1
|
Park JE, Kim HS, Kim N, Borra R, Mouridsen K, Hansen MB, Kim YH, Hong CK, Kim JH. Prediction of pseudoprogression in post-treatment glioblastoma using dynamic susceptibility contrast-derived oxygenation and microvascular transit time heterogeneity measures. Eur Radiol 2024; 34:3061-3073. [PMID: 37848773 DOI: 10.1007/s00330-023-10324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVES To evaluate the added value of MR dynamic susceptibility contrast (DSC)-perfusion-weighted imaging (PWI)-derived tumour microvascular and oxygenation information with cerebral blood volume (CBV) to distinguish pseudoprogression from true progression (TP) in post-treatment glioblastoma. METHODS This retrospective single-institution study included patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma and a newly developed or enlarging measurable contrast-enhancing mass within 12 weeks after concurrent chemoradiotherapy. CBV, capillary transit time heterogeneity (CTH), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2) were obtained from DSC-PWI. Predictors were selected using univariable logistic regression, and performance was measured with adjusted diagnostic odds with tumour volume and area under the curve (AUC) of receiver operating characteristics analysis. RESULTS A total of 103 patients were included (mean age, 59.6 years; 59 women), with 67 cases of TP and 36 cases of pseudoprogression. Pseudoprogression exhibited higher CTH (4.0 vs. 3.4, p = .019) and higher OEF (12.7 vs. 10.7, p = .014) than TP, but a similar CBV (1.48 vs. 1.53, p = .13) and CMRO2 (7.7 vs. 7.3s, p = .598). Independent of tumour volume, both high CTH (adjusted odds ratio [OR] 1.52; 95% confidence interval [CI]: 1.11-2.09, p = .009) and high OEF (adjusted OR 1.17; 95% CI:1.03-1.33, p = .016) were predictors of pseudoprogression. The combination of CTH, OEF, and CBV yielded higher diagnostic performance (AUC 0.71) than CBV alone (AUC 0.65). CONCLUSION High intratumoural capillary transit heterogeneity and high oxygen extraction fraction derived from DSC-PWI have enhanced the diagnostic value of CBV in pseudoprogression of post-treatment IDH-wild type glioblastoma. CLINICAL RELEVANCE STATEMENT In the early post-treatment stage of glioblastoma, pseudoprogression exhibited both high oxygen extraction fraction and high capillary transit heterogeneity and these dynamic susceptibility contrast-perfusion weighted imaging derived parameters have added value in cerebral blood volume-based noninvasive differentiation of pseudoprogression from true progression. KEY POINTS • Capillary transit time heterogeneity and oxygen extraction fraction can be measured noninvasively through processing of dynamic susceptibility contrast imaging. • Pseudoprogression exhibited higher capillary transit time heterogeneity and higher oxygen extraction fraction than true progression. • A combination of cerebral blood volume, capillary transit time heterogeneity, and oxygen extraction fraction yielded the highest diagnostic performance (area under the curve 0.71).
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, Korea.
| | | | - Ronald Borra
- Cercare Medical, Inge Lehmanns Gade 10, 8000 Aarhus C, Aarhus, Denmark
| | - Kim Mouridsen
- Cercare Medical, Inge Lehmanns Gade 10, 8000 Aarhus C, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Seoul, Korea
| | - Mikkel Bo Hansen
- Cercare Medical, Inge Lehmanns Gade 10, 8000 Aarhus C, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Seoul, Korea
| | - Young-Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chang-Ki Hong
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
2
|
Sim Y, Choi SH, Lee N, Park YW, Ahn SS, Chang JH, Kim SH, Lee SK. Clinical, qualitative imaging biomarkers, and tumor oxygenation imaging biomarkers for differentiation of midline-located IDH wild-type glioblastomas and H3 K27-altered diffuse midline gliomas in adults. Eur J Radiol 2024; 173:111384. [PMID: 38422610 DOI: 10.1016/j.ejrad.2024.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE To compare the clinical, qualitative and quantitative imaging phenotypes, including tumor oxygenation characteristics of midline-located IDH-wildtype glioblastomas (GBMs) and H3 K27-altered diffuse midline gliomas (DMGs) in adults. METHODS Preoperative MRI data of 55 adult patients with midline-located IDH-wildtype GBM or H3 K27-altered DMG (32 IDH-wildtype GBM and 23 H3 K27-altered DMG patients) were included. Qualitative imaging assessment was performed. Quantitative imaging assessment including the tumor volume, normalized cerebral blood volume, capillary transit time heterogeneity (CTH), oxygen extraction fraction (OEF), relative cerebral metabolic rate of oxygen values, and mean ADC value were performed from the tumor mask via automatic segmentation. Univariable and multivariable logistic analyses were performed. RESULTS On multivariable analysis, age (odds ratio [OR] = 0.92, P = 0.015), thalamus or medulla location (OR = 10.48, P = 0.013), presence of necrosis (OR = 0.15, P = 0.038), and OEF (OR = 0.01, P = 0.042) were independent predictors to differentiate H3 K27-altered DMG from midline-located IDH-wildtype GBM. The area under the curve, accuracy, sensitivity, and specificity of the multivariable model were 0.88 (95 % confidence interval: 0.77-0.95), 81.8 %, 82.6 %, and 81.3 %, respectively. CONCLUSIONS Along with younger age, tumor location, less frequent necrosis, and lower OEF may be useful imaging biomarkers to differentiate H3 K27-altered DMG from midline-located IDH-wildtype GBM. Tumor oxygenation imaging biomarkers may reflect the less hypoxic nature of H3 K27-altered DMG than IDH-wildtype GBM and may contribute to differentiation.
Collapse
Affiliation(s)
- Yongsik Sim
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Seo Hee Choi
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Narae Lee
- Department of Nuclear Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Knott M, Hoelter P, Soder L, Schlaffer S, Hoffmanns S, Lang R, Doerfler A, Schmidt MA. Can Perfusion-Based Brain Tissue Oxygenation MRI Support the Understanding of Cerebral Abscesses In Vivo? Diagnostics (Basel) 2023; 13:3346. [PMID: 37958241 PMCID: PMC10647595 DOI: 10.3390/diagnostics13213346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
PURPOSE The clinical condition of a brain abscess is a potentially life-threatening disease. The combination of MRI-based imaging, surgical therapy and microbiological analysis is critical for the treatment and convalescence of the individual patient. The aim of this study was to evaluate brain tissue oxygenation measured with dynamic susceptibility contrast perfusion weighted imaging (DSC-PWI) in patients with brain abscess and its potential benefit for a better understanding of the environment in and around brain abscesses. METHODS Using a local database, 34 patients (with 45 abscesses) with brain abscesses treated between January 2013 and March 2021 were retrospectively included in this study. DSC-PWI imaging and microbiological work-up were key inclusion criteria. These data were analysed regarding a correlation between DSC-PWI and microbiological result by quantifying brain tissue oxygenation in the abscess itself, the abscess capsula and the surrounding oedema and by using six different parameters (CBF, CBV, CMRO2, COV, CTH and OEF). RESULTS Relative cerebral blood flow (0.335 [0.18-0.613] vs. 0.81 [0.49-1.08], p = 0.015), relative cerebral blood volume (0.44 [0.203-0.72] vs. 0.87 [0.67-1.2], p = 0.018) and regional cerebral metabolic rate for oxygen (0.37 [0.208-0.695] vs. 0.82 [0.55-1.19], p = 0.022) were significantly lower in the oedema around abscesses without microbiological evidence of a specific bacteria in comparison with microbiological positive lesions. CONCLUSIONS The results of this study indicate a relationship between brain tissue oxygenation status in DSC-PWI and microbiological/inflammatory status. These results may help to better understand the in vivo environment of brain abscesses and support future therapeutic decisions.
Collapse
Affiliation(s)
- Michael Knott
- Department of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen, Germany (M.A.S.)
| | - Philip Hoelter
- Department of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen, Germany (M.A.S.)
| | - Liam Soder
- Department of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen, Germany (M.A.S.)
| | - Sven Schlaffer
- Department of Neurosurgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen, Germany
| | - Sophia Hoffmanns
- Department of Neurosurgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen, Germany
| | - Roland Lang
- Department of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Wasserturmstraße 3, 91054 Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen, Germany (M.A.S.)
| | - Manuel Alexander Schmidt
- Department of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen, Germany (M.A.S.)
| |
Collapse
|
4
|
陈 世, 王 丽, 王 莉, 郑 长, 杨 开. [Consistency analysis between 3D arterial spin labeling and dynamic susceptibility contrast perfusion magnetic resonance imaging in perfusion imaging of brain tumor]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1283-1286. [PMID: 34549723 PMCID: PMC8527226 DOI: 10.12122/j.issn.1673-4254.2021.08.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To analyze the consistency between cerebral blood flow (CBF) of 3D arterial spin labeling (3D ASL) and dynamic susceptibility contrast perfusion magnetic resonance imaging (DSC-PWI) in the measurement of brain tumors. METHODS Nineteen patients with pathologically confirmed brain tumors were enrolled in this study.The brain tumors included glioma (n=9), meningioma (n=5), hemangioblastoma (n=2), cerebral metastasis (n=2) and cavernous hemangioma (n=1).Both ASL and DSC MRI were performed in all the 19 patients (57 regions of interest), and CBF was quantitatively determined. RESULTS A significant consistency was found between CBF measured by 3D ASL and the relative CBF (rCBF) determined by DSC (P=0.005). CONCLUSION 3D ASL and DSC PWI are consistent in evaluating blood flow in brain tumors and can accurately evaluate brain tumors perfusion.
Collapse
Affiliation(s)
- 世林 陈
- />海南省肿瘤医院放射科, 海南 海口 570300Department of Radiology, Hainan Cancer Hospital, Haikou 570300, China
| | - 丽英 王
- />海南省肿瘤医院放射科, 海南 海口 570300Department of Radiology, Hainan Cancer Hospital, Haikou 570300, China
| | - 莉 王
- />海南省肿瘤医院放射科, 海南 海口 570300Department of Radiology, Hainan Cancer Hospital, Haikou 570300, China
| | - 长宝 郑
- />海南省肿瘤医院放射科, 海南 海口 570300Department of Radiology, Hainan Cancer Hospital, Haikou 570300, China
| | - 开志 杨
- />海南省肿瘤医院放射科, 海南 海口 570300Department of Radiology, Hainan Cancer Hospital, Haikou 570300, China
| |
Collapse
|
5
|
Fuselier C, Quemener S, Dufay E, Bour C, Boulagnon-Rombi C, Bouland N, Djermoune EH, Devy J, Martiny L, Schneider C. Anti-Tumoral and Anti-Angiogenic Effects of Low-Diluted Phenacetinum on Melanoma. Front Oncol 2021; 11:597503. [PMID: 33747916 PMCID: PMC7966719 DOI: 10.3389/fonc.2021.597503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/07/2021] [Indexed: 01/11/2023] Open
Abstract
Melanoma is the most aggressive form of skin cancer and the most rapidly expanding cancer in terms of worldwide incidence. If primary cutaneous melanoma is mostly treated with a curative wide local excision, malignant melanoma has a poor prognosis and needs other therapeutic approaches. Angiogenesis is a normal physiological process essential in growth and development, but it also plays a crucial role in crossing from benign to advanced state in cancer. In melanoma progression, angiogenesis is widely involved during the vertical growth phase. Currently, no anti-angiogenic agents are efficient on their own, and combination of treatments will probably be the key to success. In the past, phenacetin was used as an analgesic to relieve pain, causing side effects at large dose and tumor-inducing in humans and animals. By contrast, Phenacetinum low-dilution is often used in skin febrile exanthema, patches profusely scattered on limbs, headache, or flushed face without side effects. Herein are described the in vitro, in vivo, and ex vivo anti-angiogenic and anti-tumoral potentials of Phenacetinum low-dilution in a B16F1 tumor model and endothelial cells. We demonstrate that low-diluted Phenacetinum inhibits in vivo tumor growth and tumor vascularization and thus increases the survival time of B16F1 melanoma induced-C57BL/6 mice. Moreover, Phenacetinum modulates the lung metastasis in a B16F10 induced model. Ex vivo and in vitro, we evidence that low-diluted Phenacetinum inhibits the migration and the recruitment of endothelial cells and leads to an imbalance in the pro-tumoral macrophages and to a structural malformation of the vascular network. All together these results demonstrate highly hopeful anti-tumoral, anti-metastatic, and anti-angiogenic effects of Phenacetinum low-dilution on melanoma. Continued studies are needed to preclinically validate Phenacetinum low-dilution as a complementary or therapeutic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Camille Fuselier
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Sandrine Quemener
- Université de Lille, Institut Pasteur de Lille, U1011 INSERM, Lille, France
| | - Eleonore Dufay
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Camille Bour
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Camille Boulagnon-Rombi
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
- Centre Hospitalier et Université de Reims Champagne-Ardenne, laboratoire de Biopathologie, Reims, France
| | - Nicole Bouland
- Université de Reims Champagne-Ardenne, laboratoire d’Anatomie Pathologie, Reims, France
| | | | - Jérôme Devy
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Laurent Martiny
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Christophe Schneider
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| |
Collapse
|
6
|
Østergaard L. Blood flow, capillary transit times, and tissue oxygenation: the centennial of capillary recruitment. J Appl Physiol (1985) 2020; 129:1413-1421. [PMID: 33031017 DOI: 10.1152/japplphysiol.00537.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The transport of oxygen between blood and tissue is limited by blood's capillary transit time, understood as the time available for diffusion exchange before blood returns to the heart. If all capillaries contribute equally to tissue oxygenation at all times, this physical limitation would render vasodilation and increased blood flow insufficient means to meet increased metabolic demands in the heart, muscle, and other organs. In 1920, Danish physiologist August Krogh was awarded the Nobel Prize in Physiology or Medicine for his mathematical and quantitative, experimental demonstration of a solution to this conceptual problem: capillary recruitment, the active opening of previously closed capillaries to meet metabolic demands. Today, capillary recruitment is still mentioned in textbooks. When we suspect symptoms might represent hypoxia of a vascular origin, however, we search for relevant, flow-limiting conditions in our patients and rarely ascribe hypoxia or hypoxemia to short capillary transit times. This review describes how natural changes in capillary transit-time heterogeneity (CTH) and capillary hematocrit (HCT) across open capillaries during blood flow increases can account for a match of oxygen availability to metabolic demands in normal tissue. CTH and HCT depend on a number of factors: on blood properties, including plasma viscosity, the number, size, and deformability of blood cells, and blood cell interactions with capillary endothelium; on anatomical factors including glycocalyx, endothelial cells, basement membrane, and pericytes that affect the capillary diameter; and on any external compression. The review describes how risk factor- and disease-related changes in CTH and HCT interfere with flow-metabolism coupling and tissue oxygenation and discusses whether such capillary dysfunction contributes to vascular disease pathology.
Collapse
Affiliation(s)
- Leif Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Neuroradiology Research Unit, Section of Neuroradiology, Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Abstract
Magnetic resonance imaging (MRI) has been the cornerstone of imaging of brain tumors in the past 4 decades. Conventional MRI remains the workhorse for neuro-oncologic imaging, not only for basic information such as location, extent, and navigation but also able to provide information regarding proliferation and infiltration, angiogenesis, hemorrhage, and more. More sophisticated MRI sequences have extended the ability to assess and quantify these features; for example, permeability and perfusion acquisitions can assess blood-brain barrier disruption and angiogenesis, diffusion techniques can assess cellularity and infiltration, and spectroscopy can address metabolism. Techniques such as fMRI and diffusion fiber tracking can be helpful in diagnostic planning for resection and radiation therapy, and more sophisticated iterations of these techniques can extend our understanding of neurocognitive effects of these tumors and associated treatment responses and effects. More recently, MRI has been used to go beyond such morphological, physiological, and functional characteristics to assess the tumor microenvironment. The current review highlights multiple recent and emerging approaches in MRI to characterize the tumor microenvironment.
Collapse
|
8
|
Beć KB, Grabska J, Huck CW. Near-Infrared Spectroscopy in Bio-Applications. Molecules 2020; 25:E2948. [PMID: 32604876 PMCID: PMC7357077 DOI: 10.3390/molecules25122948] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/17/2022] Open
Abstract
Near-infrared (NIR) spectroscopy occupies a specific spot across the field of bioscience and related disciplines. Its characteristics and application potential differs from infrared (IR) or Raman spectroscopy. This vibrational spectroscopy technique elucidates molecular information from the examined sample by measuring absorption bands resulting from overtones and combination excitations. Recent decades brought significant progress in the instrumentation (e.g., miniaturized spectrometers) and spectral analysis methods (e.g., spectral image processing and analysis, quantum chemical calculation of NIR spectra), which made notable impact on its applicability. This review aims to present NIR spectroscopy as a matured technique, yet with great potential for further advances in several directions throughout broadly understood bio-applications. Its practical value is critically assessed and compared with competing techniques. Attention is given to link the bio-application potential of NIR spectroscopy with its fundamental characteristics and principal features of NIR spectra.
Collapse
Affiliation(s)
- Krzysztof B. Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria;
| | | | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria;
| |
Collapse
|
9
|
Van de Wiele C, Sathekge M, de Spiegeleer B, De Jonghe PJ, Debruyne PR, Borms M, Beels L, Maes A. PSMA expression on neovasculature of solid tumors. Histol Histopathol 2020; 35:919-927. [PMID: 32282924 DOI: 10.14670/hh-18-215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of prostate specific membrane antigen (PSMA) binding agents, labelled with diagnostic and therapeutic radio-isotopes is opening the potential for a new era of personalized management of prostate carcinoma. A wide variety of immunohistochemistry studies have shown PSMA also to be upregulated on the endothelial cells of the neovasculature of a wide variety of other solid tumors where it may facilitate endothelial cell sprouting and invasion through its regulation of lytic proteases that have the ability to cleave the extracellular matrix. Similar to the introduction of PSMA-targeting theranostics in prostate carcinoma, overexpression of PSMA on newly formed tumor vessels may serve as a target for imaging and subsequent treatment of cancer through the use of agents that are capable of blocking PSMA in its function or through PSMA-mediated delivery of chemotherapeutics or radiation agents. In this review, the available data on PSMA expression on tumor neovasculature in human solid tumors assessed by using immunohistochemistry are discussed.
Collapse
Affiliation(s)
- Christophe Van de Wiele
- Department of Nuclear Medicine, AZ Groeninge, Kortrijk, Belgium.,Department of Nuclear Medicine and Radiology, Ghent University, Ghent, Belgium.
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South-Africa
| | - Bart de Spiegeleer
- Laboratory of Drug Quality and Registration, Ghent University, Ghent, Belgium
| | | | - Philip R Debruyne
- Department of Radiotherapy and Medical Oncology, AZ Groeninge, Kortrijk, Belgium
| | - Marleen Borms
- Department of Radiotherapy and Medical Oncology, AZ Groeninge, Kortrijk, Belgium
| | - Laurence Beels
- Department of Nuclear Medicine, AZ Groeninge, Kortrijk, Belgium.,Department of Imaging and Pathology @ KULAK, KU Leuven campus Kulak, Kortrijk, Belgium
| | - Alex Maes
- Department of Nuclear Medicine, AZ Groeninge, Kortrijk, Belgium.,Department of Imaging and Pathology @ KULAK, KU Leuven campus Kulak, Kortrijk, Belgium
| |
Collapse
|
10
|
Song Q, Zhang C, Chen X, Cheng Y. Comparing amide proton transfer imaging with dynamic susceptibility contrast-enhanced perfusion in predicting histological grades of gliomas: a meta-analysis. Acta Radiol 2020; 61:549-557. [PMID: 31495179 DOI: 10.1177/0284185119871667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background As a subtype of chemical exchange saturation transfer imaging without contrast agent administration, amide proton transfer (APT) imaging has demonstrated the potential for differentiating the histologic grades of gliomas. Dynamic susceptibility contrast-enhanced perfusion, a perfusion-weighted imaging technique, is a well-established technique in grading gliomas. Purpose To compare the ability of amide proton transfer and dynamic susceptibility contrast-enhanced imaging for predicting the grades of gliomas. Material and Methods A comprehensive literature search was performed independently by two observers to identify articles about the diagnostic performance of amide proton transfer and dynamic susceptibility contrast-enhanced perfusion in predicting the grade of gliomas. Summary estimates of diagnostic accuracy were obtained by using a random-effects model. Results Of 179 studies identified, 23 studies were included the analysis. Eight studies evaluated amide proton transfer and 16 studies evaluated dynamic susceptibility contrast-enhanced perfusion with the parameter rCBV. The pooled sensitivities and specificities of each study’s best performing parameter were 88% (95% confidence interval [CI] 74–95) and 89% (95% CI 78–95) for amide proton transfer, and 95% (95% CI 87–98), 88% (95% CI 81–93) for perfusion-weighted imaging–dynamic susceptibility contrast-enhanced perfusion, respectively. The pooled sensitivities and specificities for grading gliomas using the two most commonly evaluated parameters, were 92% (95% CI 80–97) and 90% (95% CI 75–96) for APTmax, and 97% (95% CI 91–99) and 87% (95% CI 80–92) for rCBVmax, respectively. Conclusion Considering the similar performance of APT and dynamic susceptibility contrast-enhanced (DSC) in predicting glioma grade, the former method appears preferable since it needs no contrast agent.
Collapse
Affiliation(s)
- Qingxu Song
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Chencheng Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, PR China
| | - Xin Chen
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan, PR China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, PR China
| |
Collapse
|
11
|
Duc NM. Three-Dimensional Pseudo-Continuous Arterial Spin Labeling Parameters Distinguish Pediatric Medulloblastoma and Pilocytic Astrocytoma. Front Pediatr 2020; 8:598190. [PMID: 33763392 PMCID: PMC7982871 DOI: 10.3389/fped.2020.598190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Arterial Spin Labeling (ASL), a perfusion assessment without using gadolinium-based contrast agents, is outstandingly advantageous for pediatric patients. The differentiation of medulloblastomas from pilocytic astrocytomas in children plays a significant role in determining treatment strategies and prognosis. This study aimed to assess the use of ASL parameters during the differentiation between pediatric medulloblastoma and pilocytic astrocytoma. Methods: The institutional review board of Children's Hospital 2 approved this prospective study. The brain magnetic resonance imaging (MRI) protocol, including axial three-dimensional (3D) pseudo-continuous ASL, was evaluated in 33 patients, who were divided into a medulloblastoma group (n = 25) and a pilocytic astrocytoma group (n = 8). The quantified region of interest (ROI) values for the tumors and the tumor to parenchyma ratios were collected and compared between the two groups. Receiver operating characteristic (ROC) curve analysis and the Youden index were utilized to identify the best cut-off, sensitivity, specificity, and area under the curve (AUC) values for significant ASL parameters. Results: The cerebral blood flow (CBF) and the ratio between the CBF of the tumor relative to that of the parenchyma (rCBF) values for medulloblastomas were significantly higher than those for pilocytic astrocytomas (p < 0.05). A cut-off value of 0.51 for rCBF was able to discriminate between medulloblastoma and pilocytic astrocytoma, generating a sensitivity of 88%, a specificity of 75%, and an AUC of 83.5%. Conclusion: The rCBF measurement, obtained during MRI with 3D pseudo-continuous ASL, plays a supplemental role in the differentiation of medulloblastoma from pilocytic astrocytoma.
Collapse
Affiliation(s)
- Nguyen Minh Duc
- Doctoral Program, Department of Radiology, Hanoi Medical University, Ha Noi, Vietnam.,Department of Radiology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam.,Department of Radiology, Children's Hospital 02, Ho Chi Minh City, Vietnam
| |
Collapse
|
12
|
Bell LC, Stokes AM, Quarles CC. Analysis of postprocessing steps for residue function dependent dynamic susceptibility contrast (DSC)-MRI biomarkers and their clinical impact on glioma grading for both 1.5 and 3T. J Magn Reson Imaging 2019; 51:547-553. [PMID: 31206948 DOI: 10.1002/jmri.26837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Dynamic susceptibility contrast (DSC)-MRI analysis pipelines differ across studies and sites, potentially confounding the clinical value and use of the derived biomarkers. PURPOSE/HYPOTHESIS To investigate how postprocessing steps for computation of cerebral blood volume (CBV) and residue function dependent parameters (cerebral blood flow [CBF], mean transit time [MTT], capillary transit heterogeneity [CTH]) impact glioma grading. STUDY TYPE Retrospective study from The Cancer Imaging Archive (TCIA). POPULATION Forty-nine subjects with low- and high-grade gliomas. FIELD STRENGTH/SEQUENCE 1.5 and 3.0T clinical systems using a single-echo echo planar imaging (EPI) acquisition. ASSESSMENT Manual regions of interest (ROIs) were provided by TCIA and automatically segmented ROIs were generated by k-means clustering. CBV was calculated based on conventional equations. Residue function dependent biomarkers (CBF, MTT, CTH) were found by two deconvolution methods: circular discretization followed by a signal-to-noise ratio (SNR)-adapted eigenvalue thresholding (Method 1) and Volterra discretization with L-curve-based Tikhonov regularization (Method 2). STATISTICAL TESTS Analysis of variance, receiver operating characteristics (ROC), and logistic regression tests. RESULTS MTT alone was unable to statistically differentiate glioma grade (P > 0.139). When normalized, tumor CBF, CTH, and CBV did not differ across field strengths (P > 0.141). Biomarkers normalized to automatically segmented regions performed equally (rCTH AUROC is 0.73 compared with 0.74) or better (rCBF AUROC increases from 0.74-0.84; rCBV AUROC increases 0.78-0.86) than manually drawn ROIs. By updating the current deconvolution steps (Method 2), rCTH can act as a classifier for glioma grade (P < 0.007), but not if processed by current conventional DSC methods (Method 1) (P > 0.577). Lastly, higher-order biomarkers (eg, rCBF and rCTH) along with rCBV increases AUROC to 0.92 for differentiating tumor grade as compared with 0.78 and 0.86 (manual and automatic reference regions, respectively) for rCBV alone. DATA CONCLUSION With optimized analysis pipelines, higher-order perfusion biomarkers (rCBF and rCTH) improve glioma grading as compared with CBV alone. Additionally, postprocessing steps impact thresholds needed for glioma grading. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:547-553.
Collapse
Affiliation(s)
- Laura C Bell
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Ashley M Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - C Chad Quarles
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
13
|
Ozturk K, Soylu E, Tolunay S, Narter S, Hakyemez B. Dynamic Contrast-Enhanced T1-Weighted Perfusion Magnetic Resonance Imaging Identifies Glioblastoma Immunohistochemical Biomarkers via Tumoral and Peritumoral Approach: A Pilot Study. World Neurosurg 2019; 128:e195-e208. [PMID: 31003026 DOI: 10.1016/j.wneu.2019.04.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We aimed to evaluate the usefulness of dynamic contrast-enhanced T1-weighted perfusion magnetic resonance imaging (DCE-pMRI) to predict certain immunohistochemical (IHC) biomarkers of glioblastoma (GB) in this pilot study. METHODS We retrospectively reviewed 36 patients (male/female, 25:11; mean age, 53 years; age range, 29-85 years) who had pretreatment DCE-pMRI with IHC analysis of their excised GBs. Regions of interest of the enhancing tumor (ER) and nonenhancing peritumoral region (NER) were used to calculate DCE-pMRI parameters of volume transfer constant, back flux constant, volume of the extravascular extracellular space, initial area under enhancement curve, and maximum slope. IHC biomarkers including Ki-67 labeling index, epidermal growth factor receptor (EGFR), oligodendrocyte transcription factor 2 (OLIG2), isocitrate dehydrogenase 1 (IDH1), and p53 mutation status were determined. The imaging metrics of GB with IHC markers were compared using the Kruskal-Wallis test and Spearman correlation analysis. RESULTS Among 30 patients with available IDH1 status, 14 patients (46.6%) had IDH1 mutation. EGFR amplification was present in 24/36 (66.6%) patients. Mean Ki-67 labeling index was 29% (range, 1.5%-80%). p53 mutation was present in 20/36 GBs (55%), whereas OLIG2 expression was positive in 29/36 GBs (80.5%). Various DCE-pMRI parameters gathered from the ER and NER were significantly correlated with IDH1 mutation, EGFR amplification, and OLIG2 expression (P < 0.05). Ki-67 labeling index showed a strong positive correlation with initial area under enhancement curve (r = 0.619; P < 0.001). CONCLUSIONS DCE-pMRI could determine surrogate IHC biomarkers in GB via tumoral and peritumoral approach, potential targets for individualized treatment protocols.
Collapse
Affiliation(s)
- Kerem Ozturk
- Department of Radiology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Esra Soylu
- Department of Radiology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Sahsine Tolunay
- Department of Pathology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Selin Narter
- Department of Pathology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Bahattin Hakyemez
- Department of Radiology, Uludag University Faculty of Medicine, Bursa, Turkey.
| |
Collapse
|
14
|
Lee B, Park JE, Bjørnerud A, Kim JH, Lee JY, Kim HS. Clinical Value of Vascular Permeability Estimates Using Dynamic Susceptibility Contrast MRI: Improved Diagnostic Performance in Distinguishing Hypervascular Primary CNS Lymphoma from Glioblastoma. AJNR Am J Neuroradiol 2018; 39:1415-1422. [PMID: 30026384 DOI: 10.3174/ajnr.a5732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/01/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE A small subset of primary central nervous system lymphomas exhibits high cerebral blood volume, which is indistinguishable from that in glioblastoma on dynamic susceptibility contrast MR imaging. Our study aimed to test whether estimates of combined perfusion and vascular permeability metrics derived from DSC-MR imaging can improve the diagnostic performance in differentiating hypervascular primary central nervous system lymphoma from glioblastoma. MATERIALS AND METHODS A total of 119 patients (with 30 primary central nervous system lymphomas and 89 glioblastomas) exhibited hypervascular foci using the reference method of leakage-corrected CBV (reference-normalized CBV). An alternative postprocessing method used the tissue residue function to calculate vascular permeability (extraction fraction), leakage-corrected CBV, cerebral blood flow, and mean transit time. Parameters were compared using Mann-Whitney U tests, and the diagnostic performance to distinguish primary central nervous system lymphoma from glioblastoma was calculated using the area under the curve from the receiver operating characteristic curve and was cross-validated with bootstrapping. RESULTS Hypervascular primary central nervous system lymphoma showed similar leakage-corrected normalized CBV and leakage-corrected CBV compared with glioblastoma (P > .05); however, primary central nervous system lymphoma exhibited a significantly higher extraction fraction (P < .001) and CBF (P = .01) and shorter MTT (P < .001) than glioblastoma. The extraction fraction showed the highest diagnostic performance (the area under the receiver operating characteristic curve [AUC], 0.78; 95% confidence interval, 0.69-0.85) for distinguishing hypervascular primary central nervous system lymphoma from glioblastoma, with a significantly higher performance than both CBV (AUC, 0.53-0.59, largest P = .02) and CBF (AUC, 0.72) and MTT (AUC, 0.71). CONCLUSIONS Estimation of vascular permeability with DSC-MR imaging further characterizes hypervascular primary central nervous system lymphoma and improves diagnostic performance in glioblastoma differentiation.
Collapse
Affiliation(s)
- B Lee
- From the Department of Radiology (B.L.), Seoul Metropolitan Government-Seoul National University, Boramae Medical Center, Seoul, Korea
| | - J E Park
- Department of Radiology and Research Institute of Radiology (J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - A Bjørnerud
- Department of Diagnostic Physics (A.B.), Rikshopitalet University Hospital, Oslo, Norway
| | - J H Kim
- NordicNeuroLab (J.H.K.), Seoul, Korea
| | - J Y Lee
- Department of Radiology (J.Y.L.), Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - H S Kim
- Department of Radiology and Research Institute of Radiology (J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
15
|
Overview and Critical Appraisal of Arterial Spin Labelling Technique in Brain Perfusion Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:5360375. [PMID: 29853806 PMCID: PMC5964483 DOI: 10.1155/2018/5360375] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/11/2018] [Indexed: 12/02/2022]
Abstract
Arterial spin labelling (ASL) allows absolute quantification of CBF via a diffusible intrinsic tracer (magnetically labelled blood water) that disperses from the vascular system into neighbouring tissue. Thus, it can provide absolute CBF quantification, which eliminates the need for the contrast agent, and can be performed repeatedly. This review will focus on the common ASL acquisition techniques (continuous, pulsed, and pseudocontinuous ASL) and how ASL image quality might be affected by intrinsic factors that may bias the CBF measurements. We also provide suggestions to mitigate these risks, model appropriately the acquired signal, increase the image quality, and hence estimate the reliability of the CBF, which consists an important noninvasive biomarker. Emerging methodologies for extraction of new ASL-based biomarkers, such as arterial arrival time (AAT) and arterial blood volume (aBV), will be also briefly discussed.
Collapse
|
16
|
Quarles CC, Bell LC, Stokes AM. Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI. Neuroimage 2018; 187:32-55. [PMID: 29729392 DOI: 10.1016/j.neuroimage.2018.04.069] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022] Open
Abstract
In the context of neurologic disorders, dynamic susceptibility contrast (DSC) and dynamic contrast enhanced (DCE) MRI provide valuable insights into cerebral vascular function, integrity, and architecture. Even after two decades of use, these modalities continue to evolve as their biophysical and kinetic basis is better understood, with improvements in pulse sequences and accelerated imaging techniques and through application of more robust and automated data analysis strategies. Here, we systematically review each of these elements, with a focus on how their integration improves kinetic parameter accuracy and the development of new hemodynamic biomarkers that provide sub-voxel sensitivity (e.g., capillary transit time and flow heterogeneity). Regarding contrast mechanisms, we discuss the dipole-dipole interactions and susceptibility effects that give rise to simultaneous T1, T2 and T2∗ relaxation effects, including their quantification, influence on pulse sequence parameter optimization, and use in methods such as vessel size and vessel architectural imaging. The application of technologic advancements, such as parallel imaging, simultaneous multi-slice, undersampled k-space acquisitions, and sliding window strategies, enables improved spatial and/or temporal resolution of DSC and DCE acquisitions. Such acceleration techniques have also enabled the implementation of, clinically feasible, simultaneous multi-echo spin- and gradient echo acquisitions, providing more comprehensive and quantitative interrogation of T1, T2 and T2∗ changes. Characterizing these relaxation rate changes through different post-processing options allows for the quantification of hemodynamics and vascular permeability. The application of different biophysical models provides insight into traditional hemodynamic parameters (e.g., cerebral blood volume) and more advanced parameters (e.g., capillary transit time heterogeneity). We provide insight into the appropriate selection of biophysical models and the necessary post-processing steps to ensure reliable measurements while minimizing potential sources of error. We show representative examples of advanced DSC- and DCE-MRI methods applied to pathologic conditions affecting the cerebral microcirculation, including brain tumors, stroke, aging, and multiple sclerosis. The maturation and standardization of conventional DSC- and DCE-MRI techniques has enabled their increased integration into clinical practice and use in clinical trials, which has, in turn, spurred renewed interest in their technological and biophysical development, paving the way towards a more comprehensive assessment of cerebral hemodynamics.
Collapse
Affiliation(s)
- C Chad Quarles
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA.
| | - Laura C Bell
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA
| | - Ashley M Stokes
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA
| |
Collapse
|
17
|
Arisawa A, Watanabe Y, Tanaka H, Takahashi H, Matsuo C, Fujiwara T, Fujiwara M, Fujimoto Y, Tomiyama N. Comparative study of pulsed-continuous arterial spin labeling and dynamic susceptibility contrast imaging by histogram analysis in evaluation of glial tumors. Neuroradiology 2018; 60:599-608. [DOI: 10.1007/s00234-018-2024-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
|
18
|
Stadlbauer A, Mouridsen K, Doerfler A, Bo Hansen M, Oberndorfer S, Zimmermann M, Buchfelder M, Heinz G, Roessler K. Recurrence of glioblastoma is associated with elevated microvascular transit time heterogeneity and increased hypoxia. J Cereb Blood Flow Metab 2018; 38:422-432. [PMID: 28273720 PMCID: PMC5851132 DOI: 10.1177/0271678x17694905] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dynamic susceptibility contrast (DSC) perfusion MRI provide information about differences in macro- and microvasculature when executed with gradient-echo (GE; sensitive to macrovasculature) and spin-echo (SE; sensitive to microvasculature) contrast. This study investigated whether there are differences between macro- and microvascular transit time heterogeneity (MVTH and µVTH) and tissue oxygen tension (PO2mit) in newly-diagnosed and recurrent glioblastoma. Fifty-seven patients with glioblastoma (25 newly-diagnosed/32 recurrent) were examined with GE- and SE-DSC perfusion sequences, and a quantitative blood-oxygen-level-dependent (qBOLD) approach. Maps of MVTH, µVTH and coefficient of variation (MCOV and µCOV) were calculated from GE- and SE-DSC data, respectively, using an extended flow-diffusion equation. PO2mit maps were calculated from qBOLD data. Newly-diagnosed and recurrent glioblastoma showed significantly lower ( P ≤ 0.001) µCOV values compared to both normal brain and macrovasculature (MCOV) of the lesions. Recurrent glioblastoma had significantly higher µVTH ( P = 0.014) and µCOV ( P = 0.039) as well as significantly lower PO2mit values ( P = 0.008) compared to newly-diagnosed glioblastoma. The macrovasculature, however, showed no significant differences. Our findings provide evidence of microvascular adaption in the disorganized tumor vasculature for retaining the metabolic demands in stress response of therapeutically-uncontrolled glioblastomas. Thus, µVTH and PO2mit mapping gives insight into the tumor microenvironment (vascular and hypoxic niches) responsible for therapy resistance.
Collapse
Affiliation(s)
- Andreas Stadlbauer
- 1 Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany.,2 Institute of Medical Radiology, University Clinic of St. Pölten, St. Pölten, Austria
| | - Kim Mouridsen
- 3 Center of Functionally Integrative Neuroscience and MIND Lab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Arnd Doerfler
- 4 Department of Neuroradiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mikkel Bo Hansen
- 3 Center of Functionally Integrative Neuroscience and MIND Lab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stefan Oberndorfer
- 5 Department of Neurology, University Clinic of St. Pölten, St. Pölten, Austria
| | - Max Zimmermann
- 1 Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Buchfelder
- 1 Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Gertraud Heinz
- 2 Institute of Medical Radiology, University Clinic of St. Pölten, St. Pölten, Austria
| | - Karl Roessler
- 1 Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
19
|
Hindel S, Papanastasiou G, Wust P, Maaß M, Söhner A, Lüdemann L. Evaluation of pharmacokinetic models for perfusion imaging with dynamic contrast-enhanced magnetic resonance imaging in porcine skeletal muscle using low-molecular-weight contrast agents. Magn Reson Med 2017; 79:3154-3162. [DOI: 10.1002/mrm.26983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/05/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Stefan Hindel
- Department of Radiotherapy; Medical Physics Section, University Hospital Essen; Essen North Rhine-Westphalia Germany
| | - Giorgos Papanastasiou
- Centre for Cardiovascular Science, Clinical Research Imaging Centre, University of Edinburgh; Edinburgh UK
| | - Peter Wust
- Department of Radiation Oncology; Charité Universitätsmedizin Berlin; Berlin Germany
| | - Marc Maaß
- Department of General and Visceral Surgery at Evangelical Hospital Wesel; Wesel North Rhine-Westphalia Germany
| | - Anika Söhner
- Department of Radiotherapy; Medical Physics Section, University Hospital Essen; Essen North Rhine-Westphalia Germany
| | - Lutz Lüdemann
- Department of Radiotherapy; Medical Physics Section, University Hospital Essen; Essen North Rhine-Westphalia Germany
| |
Collapse
|
20
|
Hultborn R. Blood flow, volume and arterio-venous passages in induced mammary tumours of the rat. Microvasc Res 2017; 116:45-49. [PMID: 29069572 DOI: 10.1016/j.mvr.2017.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study blood flow, vascular volume and arterio-venous passages in induced mammary tumours of the rat to characterize parameters possibly responsible for tumour hyponutrition. METHOD Dimethylbenzanthracene-induced mammary tumours in Sprague-Dawley rats were studied. Regional blood flow was studied by use of the radioactive microsphere tracer technique using 141Cerium-labelled 15μm spheres coinjected into the left cardiac ventricle with 125Iodine-labelled 25μm spheres. Blood volume was studied by use of 125Iodine- or 99mTechnetium-labelled human serum albumin, the latter allowing autoradiography of tumour sections for visualization of flow and volume. RESULTS Twenty-seven rats with 170 tumours had a mean tumour blood flow of 48 and 67mL×min-1×100g-1 using 15 and 25μm sphere data, respectively, indicating a significant passage through vessels between 15 and 25μm. The lungs showed a "nominal bronchial" blood flow of 260 and 135mL×min-1×100g-1 for the 15 and 25μm spheres, respectively, indicating pulmonary trapping, particularly of small spheres passing the systemic circulation in vessels larger than 15μm. There was a positive correlation between the total tumour blood flow within individual rats and trapped spheres of both dimensions in the lungs, indicating shunts also larger than 25μm. Normal tissues disclosed only small differences in regional blood flow as measured by the two spheres. Blood volume was studied in 20 rats with 120 tumours, with a vascular volume of 3.6mL×100g-1 representing a blood turnover >15 times/min. Blood volume co-localized with perfusion as seen in autoradiographs. CONCLUSION In induced rat mammary tumours, a high fraction of blood, 28%, passes arterio-venous vessels between 15 and 25μm and there also exist passages >25μm. These findings indicate that the functional capacity of the tumour vascular bed might be impaired, adding to the abnormal microenvironment of tumours.
Collapse
Affiliation(s)
- Ragnar Hultborn
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, S-400 33 Göteborg, Sweden..
| |
Collapse
|
21
|
Digernes I, Bjørnerud A, Vatnehol SAS, Løvland G, Courivaud F, Vik-Mo E, Meling TR, Emblem KE. A theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast MRI. J Cereb Blood Flow Metab 2017; 37:2237-2248. [PMID: 28273722 PMCID: PMC5444554 DOI: 10.1177/0271678x17694187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.
Collapse
Affiliation(s)
- Ingrid Digernes
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Atle Bjørnerud
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway.,2 Department of Physics, University of Oslo, Oslo, Norway
| | | | - Grete Løvland
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Frédéric Courivaud
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Einar Vik-Mo
- 3 Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Torstein R Meling
- 3 Department of Neurosurgery, Oslo University Hospital, Oslo, Norway.,4 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kyrre E Emblem
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
22
|
Bonekamp D, Mouridsen K, Radbruch A, Kurz FT, Eidel O, Wick A, Schlemmer HP, Wick W, Bendszus M, Østergaard L, Kickingereder P. Assessment of tumor oxygenation and its impact on treatment response in bevacizumab-treated recurrent glioblastoma. J Cereb Blood Flow Metab 2017; 37:485-494. [PMID: 26861817 PMCID: PMC5381446 DOI: 10.1177/0271678x16630322] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiantiogenic therapy with bevacizumab in recurrent glioblastoma is currently understood to both reduce microvascular density and to prune abnormal tumor microvessels. Microvascular pruning and the resulting vascular normalization are hypothesized to reduce tumor hypoxia and increase supply of systemic therapy to the tumor; however, the underlying pathophysiological changes and their timing after treatment initiation remain controversial. Here, we use a novel dynamic susceptibility contrast MRI-based method, which allows simultaneous assessment of tumor net oxygenation changes reflected by the tumor metabolic rate of oxygen and vascular normalization represented by the capillary transit time heterogeneity. We find that capillary transit time heterogeneity, and hence the oxygen extraction fraction combine with the tumoral blood flow (cerebral blood flow) in such a way that the overall tumor oxygenation appears to be worsened despite vascular normalization. Accordingly, hazards for both progression and death are found elevated in patients with a greater reduction of tumor metabolic rate of oxygen in response to bevacizumab and patients with higher intratumoral tumor metabolic rate of oxygen at baseline. This implies that tumors with a higher degree of angiogenesis prior to bevacizumab-treatment retain a higher level of angiogenesis during therapy despite a greater antiangiogenic effect of bevacizumab, hinting at evasive mechanisms limiting bevacizumab efficacy in that a reversal of their biological behavior and relative prognosis does not occur.
Collapse
Affiliation(s)
- David Bonekamp
- 1 Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany.,2 Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kim Mouridsen
- 3 Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University Hospital, Aarhus, Denmark
| | - Alexander Radbruch
- 1 Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany.,2 Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix T Kurz
- 1 Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Oliver Eidel
- 1 Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Antje Wick
- 4 Neurology Clinic, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- 2 Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- 4 Neurology Clinic, University of Heidelberg Medical Center, Heidelberg, Germany.,5 Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bendszus
- 1 Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Leif Østergaard
- 3 Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University Hospital, Aarhus, Denmark.,6 Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Philipp Kickingereder
- 1 Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| |
Collapse
|
23
|
Stadlbauer A, Zimmermann M, Kitzwögerer M, Oberndorfer S, Rössler K, Dörfler A, Buchfelder M, Heinz G. MR Imaging-derived Oxygen Metabolism and Neovascularization Characterization for Grading and IDH Gene Mutation Detection of Gliomas. Radiology 2016; 283:799-809. [PMID: 27982759 DOI: 10.1148/radiol.2016161422] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To explore the diagnostic performance of physiological magnetic resonance (MR) imaging of oxygen metabolism and neovascularization activity for grading and characterization of isocitrate dehydrogenase (IDH) gene mutation status of gliomas. Materials and Methods This retrospective study had institutional review board approval; written informed consent was obtained from all patients. Eighty-three patients with histopathologically proven glioma (World Health Organization [WHO] grade II-IV) were examined with quantitative blood oxygen level-dependent imaging and vascular architecture mapping. Biomarker maps of neovascularization activity (microvessel radius, microvessel density, and microvessel type indicator [MTI]) and oxygen metabolism (oxygen extraction fraction [OEF] and cerebral metabolic rate of oxygen [CMRO2]) were calculated. Receiver operating characteristic analysis was used to determine diagnostic performance for grading and detection of IDH gene mutation status. Results Low-grade (WHO grade II) glioma showed areas with increased OEF (+18%, P < .001, n = 20), whereas anaplastic glioma (WHO grade III) and glioblastoma (WHO grade IV) showed decreased OEF when compared with normal brain tissue (-54% [P < .001, n = 21] and -49% [P < .001, n = 41], respectively). This allowed clear differentiation between low- and high-grade glioma (area under the receiver operating characteristic curve [AUC], 1) for the patient cohort. MTI had the highest diagnostic performance (AUC, 0.782) for differentiation between gliomas of grades III and IV among all biomarkers. CMRO2 was decreased (P = .037) in low-grade glioma with a mutated IDH gene, and MTI was significantly increased in glioma grade III with IDH mutation (P = .013) when compared with the IDH wild-type counterparts. CMRO2 showed the highest diagnostic performance for IDH gene mutation detection in low-grade glioma (AUC, 0.818) and MTI in high-grade glioma (AUC, 0.854) and for all WHO grades (AUC, 0.899) among all biomarkers. Conclusion MR imaging-derived oxygen metabolism and neovascularization characterization may be useful for grading and IDH mutation detection of gliomas and requires only 7 minutes of extra imaging time. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Andreas Stadlbauer
- From the Institute of Medical Radiology (A.S., G.H.), Department of Pathology (M.K.), and Department of Neurology (S.O.), University Clinic of St Pölten, Propst Führer-Strasse 4, A-3100 St Pölten, Austria; and Departments of Neurosurgery (A.S., M.Z., K.R., M.B.) and Neuroradiology (A.D.), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Max Zimmermann
- From the Institute of Medical Radiology (A.S., G.H.), Department of Pathology (M.K.), and Department of Neurology (S.O.), University Clinic of St Pölten, Propst Führer-Strasse 4, A-3100 St Pölten, Austria; and Departments of Neurosurgery (A.S., M.Z., K.R., M.B.) and Neuroradiology (A.D.), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Melitta Kitzwögerer
- From the Institute of Medical Radiology (A.S., G.H.), Department of Pathology (M.K.), and Department of Neurology (S.O.), University Clinic of St Pölten, Propst Führer-Strasse 4, A-3100 St Pölten, Austria; and Departments of Neurosurgery (A.S., M.Z., K.R., M.B.) and Neuroradiology (A.D.), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Oberndorfer
- From the Institute of Medical Radiology (A.S., G.H.), Department of Pathology (M.K.), and Department of Neurology (S.O.), University Clinic of St Pölten, Propst Führer-Strasse 4, A-3100 St Pölten, Austria; and Departments of Neurosurgery (A.S., M.Z., K.R., M.B.) and Neuroradiology (A.D.), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Rössler
- From the Institute of Medical Radiology (A.S., G.H.), Department of Pathology (M.K.), and Department of Neurology (S.O.), University Clinic of St Pölten, Propst Führer-Strasse 4, A-3100 St Pölten, Austria; and Departments of Neurosurgery (A.S., M.Z., K.R., M.B.) and Neuroradiology (A.D.), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Dörfler
- From the Institute of Medical Radiology (A.S., G.H.), Department of Pathology (M.K.), and Department of Neurology (S.O.), University Clinic of St Pölten, Propst Führer-Strasse 4, A-3100 St Pölten, Austria; and Departments of Neurosurgery (A.S., M.Z., K.R., M.B.) and Neuroradiology (A.D.), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Buchfelder
- From the Institute of Medical Radiology (A.S., G.H.), Department of Pathology (M.K.), and Department of Neurology (S.O.), University Clinic of St Pölten, Propst Führer-Strasse 4, A-3100 St Pölten, Austria; and Departments of Neurosurgery (A.S., M.Z., K.R., M.B.) and Neuroradiology (A.D.), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Gertraud Heinz
- From the Institute of Medical Radiology (A.S., G.H.), Department of Pathology (M.K.), and Department of Neurology (S.O.), University Clinic of St Pölten, Propst Führer-Strasse 4, A-3100 St Pölten, Austria; and Departments of Neurosurgery (A.S., M.Z., K.R., M.B.) and Neuroradiology (A.D.), University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
24
|
Hansen MB, Tietze A, Kalpathy-Cramer J, Gerstner ER, Batchelor TT, Østergaard L, Mouridsen K. Reliable estimation of microvascular flow patterns in patients with disrupted blood-brain barrier using dynamic susceptibility contrast MRI. J Magn Reson Imaging 2016; 46:537-549. [PMID: 27902858 DOI: 10.1002/jmri.25549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/27/2016] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To present and quantify the performance of a method to compute tissue hemodynamic parameters from dynamic susceptibility contrast (DSC) MRI data in brain tissue with possible nonintact blood-brain barrier. THEORY AND MATERIALS AND METHODS We propose a Bayesian scheme to obtain perfusion metrics, including capillary transit-time heterogeneity (CTH), from DSC-MRI data in the presence of contrast agent extravasation. Initial performance assessment is performed through simulations. Next, we assessed possible over- or under correction for tracer extravasation in two patients receiving contrast agent preloading and two patients not receiving preloading. Perfusion metrics for N = 60 patients diagnosed with either grade III (N = 14) or grade IV gliomas (N = 46) were analyzed across tissue types to evaluate the ability to distinguish regions with different hemodynamic patterns. Finally, N = 4 patient cases undergoing anti-angiogenic treatment are evaluated qualitatively for treatment effects. All patient data were acquired at 3.0 Tesla. RESULTS The simulation studies showed good robustness against low signal-to-noise ratios, exemplified with Pearson correlations of R = 0.833 (mean transit time) and R = 0.738 (CTH) at signal-to-noise ratio = 20. Region-of-interest analysis of the N = 60 glioma patients showed that cerebral blood volume (CBV) significantly separated enhancing core from edema (grade IV: P < 10-8 , grade III: P < 0.05) and enhancing core from normal appearing ipsilateral white matter (NAWM) (grade IV: P < 10-8 , grade III: P < 0.05). The microvascular parameters were particularly good in separating edematous tissue from NAWM tissue in grade IV gliomas (P < 0.001). Finally, CTH separated grade III and grade IV core tissue (P < 0.05). CONCLUSION We have demonstrated robustness of the proposed Bayesian algorithm against experimental noise and demonstrated complementary value in microvascular parameters to the CBV parameter in separating tissue types in gliomas. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:537-549.
Collapse
Affiliation(s)
- Mikkel Bo Hansen
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna Tietze
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark.,Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin
| | - Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tracy T Batchelor
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Kim Mouridsen
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Gerstner ER, Zhang Z, Fink JR, Muzi M, Hanna L, Greco E, Prah M, Schmainda KM, Mintz A, Kostakoglu L, Eikman EA, Ellingson BM, Ratai EM, Sorensen AG, Barboriak DP, Mankoff DA. ACRIN 6684: Assessment of Tumor Hypoxia in Newly Diagnosed Glioblastoma Using 18F-FMISO PET and MRI. Clin Cancer Res 2016; 22:5079-5086. [PMID: 27185374 DOI: 10.1158/1078-0432.ccr-15-2529] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/19/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE Structural and functional alterations in tumor vasculature are thought to contribute to tumor hypoxia which is a primary driver of malignancy through its negative impact on the efficacy of radiation, immune surveillance, apoptosis, genomic stability, and accelerated angiogenesis. We performed a prospective, multicenter study to test the hypothesis that abnormal tumor vasculature and hypoxia, as measured with MRI and PET, will negatively impact survival in patients with newly diagnosed glioblastoma. EXPERIMENTAL DESIGN Prior to the start of chemoradiation, patients with glioblastoma underwent MRI scans that included dynamic contrast enhanced and dynamic susceptibility contrast perfusion sequences to quantitate tumor cerebral blood volume/flow (CBV/CBF) and vascular permeability (ktrans) as well as 18F-Fluoromisonidazole (18F-FMISO) PET to quantitate tumor hypoxia. ROC analysis and Cox regression models were used to determine the association of imaging variables with progression-free and overall survival. RESULTS Fifty patients were enrolled of which 42 had evaluable imaging data. Higher pretreatment 18F-FMISO SUVpeak (P = 0.048), mean ktrans (P = 0.024), and median ktrans (P = 0.045) were significantly associated with shorter overall survival. Higher pretreatment median ktrans (P = 0.021), normalized RCBV (P = 0.0096), and nCBF (P = 0.038) were significantly associated with shorter progression-free survival. SUVpeak [AUC = 0.75; 95% confidence interval (CI), 0.59-0.91], nRCBV (AUC = 0.72; 95% CI, 0.56-0.89), and nCBF (AUC = 0.72; 95% CI, 0.56-0.89) were predictive of survival at 1 year. CONCLUSIONS Increased tumor perfusion, vascular volume, vascular permeability, and hypoxia are negative prognostic markers in newly diagnosed patients with gioblastoma, and these important physiologic markers can be measured safely and reliably using MRI and 18F-FMISO PET. Clin Cancer Res; 22(20); 5079-86. ©2016 AACR.
Collapse
Affiliation(s)
- Elizabeth R Gerstner
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. Martinos Center for Biomedical Research, Charlestown, Massachusetts.
| | | | | | - Mark Muzi
- University of Washington, Seattle, Washington
| | - Lucy Hanna
- Brown University, Providence, Rhode Island
| | - Erin Greco
- Brown University, Providence, Rhode Island
| | - Melissa Prah
- Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Akiva Mintz
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | | - Eva-Maria Ratai
- Martinos Center for Biomedical Research, Charlestown, Massachusetts. Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
26
|
Nijaguna MB, Patil V, Hegde AS, Chandramouli BA, Arivazhagan A, Santosh V, Somasundaram K. An Eighteen Serum Cytokine Signature for Discriminating Glioma from Normal Healthy Individuals. PLoS One 2015; 10:e0137524. [PMID: 26390214 PMCID: PMC4577083 DOI: 10.1371/journal.pone.0137524] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/18/2015] [Indexed: 02/04/2023] Open
Abstract
Glioblastomas (GBM) are largely incurable as they diffusely infiltrate adjacent brain tissues and are difficult to diagnose at early stages. Biomarkers derived from serum, which can be obtained by minimally invasive procedures, may help in early diagnosis, prognosis and treatment monitoring. To develop a serum cytokine signature, we profiled 48 cytokines in sera derived from normal healthy individuals (n = 26) and different grades of glioma patients (n = 194). We divided the normal and grade IV glioma/GBM serum samples randomly into equal sized training and test sets. In the training set, the Prediction Analysis for Microarrays (PAM) identified a panel of 18 cytokines that could discriminate GBM sera from normal sera with maximum accuracy (95.40%) and minimum error (4.60%). The 18-cytokine signature obtained in the training set discriminated GBM sera from normal sera in the test set as well (accuracy 96.55%; error 3.45%). Interestingly, the 18-cytokine signature also differentiated grade II/Diffuse Astrocytoma (DA) and grade III/Anaplastic Astrocytoma (AA) sera from normal sera very efficiently (DA vs. normal–accuracy 96.00%, error 4.00%; AA vs. normal–accuracy 95.83%, error 4.17%). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using 18 cytokines resulted in the enrichment of two pathways, cytokine-cytokine receptor interaction and JAK-STAT pathways with high significance. Thus our study identified an 18-cytokine signature for distinguishing glioma sera from normal healthy individual sera and also demonstrated the importance of their differential abundance in glioma biology.
Collapse
Affiliation(s)
- Mamatha B. Nijaguna
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vikas Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Alangar S. Hegde
- Department of Neurosurgery, Sri Satya Sai Institute of Higher Medical Sciences, Bangalore 560066, India
| | - Bangalore A. Chandramouli
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Arimappamagan Arivazhagan
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- * E-mail:
| |
Collapse
|
27
|
von Neubeck C, Seidlitz A, Kitzler HH, Beuthien-Baumann B, Krause M. Glioblastoma multiforme: emerging treatments and stratification markers beyond new drugs. Br J Radiol 2015; 88:20150354. [PMID: 26159214 DOI: 10.1259/bjr.20150354] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults. The standard therapy for GBM is maximal surgical resection followed by radiotherapy with concurrent and adjuvant temozolomide (TMZ). In spite of the extensive treatment, the disease is associated with poor clinical outcome. Further intensification of the standard treatment is limited by the infiltrating growth of the GBM in normal brain areas, the expected neurological toxicities with radiation doses >60 Gy and the dose-limiting toxicities induced by systemic therapy. To improve the outcome of patients with GBM, alternative treatment modalities which add low or no additional toxicities to the standard treatment are needed. Many Phase II trials on new chemotherapeutics or targeted drugs have indicated potential efficacy but failed to improve the overall or progression-free survival in Phase III clinical trials. In this review, we will discuss contemporary issues related to recent technical developments and new metabolic strategies for patients with GBM including MR (spectroscopy) imaging, (amino acid) positron emission tomography (PET), amino acid PET, surgery, radiogenomics, particle therapy, radioimmunotherapy and diets.
Collapse
Affiliation(s)
- C von Neubeck
- 1 German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,2 OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - A Seidlitz
- 2 OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,3 Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - H H Kitzler
- 4 Department of Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - B Beuthien-Baumann
- 2 OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,5 Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,6 Helmholtz-Zentrum, Dresden-Rossendorf (HZDR), PET Centre, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - M Krause
- 1 German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,2 OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,3 Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,7 Helmholtz-Zentrum, Dresden-Rossendorf (HZDR), Institute of Radiooncology, Dresden, Germany
| |
Collapse
|