1
|
Baek S, Lee EJ. PhoU: a multifaceted regulator in microbial signaling and homeostasis. Curr Opin Microbiol 2024; 77:102401. [PMID: 37988810 DOI: 10.1016/j.mib.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Inorganic phosphate (Pi) is a fundamental molecule crucial for numerous biological processes, such as ATP synthesis and phospholipid formation. To prevent cellular toxicity, Pi transport is often linked to counterion transport within the bacterium. This review discusses the multifaceted functions of the PhoU protein in bacterial regulation, focusing on its role in coordinating Pi transport with counterions, controlling polyphosphate accumulation, and regulating secondary metabolite biosynthesis and DNA repair. We also explore recent findings that challenge the conventional view of PhoU simply as a negative regulator in phosphate signaling, suggesting its broader impact on bacterial physiology and stress response. Understanding the diverse functions of PhoU provides new insight into bacterial biology and offers potential therapeutic implications.
Collapse
Affiliation(s)
- Seungwoo Baek
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eun-Jin Lee
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
| |
Collapse
|
2
|
He C, Wu H, Wei G, Zhu S, Qiu G, Wei C. Simultaneous decarbonization and phosphorus removal by Tetrasphaera elongata with glucose as carbon source under aerobic conditions. BIORESOURCE TECHNOLOGY 2024; 393:130048. [PMID: 37980947 DOI: 10.1016/j.biortech.2023.130048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Previous researches have recognized the vital role of Tetrasphaera elongata in enhanced biological phosphorus removal systems, but the underlying mechanisms remain under-investigated. To address this issue, this study investigated the metabolic characteristics of Tetrasphaera elongata when utilizing glucose as the sole carbon source. Results showed under aerobic conditions, Tetrasphaera elongata exhibited a glucose uptake rate of 136.6 mg/(L·h) and a corresponding phosphorus removal rate of 8.6 mg P/(L·h). Upregulations of genes associated with the glycolytic pathway and oxidative phosphorylation were observed. Noteworthily, the genes encoding the two-component sensor histidine kinase and response regulator transcription factor exhibited a remarkable 28.3 and 27.4-fold increase compared with the group without glucose. Since these genes play a pivotal role in phosphate-specific transport systems, collectively, these findings shed light on a potential mechanism for simultaneous decarbonization and phosphorus removal by Tetrasphaera elongata under aerobic conditions, providing fresh insights into phosphorus removal from wastewaters.
Collapse
Affiliation(s)
- Chao He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Gengrui Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shuang Zhu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
3
|
An G, Li J, Lu H, Guo Z. Nitrogen-dependent luteolin effect on Microcystis growth and microcystin-pollution risk - Novel mechanism insights unveiled by comparative proteomics and gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119848. [PMID: 35948113 DOI: 10.1016/j.envpol.2022.119848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Phytogenic allelochemical luteolin has potential to mitigate Microcystis-dominated cyanobacterial blooms (MCBs), but its algicidal effect against toxigenic Microcystis may be impacted by natural factors, especially nitrogen (N) level in waters. This study innovatively explored N-dependent effect of luteolin on Microcystis growth and its microcystins (MCs) production/release, and elucidated underlying mechanisms from proteomics and gene expression views. Generally, at each N level, rising luteolin dose progressively inhibited Microcystis growth by inhibiting proteins syntheses and genes expression involving light-capturing, photosynthetic electron transfer, Calvin cycle and phosphorus (P) acquisition, according to comparative proteomics and gene expression. At higher luteolin dose and lower N level, Microcystis cell tended to increase microcystins (MCs) production and conservation ability, with the highest increase degree observed at 12 mg/L luteolin and 0.5 mg/L N on day 10, reaching 1.96 and 2.68 folds of luteolin-free control, respectively, but decrease MC-release as extracellular MCs content (EMC), with inhibition ratio of 72.86%, 73.57%, 74.45% and 40.58%, 45.28%, 60.00% at rising N level under 12 mg/L luteolin stress on day 10 and 16, respectively. These enabled cellular defensive response of Microcystis to stronger stress and N limitation. Under luteolin stress, higher N level more strongly up-regulated numerous processes (e.g., oxidoreductase activity, ATP binding and transmembrane transport, oxidative phosphorylation, tricarboxylic acid cycle, fatty acid biosynthesis, glycolysis/gluconeogenesis, pyruvate, amino acids metabolism, metal ion-binding, P acquisition) as compensative protective responses to progressively down-regulated photosynthetic and ribosomal processes at higher N level, thus causing faster Microcystis growth than lower N level. This study provided novel insights for N-dependent effect and mechanisms of luteolin on MCBs mitigation and MCs risk control, and guided algicidal application of luteolin in different eutrophic-degree waters.
Collapse
Affiliation(s)
- Guangqi An
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| | - Haifeng Lu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhonghui Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Abstract
Bacteria utilize two-component regulatory systems to sense and respond to their surroundings. Unlike other two-component systems that directly sense through a sensory domain in the histidine kinase (HK), the PhoB/PhoR two-component system requires additional proteins, including the PstSCAB phosphate transporter and the PhoU protein, to sense phosphate levels. Although PhoU is involved in phosphate signaling by connecting the PstSCAB transporter and PhoR histidine kinase, the mechanism by which PhoU controls expression of pho regulon genes has not yet been clearly understood. Here, we identified PhoU residues required for interacting with PhoR histidine kinase from the intracellular pathogen Salmonella enterica serovar Typhimurium. The PhoU Ala147 residue interacts with the PhoR PAS domain and is involved in repressing pho expression in high phosphate. Unexpectedly, the PhoU Arg184 residue interacts with the PhoR histidine kinase domain and is required for activating pho expression in low Mg2+ by increasing PhoR autophosphorylation, revealing its new function. The substitution of the Arg184 to Gly codon decreased Salmonella virulence both in macrophages and in mice, suggesting that PhoU’s role in promoting PhoR autophosphorylation is required during Salmonella infection.
Collapse
|
5
|
Rahpeyma SS, Raheb J. Mutagenesis of the rpoS gene involved in alteration of outer membrane composition. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:67-74. [PMID: 30996834 PMCID: PMC6462273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES rpoS is a bacterial sigma factor of RNA polymerase which is involved in the expression of the genes which control regulons and play a critical role in survival against stresses. Few suitable vectors are available which could be maintained successfully in Flexibacter chinesis cells and could in particular be used as a suicide vector to make mutation in the rpoS gene. The aim of this study was to investigate if rpoS mutagenesis has impact on bacterial morphology in addition to cell division. MATERIALS AND METHODS A 0.603 kb BamHI-PstI fragment subclone of pICRPOS38Ω was cloned into linearized pLYLO3. The final construct, pLRPOS38 suicide vector, was introduced into Flexibacter chinesis. Then the cytoplasm of mutant strain and wild-type were investigated by transmission electron microscopy. RESULTS After successful subcloning of suicide vector into F. chinesis, based on TEM study, it was demonstrated that mutation in rpoS gene leads to decomposition of outer membrane of F. chinesis. CONCLUSION A suitable vector to make suicide mutation in rpoS was constructed for F. chinesi.
Collapse
Affiliation(s)
| | - Jamshid Raheb
- Corresponding author: Jamshid Raheb, Ph.D, Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. Tel: +98-21-44580387, Fax: +98-21-44787399,
| |
Collapse
|
6
|
Stress Suppressor Screening Leads to Detection of Regulation of Cyclic di-AMP Homeostasis by a Trk Family Effector Protein in Streptococcus pneumoniae. J Bacteriol 2018; 200:JB.00045-18. [PMID: 29483167 DOI: 10.1128/jb.00045-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
Cyclic di-AMP (c-di-AMP) is a newly discovered bacterial second messenger. However, regulation of c-di-AMP homeostasis is poorly understood. In Streptococcus pneumoniae, a sole diadenylate cyclase, CdaA, produces c-di-AMP and two phosphodiesterases, Pde1 and Pde2, cleave the signaling dinucleotide. To expand our knowledge of the pneumococcal c-di-AMP signaling network, we performed whole-genome sequencing of Δpde1 Δpde2 heat shock suppressors. In addition to their effects on surviving heat shock, these suppressor mutations restored general stress resistance and improved growth in rich medium. Mutations in CdaA or in the potassium transporter TrkH paired with an insertion leading to a frameshift at the C terminus of CdaA significantly reduced c-di-AMP levels. These observations indicate that the elevated c-di-AMP levels in the Δpde1 Δpde2 mutant enhance susceptibility of S. pneumoniae to the stress conditions. Interestingly, we have previously shown that TrkH complexes with a Trk family c-di-AMP-binding protein, CabP, to mediate potassium uptake. In this study, we found that deletion of cabP significantly reduced pneumococcal c-di-AMP levels. This is the first observation that a c-di-AMP effector protein modulates bacterial c-di-AMP homeostasis.IMPORTANCE Second messengers, including c-di-AMP, are prevalent among bacterial species. In S. pneumoniae, c-di-AMP phosphodiesterase-encoding gene null mutants are attenuated during mouse models of infection, but the role of c-di-AMP signaling in pneumococcal pathogenesis is enigmatic. In this work, we found that heat shock suppressor mutations converge on undermining c-di-AMP toxicity by changing intracellular c-di-AMP concentrations. These mutations improve the growth and restore the stress response generally in c-di-AMP phosphodiesterase-deficient pneumococci, thereby demonstrating the essentiality for tight regulation of c-di-AMP homeostasis in order to respond to stress. Likewise, this work demonstrates that a c-di-AMP effector protein, CabP, affects c-di-AMP homeostasis, which provides new perception into c-di-AMP regulation. This study has implications for c-di-AMP-producing bacteria since many species contain CabP homologs.
Collapse
|
7
|
PhoU Allows Rapid Adaptation to High Phosphate Concentrations by Modulating PstSCAB Transport Rate in Sinorhizobium meliloti. J Bacteriol 2017; 199:JB.00143-17. [PMID: 28416708 DOI: 10.1128/jb.00143-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/11/2017] [Indexed: 01/14/2023] Open
Abstract
Maintenance of cellular phosphate homeostasis is essential for cellular life. The PhoU protein has emerged as a key regulator of this process in bacteria, and it is suggested to modulate phosphate import by PstSCAB and control activation of the phosphate limitation response by the PhoR-PhoB two-component system. However, a proper understanding of PhoU has remained elusive due to numerous complications of mutating phoU, including loss of viability and the genetic instability of the mutants. Here, we developed two sets of strains of Sinorhizobium meliloti that overcame these limitations and allowed a more detailed and comprehensive analysis of the biological and molecular activities of PhoU. The data showed that phoU cannot be deleted in the presence of phosphate unless PstSCAB is inactivated also. However, phoU deletions were readily recovered in phosphate-free media, and characterization of these mutants revealed that addition of phosphate to the environment resulted in toxic levels of PstSCAB-mediated phosphate accumulation. Phosphate uptake experiments indicated that PhoU significantly decreased the PstSCAB transport rate specifically in phosphate-replete cells but not in phosphate-starved cells and that PhoU could rapidly respond to elevated environmental phosphate concentrations and decrease the PstSCAB transport rate. Site-directed mutagenesis results suggested that the ability of PhoU to respond to phosphate levels was independent of the conformation of the PstSCAB transporter. Additionally, PhoU-PhoU and PhoU-PhoR interactions were detected using a bacterial two-hybrid screen. We propose that PhoU modulates PstSCAB and PhoR-PhoB in response to local, internal fluctuations in phosphate concentrations resulting from PstSCAB-mediated phosphate import.IMPORTANCE Correct maintenance of cellular phosphate homeostasis is critical in all kingdoms of life and in bacteria involves the PhoU protein. This work provides novel insights into the role of the Sinorhizobium meliloti PhoU protein, which plays a key role in rapid adaptation to elevated phosphate concentrations. It is shown that PhoU rapidly responds to elevated phosphate levels by significantly decreasing the phosphate transport of PstSCAB, thereby preventing phosphate toxicity and cell death. Additionally, a new model for phosphate sensing in bacterial species which involves the PhoR-PhoB two-component system is presented. This work provides new insights into the bacterial response to changing environmental conditions and into regulation of the phosphate limitation response that influences numerous bacterial processes, including antibiotic production and virulence.
Collapse
|
8
|
Zheng JJ, Sinha D, Wayne KJ, Winkler ME. Physiological Roles of the Dual Phosphate Transporter Systems in Low and High Phosphate Conditions and in Capsule Maintenance of Streptococcus pneumoniae D39. Front Cell Infect Microbiol 2016; 6:63. [PMID: 27379215 PMCID: PMC4913102 DOI: 10.3389/fcimb.2016.00063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/27/2016] [Indexed: 12/28/2022] Open
Abstract
Unlike most bacteria, Streptococcus pneumoniae (pneumococcus) has two evolutionarily distinct ABC transporters (Pst1 and Pst2) for inorganic phosphate (Pi) uptake. The genes encoding a two-component regulator (PnpRS) are located immediately upstream of the pst1 operon. Both the pst1 and pst2 operons encode putative PhoU-family regulators (PhoU1 and PhoU2) at their ends. This study addresses why S. pneumoniae contains dual Pi uptake systems and the regulation and contribution of the Pst1 and Pst2 systems in conditions of high (mM) Pi amount and low (μM) Pi amount. We show that in unencapsulated mutants, both pst1 and pst2 can be deleted, and Pi is taken up by a third Na+/Pi co-transporter, designated as NptA. In contrast, either pst1 or pst2 is unexpectedly required for the growth of capsule producing strains. We used a combination of mutational analysis, transcript level determinations by qRT-PCR and RNA-Seq, assays for cellular PnpR~P amounts by SDS-PAGE, and pulse-Pi uptake experiments to study the regulation of Pi uptake. In high Pi medium, PhoU2 serves as the master negative regulator of Pst2 transporter function and PnpR~P levels (post-transcriptionally). ΔphoU2 mutants have high PnpR~P levels and induction of the pst1 operon, poor growth, and sensitivity to antibiotics, possibly due to high Pi accumulation. In low Pi medium, Pst2 is still active, but PnpR~P amount and pst1 operon levels increase. Together, these results support a model in which pneumococcus maintains high Pi transport in high and low Pi conditions that is required for optimal capsule biosynthesis.
Collapse
Affiliation(s)
- Jiaqi J Zheng
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| | - Dhriti Sinha
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| | - Kyle J Wayne
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| |
Collapse
|
9
|
Moore JM, Magnan D, Mojica AK, Núñez MAB, Bates D, Rosenberg SM, Hastings PJ. Roles of Nucleoid-Associated Proteins in Stress-Induced Mutagenic Break Repair in Starving Escherichia coli. Genetics 2015; 201:1349-62. [PMID: 26500258 PMCID: PMC4676537 DOI: 10.1534/genetics.115.178970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/18/2015] [Indexed: 01/02/2023] Open
Abstract
The mutagenicity of DNA double-strand break repair in Escherichia coli is controlled by DNA-damage (SOS) and general (RpoS) stress responses, which let error-prone DNA polymerases participate, potentially accelerating evolution during stress. Either base substitutions and indels or genome rearrangements result. Here we discovered that most small basic proteins that compact the genome, nucleoid-associated proteins (NAPs), promote or inhibit mutagenic break repair (MBR) via different routes. Of 15 NAPs, H-NS, Fis, CspE, and CbpA were required for MBR; Dps inhibited MBR; StpA and Hha did neither; and five others were characterized previously. Three essential genes were not tested. Using multiple tests, we found the following: First, Dps, which reduces reactive oxygen species (ROS), inhibited MBR, implicating ROS in MBR. Second, CbpA promoted F' plasmid maintenance, allowing MBR to be measured in an F'-based assay. Third, Fis was required for activation of the SOS DNA-damage response and could be substituted in MBR by SOS-induced levels of DinB error-prone DNA polymerase. Thus, Fis promoted MBR by allowing SOS activation. Fourth, H-NS represses ROS detoxifier sodB and was substituted in MBR by deletion of sodB, which was not otherwise mutagenic. We conclude that normal ROS levels promote MBR and that H-NS promotes MBR by maintaining ROS. CspE positively regulates RpoS, which is required for MBR. Four of five previously characterized NAPs promoted stress responses that enhance MBR. Hence, most NAPs affect MBR, the majority via regulatory functions. The data show that a total of six NAPs promote MBR by regulating stress responses, indicating the importance of nucleoid structure and function to the regulation of MBR and of coupling mutagenesis to stress, creating genetic diversity responsively.
Collapse
Affiliation(s)
- Jessica M Moore
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030
| | - David Magnan
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Ana K Mojica
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Undergraduate Program on Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, 62210, Morelos, Mexico
| | - María Angélica Bravo Núñez
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - David Bates
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, 77030
| | - Susan M Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, 77030
| | - P J Hastings
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|