1
|
Solano A, Lou J, Scipioni L, Gratton E, Hinde E. Radial pair correlation of molecular brightness fluctuations maps protein diffusion as a function of oligomeric state within live-cell nuclear architecture. Biophys J 2022; 121:2152-2167. [PMID: 35490296 PMCID: PMC9247470 DOI: 10.1016/j.bpj.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/16/2021] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
Nuclear proteins can modulate their DNA binding activity and the exploration volume available during DNA target search by self-associating into higher-order oligomers. Directly tracking this process in the nucleoplasm of a living cell is, however, a complex task. Thus, here we present a microscopy method based on radial pair correlation of molecular brightness fluctuations (radial pCOMB) that can extract the mobility of a fluorescently tagged nuclear protein as a function of its oligomeric state and spatiotemporally map the anisotropy of this parameter with respect to nuclear architecture. By simply performing a rapid frame scan acquisition, radial pCOMB has the capacity to detect, within each pixel, protein oligomer formation and the size-dependent obstruction nuclear architecture imparts on this complex's transport across sub-micrometer distances. From application of radial pCOMB to an oligomeric transcription factor and DNA repair protein, we demonstrate that homo-oligomer formation differentially regulates chromatin accessibility and interaction with the DNA template.
Collapse
Affiliation(s)
- Ashleigh Solano
- School of Physics, University of Melbourne; Department of Biochemistry and Pharmacology, University of Melbourne
| | - Jieqiong Lou
- School of Physics, University of Melbourne; Department of Biochemistry and Pharmacology, University of Melbourne
| | - Lorenzo Scipioni
- Department of Biomedical Engineering, University of California, Irvine
| | - Enrico Gratton
- Department of Biomedical Engineering, University of California, Irvine.
| | - Elizabeth Hinde
- School of Physics, University of Melbourne; Department of Biochemistry and Pharmacology, University of Melbourne.
| |
Collapse
|
2
|
Bosire R, Fadel L, Mocsár G, Nánási P, Sen P, Sharma AK, Naseem MU, Kovács A, Kugel J, Kroemer G, Vámosi G, Szabó G. Doxorubicin impacts chromatin binding of HMGB1, Histone H1 and retinoic acid receptor. Sci Rep 2022; 12:8087. [PMID: 35577872 PMCID: PMC9110345 DOI: 10.1038/s41598-022-11994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Doxorubicin (Dox), a widely used anticancer DNA-binding drug, affects chromatin in multiple ways, and these effects contribute to both its efficacy and its dose-limiting side effects, especially cardiotoxicity. Here, we studied the effects of Dox on the chromatin binding of the architectural proteins high mobility group B1 (HMGB1) and the linker histone H1, and the transcription factor retinoic acid receptor (RARα) by fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) in live cells. At lower doses, Dox increased the binding of HMGB1 to DNA while decreasing the binding of the linker histone H1. At higher doses that correspond to the peak plasma concentrations achieved during chemotherapy, Dox reduced the binding of HMGB1 as well. This biphasic effect is interpreted in terms of a hierarchy of competition between the ligands involved and Dox-induced local conformational changes of nucleosome-free DNA. Combined, FRAP and FCS mobility data suggest that Dox decreases the overall binding of RARα to DNA, an effect that was only partially overcome by agonist binding. The intertwined interactions described are likely to contribute to both the effects and side effects of Dox.
Collapse
Affiliation(s)
- Rosevalentine Bosire
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Lina Fadel
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Nánási
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Pialy Sen
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Anshu Kumar Sharma
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Kovács
- Department of Radiation Therapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jennifer Kugel
- Department of Biochemistry, University of Colorado, Boulder, USA
| | - Guido Kroemer
- Centre de Recherche Des Cordeliers, Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
3
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|
4
|
Rehó B, Lau L, Mocsár G, Müller G, Fadel L, Brázda P, Nagy L, Tóth K, Vámosi G. Simultaneous Mapping of Molecular Proximity and Comobility Reveals Agonist-Enhanced Dimerization and DNA Binding of Nuclear Receptors. Anal Chem 2020; 92:2207-2215. [PMID: 31870146 DOI: 10.1021/acs.analchem.9b04902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Single Plane Illumination Microscopy (SPIM) revolutionized time lapse imaging of live cells and organisms due to its high speed and reduced photodamage. Quantitative mapping of molecular (co)mobility by fluorescence (cross-)correlation spectroscopy (F(C)CS) in a SPIM has been introduced to reveal molecular diffusion and binding. A complementary aspect of interactions is proximity, which can be studied by Förster resonance energy transfer (FRET). Here, we extend SPIM-FCCS by alternating laser excitation, which reduces false positive cross-correlation and facilitates comapping of FRET. Thus, different aspects of interacting systems can be studied simultaneously, and molecular subpopulations can be discriminated by multiparameter analysis. After demonstrating the benefits of the method on the AP-1 transcription factor, the dimerization and DNA binding behavior of retinoic acid receptor (RAR) and retinoid X receptor (RXR) is revealed, and an extension of the molecular switch model of the nuclear receptor action is proposed. Our data imply that RAR agonist enhances RAR-RXR heterodimerization, and chromatin binding/dimerization are positively correlated. We also propose a ligand induced conformational change bringing the N-termini of RAR and RXR closer together. The RXR agonist increased homodimerization of RXR suggesting that RXR may act as an autonomous transcription factor.
Collapse
Affiliation(s)
- Bálint Rehó
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Lukas Lau
- Division Biophysics of Macromolecules , German Cancer Research Center , Im Neuenheimer Feld 280 , D-69120 Heidelberg , Germany
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Gabriele Müller
- Division Biophysics of Macromolecules , German Cancer Research Center , Im Neuenheimer Feld 280 , D-69120 Heidelberg , Germany
| | - Lina Fadel
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Péter Brázda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - László Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary.,Johns Hopkins University School of Medicine , Department of Medicine and Biological Chemistry, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital , 600 Fifth Street South Saint Petersburg , Florida 33701-4634 , United States
| | - Katalin Tóth
- Division Biophysics of Macromolecules , German Cancer Research Center , Im Neuenheimer Feld 280 , D-69120 Heidelberg , Germany
| | - György Vámosi
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| |
Collapse
|
5
|
Renschler G, Richard G, Valsecchi CIK, Toscano S, Arrigoni L, Ramírez F, Akhtar A. Hi-C guided assemblies reveal conserved regulatory topologies on X and autosomes despite extensive genome shuffling. Genes Dev 2019; 33:1591-1612. [PMID: 31601616 PMCID: PMC6824461 DOI: 10.1101/gad.328971.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022]
Abstract
In this study, Renschler et al. set out to analyze the impact of genomic rearrangements on genome topology using the Drosophila genus and X chromosome dosage compensation as a model. The authors developed a scaffolding algorithm and generated chromosome-length assemblies from Hi-C data for studying genome topology in three distantly related Drosophila species. Their data provides unique insights into genome topology evolution. RA Genome rearrangements that occur during evolution impose major challenges on regulatory mechanisms that rely on three-dimensional genome architecture. Here, we developed a scaffolding algorithm and generated chromosome-length assemblies from Hi-C data for studying genome topology in three distantly related Drosophila species. We observe extensive genome shuffling between these species with one synteny breakpoint after approximately every six genes. A/B compartments, a set of large gene-dense topologically associating domains (TADs), and spatial contacts between high-affinity sites (HAS) located on the X chromosome are maintained over 40 million years, indicating architectural conservation at various hierarchies. Evolutionary conserved genes cluster in the vicinity of HAS, while HAS locations appear evolutionarily flexible, thus uncoupling functional requirement of dosage compensation from individual positions on the linear X chromosome. Therefore, 3D architecture is preserved even in scenarios of thousands of rearrangements highlighting its relevance for essential processes such as dosage compensation of the X chromosome.
Collapse
Affiliation(s)
- Gina Renschler
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Gautier Richard
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany.,IGEPP, INRA, Agrocampus Ouest, Université Rennes, 35600 Le Rheu, France
| | | | - Sarah Toscano
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Laura Arrigoni
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Fidel Ramírez
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| |
Collapse
|
6
|
Ng XW, Sampath K, Wohland T. Fluorescence Correlation and Cross-Correlation Spectroscopy in Zebrafish. Methods Mol Biol 2019; 1863:67-105. [PMID: 30324593 DOI: 10.1007/978-1-4939-8772-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
There has been increasing interest in biophysical studies on live organisms to gain better insights into physiologically relevant biological events at the molecular level. Zebrafish (Danio rerio) is a viable vertebrate model to study such events due to its genetic and evolutionary similarities to humans, amenability to less invasive fluorescence techniques owing to its transparency and well-characterized genetic manipulation techniques. Fluorescence techniques used to probe biomolecular dynamics and interactions of molecules in live zebrafish embryos are therefore highly sought-after to bridge molecular and developmental events. Fluorescence correlation and cross-correlation spectroscopy (FCS and FCCS) are two robust techniques that provide molecular level information on dynamics and interactions respectively. Here, we detail the steps for applying confocal FCS and FCCS, in particular single-wavelength FCCS (SW-FCCS), in live zebrafish embryos, beginning with sample preparation, instrumentation, calibration, and measurements on the FCS/FCCS instrument and ending with data analysis.
Collapse
Affiliation(s)
- Xue Wen Ng
- Department of Chemistry and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Thorsten Wohland
- Department of Chemistry and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Fluorescence fluctuation spectroscopy: an invaluable microscopy tool for uncovering the biophysical rules for navigating the nuclear landscape. Biochem Soc Trans 2019; 47:1117-1129. [DOI: 10.1042/bst20180604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Nuclear architecture is fundamental to the manner by which molecules traverse the nucleus. The nucleoplasm is a crowded environment where dynamic rearrangements in local chromatin compaction locally redefine the space accessible toward nuclear protein diffusion. Here, we review a suite of methods based on fluorescence fluctuation spectroscopy (FFS) and how they have been employed to interrogate chromatin organization, as well as the impact this structural framework has on nuclear protein target search. From first focusing on a set of studies that apply FFS to an inert fluorescent tracer diffusing inside the nucleus of a living cell, we demonstrate the capacity of this technology to measure the accessibility of the nucleoplasm. Then with a baseline understanding of the exploration volume available to nuclear proteins during target search, we review direct applications of FFS to fluorescently labeled transcription factors (TFs). FFS can detect changes in TF mobility due to DNA binding, as well as the formation of TF complexes via changes in brightness due to oligomerization. Collectively, we find that FFS-based methods can uncover how nuclear proteins in general navigate the nuclear landscape.
Collapse
|
8
|
Ma X, Ezer D, Adryan B, Stevens TJ. Canonical and single-cell Hi-C reveal distinct chromatin interaction sub-networks of mammalian transcription factors. Genome Biol 2018; 19:174. [PMID: 30359306 PMCID: PMC6203279 DOI: 10.1186/s13059-018-1558-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Background Transcription factor (TF) binding to regulatory DNA sites is a key determinant of cell identity within multi-cellular organisms and has been studied extensively in relation to site affinity and chromatin modifications. There has been a strong focus on the inference of TF-gene regulatory networks and TF-TF physical interaction networks. Here, we present a third type of TF network, the spatial network of co-localized TF binding sites within the three-dimensional genome. Results Using published canonical Hi-C data and single-cell genome structures, we assess the spatial proximity of a genome-wide array of potential TF-TF co-localizations in human and mouse cell lines. For individual TFs, the abundance of occupied binding sites shows a positive correspondence with their clustering in three dimensions, and this is especially apparent for weak TF binding sites and at enhancer regions. An analysis between different TF proteins identifies significantly proximal pairs, which are enriched in reported physical interactions. Furthermore, clustering of different TFs based on proximity enrichment identifies two partially segregated co-localization sub-networks, involving different TFs in different cell types. Using data from both human lymphoblastoid cells and mouse embryonic stem cells, we find that these sub-networks are enriched within, but not exclusive to, different chromosome sub-compartments that have been identified previously in Hi-C data. Conclusions This suggests that the association of TFs within spatial networks is closely coupled to gene regulatory networks. This applies to both differentiated and undifferentiated cells and is a potential causal link between lineage-specific TF binding and chromosome sub-compartment segregation. Electronic supplementary material The online version of this article (10.1186/s13059-018-1558-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Daphne Ezer
- The Alan Turing Institute for Data Science, British Library, 96 Euston Rd, Kings Cross, London, NW1 2DB, UK.,Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK
| | - Boris Adryan
- Merck KGaA, Chief Digital Office, 64293, Darmstadt, Germany
| | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
9
|
Random Motion of Chromatin Is Influenced by Lamin A Interconnections. Biophys J 2018; 114:2465-2472. [PMID: 29759373 DOI: 10.1016/j.bpj.2018.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/11/2018] [Accepted: 04/19/2018] [Indexed: 01/30/2023] Open
Abstract
Using fluorescence correlation spectroscopy in single-plane illumination microscopy, we investigated the dynamics of chromatin in interphase mouse adult fibroblast cell nuclei under the influence of the intermediate filament protein lamin A. We find that 1) lamin A-eGFP and histone H2A-mRFP show significant comobility, indicating that their motions are clearly interconnected in the nucleus, and 2) that the random motion of histones H2A within the chromatin network is subdiffusive, i.e., the effective diffusion coefficient decreases for slow timescales. Knocking out lamin A changes the diffusion back to normal. Thus, lamin A influences the dynamics of the entire chromatin network. Our conclusion is that lamin A plays a central role in determining the viscoelasticity of the chromatin network and helping to maintain local ordering of interphase chromosomes.
Collapse
|
10
|
Gherbi K, Briddon SJ, Charlton SJ. Micro-pharmacokinetics: Quantifying local drug concentration at live cell membranes. Sci Rep 2018; 8:3479. [PMID: 29472588 PMCID: PMC5823863 DOI: 10.1038/s41598-018-21100-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
Fundamental equations for determining pharmacological parameters, such as the binding affinity of a ligand for its target receptor, assume a homogeneous distribution of ligand, with concentrations in the immediate vicinity of the receptor being the same as those in the bulk aqueous phase. It is, however, known that drugs are able to interact directly with the plasma membrane, potentially increasing local ligand concentrations around the receptor. We have previously reported an influence of ligand-phospholipid interactions on ligand binding kinetics at the β2-adrenoceptor, which resulted in distinct "micro-pharmacokinetic" ligand profiles. Here, we directly quantified the local concentration of BODIPY630/650-PEG8-S-propranolol (BY-propranolol), a fluorescent derivative of the classical β-blocker propranolol, at various distances above membranes of single living cells using fluorescence correlation spectroscopy. We show for the first time a significantly increased ligand concentration immediately adjacent to the cell membrane compared to the bulk aqueous phase. We further show a clear role of both the cell membrane and the β2-adrenoceptor in determining high local BY-propranolol concentrations at the cell surface. These data suggest that the true binding affinity of BY-propranolol for the β2-adrenoceptor is likely far lower than previously reported and highlights the critical importance of understanding the "micro-pharmacokinetic" profiles of ligands for membrane-associated proteins.
Collapse
Affiliation(s)
- Karolina Gherbi
- Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.,Excellerate Bioscience Ltd, MediCity, Nottingham, NG90 6BH, UK
| | - Stephen J Briddon
- Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| | - Steven J Charlton
- Division of Pharmacology, Physiology and Neuroscience, School of Life Sciences, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK. .,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK. .,Excellerate Bioscience Ltd, MediCity, Nottingham, NG90 6BH, UK.
| |
Collapse
|
11
|
Ceffa NG, Bouzin M, D'Alfonso L, Sironi L, Marquezin CA, Auricchio F, Marconi S, Chirico G, Collini M. Spatiotemporal Image Correlation Analysis for 3D Flow Field Mapping in Microfluidic Devices. Anal Chem 2018; 90:2277-2284. [PMID: 29266924 DOI: 10.1021/acs.analchem.7b04641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Microfluidic devices reproducing 3D networks are particularly valuable for nanomedicine applications such as tissue engineering and active cell sorting. There is however a gap in the possibility to measure how the flow evolves in such 3D structures. We show here that it is possible to map 3D flows in complex microchannel networks by combining wide field illumination to image correlation approaches. For this purpose, we have derived the spatiotemporal image correlation analysis of time stacks of single-plane illumination microscopy images. From the detailed analytical and numerical analysis of the resulting model, we developed a fitting method that allows us to measure, besides the in-plane velocity, the out-of-plane velocity component down to vz ≅ 65 μm/s. We have applied this method successfully to the 3D reconstruction of flows in microchannel networks with planar and 3D ramifications. These different network architectures have been realized by exploiting the great prototyping ability of a 3D printer, whose precision can reach few tens of micrometers, coupled to poly dimethyl-siloxane soft-printing lithography.
Collapse
Affiliation(s)
- Nicolo' G Ceffa
- Dipartimento di Fisica, Centro di Nanomedicina, Università degli Studi di Milano-Bicocca , Piazza della Scienza 3, 20126, Milano, Italy
| | - Margaux Bouzin
- Dipartimento di Fisica, Centro di Nanomedicina, Università degli Studi di Milano-Bicocca , Piazza della Scienza 3, 20126, Milano, Italy
| | - Laura D'Alfonso
- Dipartimento di Fisica, Centro di Nanomedicina, Università degli Studi di Milano-Bicocca , Piazza della Scienza 3, 20126, Milano, Italy
| | - Laura Sironi
- Dipartimento di Fisica, Centro di Nanomedicina, Università degli Studi di Milano-Bicocca , Piazza della Scienza 3, 20126, Milano, Italy
| | - Cassia A Marquezin
- Instituto de Física, Universidade Federal de Goiás , Goiânia, Goiás 74.690-900, Brazil
| | - Ferdinando Auricchio
- Dipartimento di Ingegneria Civile e Architettura, Università degli Studi di Pavia , 27100 Pavia, Italy
| | - Stefania Marconi
- Dipartimento di Ingegneria Civile e Architettura, Università degli Studi di Pavia , 27100 Pavia, Italy
| | - Giuseppe Chirico
- Dipartimento di Fisica, Centro di Nanomedicina, Università degli Studi di Milano-Bicocca , Piazza della Scienza 3, 20126, Milano, Italy.,CNR-ISASI, Institute of Applied Sciences and Intelligent Systems , Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Maddalena Collini
- Dipartimento di Fisica, Centro di Nanomedicina, Università degli Studi di Milano-Bicocca , Piazza della Scienza 3, 20126, Milano, Italy.,CNR-ISASI, Institute of Applied Sciences and Intelligent Systems , Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
12
|
Langowski J. Single plane illumination microscopy as a tool for studying nucleome dynamics. Methods 2017; 123:3-10. [PMID: 28648678 DOI: 10.1016/j.ymeth.2017.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/04/2017] [Accepted: 06/21/2017] [Indexed: 11/28/2022] Open
Abstract
Single plane illumination microscopy (SPIM) is a new optical method that has become extremely important in recent years. It is based on the formation of a "light slice" in the specimen in which fluorescently tagged molecules are observed. The spatial resolution is close to that of confocal optics, but without the disadvantages inherent to scanning or high laser irradiation doses. A recent development is light sheet fluctuation microscopy, which exploits the dynamic information contained in the fluorescence intensity fluctuations of each image pixel. Here we review the principles of this method and show some recent applications to the dynamics of transcription factors and chromatin. We show that the dimerization of Fos and Jun proteins is directly linked to their binding to DNA; that nuclear receptor activation changes their intranuclear dynamics; and that the viscoelastic behavior of interphase chromatin strongly depends on the presence of lamin A.
Collapse
Affiliation(s)
- Jörg Langowski
- Biophysics of Macromolecules, DKFZ Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Evidence for Homodimerization of the c-Fos Transcription Factor in Live Cells Revealed by Fluorescence Microscopy and Computer Modeling. Mol Cell Biol 2015; 35:3785-98. [PMID: 26303532 DOI: 10.1128/mcb.00346-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/20/2015] [Indexed: 01/04/2023] Open
Abstract
The c-Fos and c-Jun transcription factors, members of the activator protein 1 (AP-1) complex, form heterodimers and bind to DNA via a basic leucine zipper and regulate the cell cycle, apoptosis, differentiation, etc. Purified c-Jun leucine zipper fragments could also form stable homodimers, whereas c-Fos leucine zipper homodimers were found to be much less stable in earlier in vitro studies. The importance of c-Fos overexpression in tumors and the controversy in the literature concerning c-Fos homodimerization prompted us to investigate Fos homodimerization. Förster resonance energy transfer (FRET) and molecular brightness analysis of fluorescence correlation spectroscopy data from live HeLa cells transfected with fluorescent-protein-tagged c-Fos indicated that c-Fos formed homodimers. We developed a method to determine the absolute concentrations of transfected and endogenous c-Fos and c-Jun, which allowed us to determine dissociation constants of c-Fos homodimers (Kd = 6.7 ± 1.7 μM) and c-Fos-c-Jun heterodimers (on the order of 10 to 100 nM) from FRET titrations. Imaging fluorescence cross-correlation spectroscopy (SPIM-FCCS) and molecular dynamics modeling confirmed that c-Fos homodimers were stably associated and could bind to the chromatin. Our results establish c-Fos homodimers as a novel form of the AP-1 complex that may be an autonomous transcription factor in c-Fos-overexpressing tissues and could contribute to tumor development.
Collapse
|