much higher fluoride levels than the corresponding wild-type strain. This review summarizes the characteristics of fluoride-resistant strains and explores the mechanisms of fluoride resistance, in particular the recent discovery of the fluoride exporters. Since the fluoride resistance of the cariogenic bacterium Streptococcus mutans has been studied most extensively, this review mainly discusses the findings related to this species.
Collapse
Affiliation(s)
- Ying Liao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,West China College of Stomatology, Sichuan University, Chengdu, China.,Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,West China College of Stomatology, Sichuan University, Chengdu, China
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cor Van Loveren
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dong Mei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Nassar HM, Gregory RL. Biofilm sensitivity of seven Streptococcus mutans strains to different fluoride levels. J Oral Microbiol 2017; 9:1328265. [PMID: 28748032 PMCID: PMC5508399 DOI: 10.1080/20002297.2017.1328265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 05/03/2017] [Indexed: 12/02/2022] Open
Abstract
The effect of fluoride concentrations in dental products could be different depending on the Streptococcus mutans strain. The aim of this study was to investigate the effect of different fluoride concentrations corresponding to dental products on biofilm formation and metabolic activity of S. mutans strains. Seven S. mutans strains (UA159, A32-2, NG8, 10449, UA130, LM7, and OMZ175) were inoculated into 96-well microtiter plates and were tested with various concentrations of sodium fluoride (0.0, 1.0, 1.56, 3.13, 6.25, 12.5, 25, 50, 100, 125, 175, 225, 275, 625, 1,250, 2,250, and 5,500 ppm) for inhibition of biofilm formation and bacterial metabolic activity by recording absorbance values followed by scanning electron microscope (SEM) images. Data were analyzed by one-way analysis of variance and Tukey’s tests (α = 5%). Significantly more (p≤0.05) biofilm mass in the presence of fluoride was produced by A32-2 and NG8. UA130, LM7, and OMZ175 were more sensitive to increased fluoride and demonstrated few bacterial cells and extracellular polysaccharide (EPS) production at 100 ppm in SEM images. All strains were unable to produce significant biofilm at concentrations >225 ppm. Patients with tolerantS. mutans strains would potentially benefit less from the inherent antibacterial effect of fluoride.
Collapse
Affiliation(s)
- Hani M Nassar
- Department of Restorative Dental Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Richard L Gregory
- Department of Biomedical and Applied Sciences, School of Dentistry, Indiana University, Indianapolis, USA
| |
Collapse
|
39
|
Tao Y, Wang Y, Huang S, Zhu P, Huang WE, Ling J, Xu J. Metabolic-Activity-Based Assessment of Antimicrobial Effects by D2O-Labeled Single-Cell Raman Microspectroscopy. Anal Chem 2017; 89:4108-4115. [DOI: 10.1021/acs.analchem.6b05051] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yifan Tao
- Operative
Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated
Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yun Wang
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Huang
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Zhu
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei E Huang
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Junqi Ling
- Operative
Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated
Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| | - Jian Xu
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
40
|
A Single Nucleotide Change in the Promoter mutp Enhances Fluoride Resistance of Streptococcus mutans. Antimicrob Agents Chemother 2016; 60:7509-7512. [PMID: 27697763 DOI: 10.1128/aac.01366-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/23/2016] [Indexed: 11/20/2022] Open
Abstract
Previously, we identified a single nucleotide mutation in the promoter (mutp) of the fluoride antiporter-coding genes in a naturally fluoride-resistant Streptococcus mutans strain. Here, we studied the role of this mutation in a defined genetic background. The results confirmed that this mutation alone confers fluoride resistance on S. mutans, as shown by growth and lactic acid production assays. This resistance was explained by constitutively higher mutp promoter activity and upregulation of the fluoride antiporter-coding genes.
Collapse
|
41
|
Men X, Shibata Y, Takeshita T, Yamashita Y. Identification of Anion Channels Responsible for Fluoride Resistance in Oral Streptococci. PLoS One 2016; 11:e0165900. [PMID: 27824896 PMCID: PMC5100911 DOI: 10.1371/journal.pone.0165900] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/19/2016] [Indexed: 11/18/2022] Open
Abstract
Recently, it has been reported that eriC and crcB are involved in bacterial fluoride resistance. However, the fluoride-resistance mechanism in oral streptococci remains unclear. BLAST studies showed that two types of eriCs (eriC1 and eriC2) and two types of crcBs (crcB1 and crcB2) are present across 18 oral streptococci, which were identified in ≥ 10% of 166 orally healthy subjects with ≥ 0.01% of the mean relative abundance. They were divided into three groups based on the distribution of these four genes: group I, only eriC1; group II, eriC1 and eriC2; and group III, eriC2, crcB1, and crcB2. Group I consisted of Streptococcus mutans, in which one of the two eriC1s predominantly affected fluoride resistance. Group II consisted of eight species, and eriC1 was responsible for fluoride resistance, but eriC2 was not, in Streptococcus anginosus as a representative species. Group III consisted of nine species, and both crcB1 and crcB2 were crucial for fluoride resistance, but eriC2 was not, in Streptococcus sanguinis as a representative species. Based on these results, either EriC1 or CrcBs play a role in fluoride resistance in oral streptococci. Complementation between S. mutans EriC1 and S. sanguinis CrcB1/CrcB2 was confirmed in both S. mutans and S. sanguinis. However, neither transfer of S. sanguinis CrcB1/CrcB2 into wild-type S. mutans nor S. mutans EriC1 into wild-type S. sanguinis increased the fluoride resistance of the wild-type strain. Co-existence of different F− channels (EriC and CrcB) did not cause the additive effect on fluoride resistance in oral Streptococcus species.
Collapse
Affiliation(s)
- Xiaochen Men
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukie Shibata
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yoshihisa Yamashita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
42
|
Abstract
Although the association between inflammatory bowel disease (IBD) and oral hygiene has been noticed before, there has been little research on prolonged fluoride exposure as a possible risk factor. In the presented cases, exposure to fluoride seems indirectly associated with higher incidence of IBD. Fluoride toxicology and epidemiology documents frequent unspecific chronic gastrointestinal symptoms and intestinal inflammation. Efflux genes that confer resistance to environmental fluoride may select for IBD associated gut microbiota and therefore be involved in the pathogenesis. Together these multidisciplinary results argue for further investigation on the hypothesis of fluoride as a risk factor for IBD.
Collapse
Affiliation(s)
| | - Bjørn Moum
- b Department of Gastroenterology , Oslo University Hospital Ullevaal & University of Oslo , Oslo , Norway
| |
Collapse
|
43
|
Murata T, Hanada N. Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans. FEMS Microbiol Lett 2016; 363:fnw101. [PMID: 27190286 DOI: 10.1093/femsle/fnw101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 11/14/2022] Open
Abstract
Genes encoding fluoride transporters have been identified in bacterial and archaeal species. The genome sequence of the cariogenic Streptococcus mutans bacteria suggests the presence of a putative fluoride transporter, which is referred to as a chloride channel permease. Two homologues of this gene (GenBank locus tags SMU_1290c and SMU_1289c) reside in tandem in the genome of S. mutans The aim of this study was to determine whether the chloride channel permeases contribute to fluoride resistance. We constructed SMU_1290c- and SMU_1289c-knockout S. mutans UA159 strains. We also constructed a double-knockout strain lacking both genes. SMU_1290c or SMU_1289c was transformed into a fluoride transporter- disrupted Escherichia coli strain. All bacterial strains were cultured under appropriate conditions with or without sodium fluoride, and fluoride resistance was evaluated. All three gene-knockout S. mutans strains showed lower resistance to sodium fluoride than did the wild-type strain. No significant changes in resistance to other sodium halides were recognized between the wild-type and double-knockout strains. Both SMU_1290c and SMU_1289c transformation rescued fluoride transporter-disrupted E. coli cell from fluoride toxicity. We conclude that the chloride channel permeases contribute to fluoride resistance in S. mutans.
Collapse
Affiliation(s)
- Takatoshi Murata
- Department of Translational Research, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan
| | - Nobuhiro Hanada
- Department of Translational Research, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan
| |
Collapse
|
44
|
Genetic regulation and manipulation for natural product discovery. Appl Microbiol Biotechnol 2016; 100:2953-65. [PMID: 26860941 DOI: 10.1007/s00253-016-7357-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 12/13/2022]
Abstract
Natural products are an important source of modern medical development, e.g., antibiotics, anticancers, immune modulators, etc. and will continue to be a powerful driving force for the discovery of novel potential drugs. In the heterologous hosts, natural products are biosynthesized using dedicated metabolic networks. By gene engineering, pathway reconstructing, and enzyme engineering, metabolic networks can be modified to synthesize novel compounds containing enhanced structural feature or produce a large quantity of known valuable bioactive compounds. The review introduces some important technical platforms and relevant examples of genetic regulation and manipulation to improve natural product titers or drive novel secondary metabolite discoveries.
Collapse
|